
Lab 7 Project

In this lab we will study:
• Model-View-Controller Architecture
• Constructors vs. methods
• Parameter Passing (data types and objects)
• Debugging

Lab Project: Program X

1.Open BlueJ and create a new project, ProgramX
2.Create the following four classes as shown in Figure 1. Remember only the

ProgramX class will be created with the main statement. It is the entry point for
the project.

Figure 1

3.Open the ProgramX class and add the following code. Make sure that this is the

ONLY code in the class. (Take out all of the code supplied by BlueJ.)
// program entry point
public class ProgramX
{ public static void main(Str ing [] args)
 { Controller c = new Controller (); // instantiate a new controller object " c"
 c.execute(); // use the " c" Controller object to call an execute method
 // from the Controller class
 }
}

4.Compile this class to insure that it is syntactically correct
5.Open the View class and add the following code

impor t javax.swing.*;
impor t java.text.* ;

// The VIEW class - what you see and interact with!
public class View
{ JOptionPane jop = new JOptionPane(); //instantiate a new JOptionPane object " jop"
 DecimalFormat dec = new DecimalFor mat(" $###,##0.00");
 // instantiate a new DecimalFormat object
 // " dec" and pass it the desired format

// getInput method that asks the user to enter a number (actually a Str ing until conver ted)
 public Str ing getInput()
 { return jop.showInputDialog(" Enter the Number !");
 }

 // showOutput method takes a double value " num" , formats it and show it to the user within
 // a JOptionPane dialog
 public void showOutput(double num)
 { jop.showMessageDialog(null," My number is: " + dec.format(num));
 }
}

6.Compile the View class to insure that it is syntactically correct

7.Open the Model class and add the following code
public class Model
{ pr ivate double number = 0; //class var iable - notice the pr ivate

 // the MODEL constructor passed a Str ing upon instantiation and converts it to double
 public Model(Str ing n)
 { number = new Double(n).doubleValue();
 }

 // setNumber method sets the class var iable from the parameter " n"
 public void setNumber(double n)
 { number = n;
 }
 // getNumber method returns the value of the number class var iable
 public double getNumber()
 {return number;
 }
}
8.Compile the Model class to insure that it is syntactically correct

9.Open the Controller class and add the following code
// the CONTROLLER 'controls' the calls to VIEW and MODEL
public class Controller
{ public void execute() //execute method of Controller
 { View v = new View(); // instantiate a new View object " v"
 Str ing input = v.getInput(); // call the getInput method of the View class
 Model m = new Model(input); // instantiate a new Model object " m" by passing
 // the ' input' Str ing var iable to it as a parameter
 v.showOutput(m.getNumber()); // execute the showOutput method from the View class
 } // by passing it the output of the Model's getNumber method
 } //end of class

10.Compile the Controller class to insure that it is syntactically correct
11.Execute the project to view its execution
12. If the compile and execution work, then we will look at debugger
13.First go to the Help menu and open the tutorial file. When it is open read chapter 6

(pages 20-23) on debugging.
14.Set “break points” in your code by clicking on the left side of the screen (in the

rectangle) as shown in Figure 2. When a breakpoint is set the execution will pause
at that point in the program execution for you see the value of the relevant
variables.

Figure 2

15.Execute the program
16.You will see the program stop on your first breakpoint as shown in Figure 3.

Figure 3

17.Step through your program several times to get a feel for how the execution flows

and also how the debugger works. Use the STEP, STEP INTO, CONTINUE and
TERMINATE buttons and discover what they do. Use different entry data to see
what happens and how the data flows.

18.Change the setNumber method in the Model class to take the input double and
return it taken to the 2nd power.

19.Once again recompile all classes and reset breakpoints. Notice what happened to
the previous breakpoints when you re-compiled the code.

20.Execute several times again. Investigate, through the use of the debugger, the
change that you just made.

21.To complete the lab, show the TA that you know how debugging works by taking
them through a trace of the program and explaining what is happening.

