
CIS540/543 Lab 4              Scott Harmon 2009 

Subversion (SVN) Introduction 
 

Objectives: 
• Learn the basics of Subversion source code management. 
• Learn how to use Eclipse’s SVN integration. 

Part I (Command‐line usage) 
In this part of the lab you will be creating and accessing a repository from the command line. For
the following examples, the blue text contained within a box are the commands that you should
execute. The remaining text is what should be outputted by Subversion or the shell.

Creating the Repository

 First, SSH into your CIS account then type the following commands.

The svndamin create command creates a new directory ~/svnrespository (the tilde is
an alias for your home directory) which contains your repository.

Importing a Project 

Now type the following commands to download and extract a tarball containing a sample project
for this lab:

The sample project contains one file: HelloWorld.java. Now we are ready to import this
sample project into the repository. In the following, replace <abpath> with the absolute path of
your home directory. For most this will be ‘/home/ugrads/<cis_userid>’

viper~% svnadmin create ~/svnrepository
viper~% ls -lp ~/svnrepository/
README.txt conf/ dav/ db/ format hooks/ locks/
 

viper~% wget -q
http://people.cis.ksu.edu/~harmon/cis540f09/cis540-lab4.tar.gz
viper~% tar xzvf cis540-lab4.tar.gz
viper~% ls -l ~/cis540/
src/
 

viper~% svn import ~/cis540 file:///<abpath>/svnrepository/cis540
-m "initial import"
Adding <abpath>/cis540/src
Adding <abpath>/cis540/src/HelloWorld.java

Committed revision 1.
 

Now the repository contains a top-level directory named cis540, which in turn contains the two
files that make up our project. Note that ‘-m “initial import”’ defines the comment we
want to associate with this import. If we didn’t include this line then Subversion would start your
default text editor (likely vi) and wait for you to exit it before continuing.

Note that the original ~/cis540 directory is unchanged by the import. Subversion is unaware
of it. Since the project is in the repository, we could even delete the directory

A typical Subversion repository often holds the files (or source code) for several projects; usually,
each project is a subdirectory in the repository's filesystem tree. You would do an svn import
for each project that you want to Subversion to manage.

Creating a Working Copy 

In order to start manipulating the repository data, you need to create a new “working copy” of the
data, a sort of private workspace. Now ask Subversion to “checkout” two working copies of the
svnlab directory in the repository calling them svnlab_bob and svnlab_sue. You do this
using the svn checkout command.

In the above output we can see that subversion created two directories called svnlab_bob and
svnlab_sue and populated each with the current version of the cis540 project. We will use
these two working copies to simulate two different users named Bob and Sue who are working on
the same project.

Now switch to the Bob’s svnlab_bob directory and do a directory listing

Notice that the working copy has a subdirectory called ‘.svn’. This is Subversion’s
administrative directory. The files in each administrative directory help Subversion recognize
which files contain unpublished changes, and which files are out-of-date with respect to others'
work. It also stores the location (URL) of the repository so you no longer have to specify it at the
command line.

viper~% svn checkout file://<abpath>/svnrepository/cis540 svnlab_bob
A svnlab_bob/src/HelloWorld.java
Checked out revision 1.  

viper~% svn checkout file://<abpath>/svnrepository/cis540 svnlab_sue
A svnlab_sue/src/HelloWorld.java
Checked out revision 1.  

viper~% cd svnlab_bob/
viper~/svnlab_bob% ls -l
./ ../ .svn/ src/
 

Manipulating the Working Copy 

In the svnlab_bob directory type the following :

The first command created a new file called INSTALL. The second command instructs
Subversion to add INSTALL to Bob’s working copy and schedule it for addition to the
repository. Note that if we didn’t add it to the working copy then Subversion would simply
ignore it (i.e. it would not be under version control).

Now, modify Bob’s HelloWorld.java so that it outputs “Hello everyone” instead of
“Hello World!” Save your changes to the file and do the following:

This command compares the metadata contained in the .svn directory with the working copy.
The ‘A’ indicates that INSTALL has been scheduled for addition into the repository. The ‘M’
indicates that the contents of HelloWorld.java have been modified.

