
Lab Assignment 12 (week 12)

In this lab, we will:
1. Review the contents of the Database.jar file
2. Cover the usage of arrays to create a database structure
3. Show how the Database class is used and why
4. Have some time for help with the homework

Specification:

The creation of a new project, DBlab, will look like the following:

The lab instructor will go through each class and explain the flow and essentially what
is happening and how it relates to other parts of the class.

Record Interface
/* *
 * Record is a data item that can be stored in a database
 *
 * /
public interface Record {

 /* *
 * keyOf returns the key that uniquely identifies the record
 * @return the key * /

 Key keyOf();
}

Key Interface
/* *
 * Key is an identification, or "key", value
 * /

public interface Key {
 /* *
 * equals compares itself with another key, m, for equality
 * @param m - the other key
 * @return true, if this key and m have the same key value;
 * otherwise, return false. * /
 boolean equals(Key m);

 /* *
 * lessthan compares itself with another key, m, for less than
 * @param m - the other key
 * @return true, if this key is a lesser key value than m;
 * otherwise, return false. * /
 boolean lessthan(Key m);
}

Database Class
/* * Database implements a database of records * /
public class Database
{ private Record[] base; // the collection of records
 private int count; // how many records are stored in the database
 // invariant: 0 <= item_count <= base.length

 /* * Constructor Database initializes the database
 * to a size of 10 unless otherwise specified * /
 public Database() {
 this(10);
 }

 /* * Constructor Database initializes the database
 * @param initial_size - the size of the database * /
 public Database(int initial_size)
 { if (initial_size > 0)
 { base = new Record[initial_size]; }
 else { base = new Record[1]; }
 count = 0;

 }

 /* * insert inserts a new record into the database.
 * @param r - the record
 * @return true, if record added; return false if record not added because
 * another record with the same key already exists in the database * /
 public boolean insert(Record r)
 { boolean success = false;
 if (locationOf(r.keyOf()) == -1) // ok to add record with this key?
 { boolean found_empty_place = false;
 int i = 0;
 while (!found_empty_place && i != base.length)
 // so far, all of base[0]..base[i-1] are occupied
 { if (base[i] == null) // is this element empty?
 { found_empty_place = true; }
 else { i = i+1; }
 }
 if (found_empty_place)
 { base[i] = r; }
 else { // array is full! So, create a new one to hold more records:
 Record[] temp = new Record[base.length * 2];
 for (int j = 0; j != count; j = j+1)
 // copying contents of base into temp
 { temp[j] = base[j]; }
 base = temp; // change base to hold address of temp
 base[count] = r; // insert r in first free element
 }
 count = count + 1; // remember that we added a record
 success = true;
 }
 return success;
 }

 /* * find locates a record in the database based on a key
 * @param key - the key of the desired record
 * @return (the address of) the desired record;
 * return null if record not found. * /
 public Record find(Key k)
 { Record answer = null;
 int index = locationOf(k);
 if (index != -1)
 { answer = base[index]; }
 return answer;
 }

 /* * delete removes a record in the database based on a key

 * @param key - the record's key (identification)
 * @return true, if record is found and deleted; return false otherwise * /
 public boolean delete(Key k)
 { boolean result = false;
 int index = locationOf(k);
 if (index != -1)
 { base[index] = null;
 count = count - 1; // remember that we deleted a record
 result = true;
 }
 return result;
 }

 /* * locationOf returns the index in base where a record with k appears* /
 private int locationOf(Key k)
 { int result = -1;
 boolean found = false;
 int i = 0;
 while (!found && i != base.length)
 { if (base[i] != null && (base[i].keyOf().equals(k)))
 { found = true;
 result = i;
 }
 else { i = i+1; }
 }
 return result;
 }

 /* * getDatabase returns the database so the user can sort it, etc.
 * @returns base
 * /
 public Record[] getDatabase() {
 return base;
 }
}

Now that the instructor has explained the details of the Database class, take time to
work through this week’s homework assignment!

