CIS540/543 Lab 7 Fall 2009

Objectives:
* Learn Debugging in Visual Studio

Introduction:
Errors can be syntax errors, semantic errors, or logic errors.

The most obvious type of error is the syntax error, which occurs when you write
code in a manner not allowed by the rules of the language. Syntax errors are almost
always caught by the compiler or interpreter.

Semantic errors are a more subtle type of error. A semantic error occurs when the
syntax of your code is correct, but the semantics or meaning are not what you
intended. Because the construction obeys the language rules, semantic errors are
not caught by the compiler nor the interpreter. Compilers and interpreters concern
themselves only with the structure of the code you write, not the meaning. A
semantic error can cause your program to terminate abnormally, with or without an
error message. In colloquial terms, it can cause your program to crash or hang.

Not all semantic errors manifest themselves in such an obvious fashion, however. A
program can continue running after some semantic errors, but the internal state of
the program will not be what you intended. Variables may not contain the correct
data, or the program may continue down a path that is not what you intended. The
eventual result will be incorrect output. These errors are called logic errors, because
while the program does not crash, the logic that it executes is in error.

Once you have created your application and resolved the build errors you might
need to correct logic errors that keep your application from running correctly. The
only way to detect logic errors is by testing your program, manually or
automatically. Unfortunately, while testing can show you that the output of your
program is incorrect, it usually leaves you without a clue as to what part of your
code actually caused the problem. This is where Debugging can be of use.

Debugging Basics:

Breakpoint
A breakpoint is a signal that tells the debugger to temporarily suspend execution of
your program at a certain point.

In C++, you can even make changes to the code while in break mode (a feature called
Edit and Continue).

To insert a line breakpoint, click in the gray margin next to the line where you want
to set the breakpoint.

Quickwatch

As the name implies, Quick-Watch provides a fast way to look at and evaluate

variables and expressions.

In Visual Studio, you can get a quick look at a variable's value by placing the cursor

over the variable. A small box called a Data-Tip will appear showing the value.

Exercise:

Create a simple C++ Console Application

Open Microsoft Visual Studio 2008, Click File->New->Project: Visual C++, Win32
Console Application. Choose a name and click Next. Under Additional options, check

Empty project. Click Finish.

A

New Project ﬂ

-I Project types:

Templates:

I.NET Framework 3.5 ﬂ

[=)- Visual C++
ATL
CLR
General
MFC
Smart Device
Test
Win32
Wizards
Other Languages
[+- Other Project Types
Test Projects

Yisual Studio installed templates

5% Custom Wizard

:'E Windows Forms Application
3 Win32 Console Application
1 MFC Application

lAE.&TL Smart Device Project
TZICLR Empty Project

H&MFC ActiveX Control

jg MFC Smart Device ActiveX Control
4/l MFC Smart Device DLL

,EI Win32 Smart Device Project
[FAwindows Service

My Templates

ZATest Project

JACLR Console Application
()] ATL Project

ZHMakefile Project
{AClass Library

Z]Empty Project

HEMFC DLL

,‘fﬁ MFC Smart Device Application

[FWin32 Project

_mWindows Forms Control Library

=

I A project for creating a Win32 console application

MName: | cisS40-lab1]
Location: | U:\visual Studio 2008\Projects
Solution Name: I cis540-lab1l [V Create directory for solution

Ll

™ Add to Source Control

ﬂ Browse. .. |

OK I Cancel |

nr
pir

T

Right click Source Files folder in your new project, choose Add->New Item. Select

Code: C++ File. Choose a name and then click Add.

Add New Item - cis540-lab1 | 2| x|
Cateqgories: Templates:
- i
= visual C++ Yisual Studio installed templates it
Ul
Code 4] C++ File {.cpp)] Header File {.h)
Data | Midl File {.idl) #z]Module-Definition File (.def)
Resource 3] Component Class 3] Installer Class
Web
Utility My Templates
Property Sheets)
.| Search Online Templates...
Creates a file containing C++ source code
Mame: | lab1]
~ Location: | urtvisual Studio 20081ProjectsicisS40-lab1cisS40-lab1 Browse... | :
J Add Cancel |

Exercise Code:
#include <iostream> // Provides cout
using namespace std;

class DebugThisClass {
private:
const static int MAX = 6;
int count;
int num[MAX];

public:

DebugThisClass(){
count = MAX;
}

///Enter Values into the array.
void loadArray() {
//you can step over this loop if you want,
//but watch how the values of variables change in
the quick watch window
for (count = MAX - 1; count >= 0; count--) {
cout << "Enter an integer: " ;
cin >> num[count];
}
//after one or two iterations you can step out of
this function if you want.

}

///Display the array
//Step into this function, see the values of variables
in the watch window
void printArray() {
int m;

cout <<"The data in the array at the indices
shown in the left column is:" << endl;
for (m = 0; m < count; mt++)
cout << m << ": " << num[m] << endl;

}
};//end of class

///Driver for the CPP program
int main() {
DebugThisClass *test = new DebugThisClass();
test->loadArray(); //insert a breakpoint here and step into
the function
test->printArray(); //insert a breakpoint here and step into
the function

}

Click Build->Build Solution.
To run, click Debug->Start Without Debugging.

The program should output the contents of the array that holds all the values that
you just entered.

You will not get the output. Debug the program using the Visual studio debugger
and show the proper output to the TA.

You should be able to demonstrate that you are able to step into and step over a
function.

Insert the breakpoints at places, where you find the comments, instructing you to do
so in the program.

Use Step Into (F11) the code if you want to go inside of a function.

Use Step Over (F10) if you do not want to go inside of a function when stepping
through a line that has a function call.

Use Step Out (Shift + F11) if you need to get out of a function that you have gotten
into.

Add values to the Quickwatch window (Ctrl + Alt + Q), this opens a window, you can
type in the variables whose values you want to watch. Then click ‘add watch’. You
should be able to see the variables and values at the bottom left window.