Now commit your changes back to the repository using the following command

The svn commit command sends all of your changes to the repository. When you commit a
change, you need to supply a log message, describing your changes. Your log message will be
attached to the new revision you create. If your message is short then you can type it at the
command line using the ‘-m’ switch as in the example above. If your message will contain
multiple paragraphs then leave off the ‘-m’ switch and Subversion will open your default text
editor (likely vi) and wait till you exit before proceeding.

viper~/svnlab_bob% echo "INSTALL file for svnlab" > INSTALL
viper~/svnlab_bob% svn add INSTALL
A INSTALL
 

viper~/svnlab_bob% svn status
A INSTALL
M src/HelloWorld.java 

viper~/svnlab_bob% svn commit -m "Added INSTALL and modified
helloworld"
Adding INSTALL
Sending src/HelloWorld.java
Transmitting file data ..
Committed revision 2.
 

Handling Conflicts 

Now switch to the Sue’s svnlab_sue directory using the following command:

Modify the contents of Sue’s HelloWorld.java so that it outputs “Hello all” instead of
“Hello world”.
Try committing these changes as follows:

The output is informing us the commit failed (atomically) because our HelloWorld.java file
is older than the one currently stored in the repository. To learn more, we can run svn status
but this time supply the show updates switch -u

The –u switch instructed Subversion to contact the repository and add information about things
that are out-of-date. In the sample output above, the first column tells the status of a file or
directory and/or its contents. The third column indicates what version Sue’s working copy files
are at. INSTALL does not have an entry in the first and second columns since is not in Sue’s
working copy. The asterisks in the second column tell us that both INSTALL and
HelloWorld.java are out of date.

We now have to fix those problems. To do this, type the following:

viper~/svnlab_bob% cd ../svnlab_sue/
 

viper~/svnlab_sue% svn commit -m "modified helloworld "
Sending src/HelloWorld.java
svn: Commit failed (details follow):
svn: Out of date: '/cis540/src/HelloWorld.java' in transaction '2-1'
 

viper~/svnlab_sue% svn status -u
 * INSTALL
M * 1 src/HelloWorld.java
Status against revision: 2
 

viper~/svnlab_sue% svn update
A INSTALL
C src/HelloWorld.cpp
Updated to revision 2.
 

svn update brings changes from the repository into your working copy. In the sample output,
the ‘A’ indicates that INSTALL has been added to our working copy. The ‘C’ indicates Sue’s
changes to HelloWorld.java overlap with the changes from the server, and now you have to
manually choose between them.

For every conflicted file, Subversion places up to three extra unversioned files in your working
copy:

filename.mine
This is your file as it existed in your working copy before you updated your working copy—that
is, without conflict markers. This file has your latest changes in it and nothing else. (If Subversion
considers the file to be unmergeable, then the .mine file isn't created, since it would be identical
to the working file.)

filename.rOLDREV
This is the file that was the BASE revision before you updated your working copy. That is, the
file that you checked out before you made your latest edits.

filename.rNEWREV
This is the file that your Subversion client just received from the server when you updated your
working copy.

To see this in action, do a directory listing for Sue.

HelloWorld.java.mine would output “Hello all” (Sue’s changes),
HelloWorld.java.r1 would output “Hello world” (version 1), and
HelloWorld.java.r2 would output
“Hello everyone” (Bob’s changes aka version 2).

At this point we could do one of three things to fix the conflict

1. Copy one of the temporary files on top of your working file.
2. Run svn revert HelloWorld.java to throw away all of your local changes.
3. Merge the conflicted text “by hand” by examining and editing the conflict markers within the
file.

Usually you won't want to just delete the conflict markers and Bob's changes—that user is going
to be awfully surprised when they next refresh their working copy and suddenly the program is
outputting “Hello all” instead of “Hello everyone”. So this is where you pick up the
phone or walk across the office and discuss the conflict with Bob. Once you've agreed on the

viper~/svnlab_sue% ls
INSTALL HelloWorld.java HelloWorld.java.r1
HelloWorld.java.mine HelloWorld.java.r2  

changes you will check in, edit your file and remove the conflict markers.

To make it easy on ourselves, let’s just accept Bob’s changes.

Now that you’ve resolved the conflict, you need to let Subversion know by running svn
resolved. This removes the three temporary files and Subversion no longer considers the file
to be in a state of conflict. Note that you have to run svn resolved regardless of which of
the three options you had chosen to fix the conflict.

Now that you know how to handle conflicts, it is import to note that they do not occur very often
in practice. It is unlikely that you will have two or more people modifying the exact same
portion of a file.
After running svn update you will most likely see a ‘U’ or a ‘G’ next to the filenames. The G
stands for merGed, which means that the file had local changes to begin with, but the
chrepository didn't overlap with the local changes.
 

Checking‐out Historical Revisions 

One useful feature of versioning systems is the ability to “go back in time” and examine old
versions of a project. For example, if we include the –r switch and a reversion number when
performing a checkout then Subversion will create a working copy that contains the project as it
existed at the specified revision.
For our example we could checkout revision 1 into a directory called svnlab_r1 as follows.

Other Useful Commands 

svn diff - Displays the differences between two paths.

In the following example we will ask Subversion to compare reversion 1 of
HelloWorld.java against Bob’s current reversion.

viper~/svnlab_sue% svn resolved HelloWorld.java
Resolved conflicted state of 'HelloWorld.java'
 

viper~/svnlab_sue% cp HelloWorld.java.r2 HelloWorld.java
 

viper~/svnlab_bob% cd ~
viper~% svn checkout -r 1 file://<abpath>/svnrepository/cis540
svnlab_r1
 

The output shows which lines differ between the two revisions. Lines prefixed with a ‘-‘ are
from revision 1 and line prefixed with a ‘+’ are from Bob’s current version. Note that Sue could
have used svn diff –r2 HelloWorld.java before she did svn update in order to see
how her copy differed from the current revision located on the server.

Making changes to the repository

svn delete - delete an item from a working copy or the repository. For example, we could
use svn delete INSTALL which would schedule INSTALL for deletion.

svn copy - Copy a file or directory in a working copy or in the repository. In Part II of this lab
we will see how to use this command to ‘tag’ or ‘branch’ a project.

svn move - This command moves a file or directory in your working copy or in the repository.
For example, we could use svn move HelloWorld.java hw.java which would
schedule hw.java for addition and HelloWorld.java for deletion.

At this point indicate to the TA that you are finished with Part I of the
lab. Do not proceed to Part II until the TA checks your work.

Part II: Eclipse SVN Use 
Eclipse does not come with built in SVN support.  Thus, for this section, we will first 
install a popular SVN plugin for eclipse and then go through setting up eclipse to use 
your projects account. 

Installing Subclipse Plugin 
The update site for subclipse is: http://subclipse.tigris.org/update_1.6.x 

Go to Help­>Install New Software. 

viper~% cd ~/svnlab_bob
viper~/svnlab_bob% svn diff –r 1 src/HelloWorld.java
 

 

Install Core SVNKit Library and Subclipse. 

 

Go to the SVN Repository Exploring Perspective.  Add new repository. For the URL 
use: http://projects.cis.ksu.edu/svn/<team> 

Where <team> is 540fall09se2 for team 2. 

Sharing an Eclipse Project 
Within Eclipse’s Project Browser, either create a new, or use an existing project.  
Right click the project and go to Team‐>Share Project. 

 

Choose SVN. 

 

Select the repository location you created in the previous step. 

Continue through the wizard. 

 

After opening the Synchronizing Perspective, right click on the project and select 
Commit. 

Now team members may check out the project in their eclipse and make changes. 

For more info please see: http://subclipse.tigris.org/ 

