A Comparison of Hybrid Incremental Reuse
Strategies for Reinforcement Learning in
Genetic Programming

Scott Harmon, Edwin Rodriguez, Christopher Zhong, and William Hsu

Department of Computing and Information Sciences
Kansas State University
{sjh4069,edwin, czh9768,bhsu}@cis.ksu.edu

FEasy missions is an approach to machine learning that seeks to synthesize
solutions for complex tasks from those for simpler ones. ISLES (Incrementally
Staged Learning from Easier Subtasks) [1] is a genetic programming (GP) tech-
nique that achieves this by using identified goals and fitness functions for sub-
problems of the overall problem. Solutions evolved for these subproblems are then
reused to speed up learning, either as automatically defined functions (ADF) or
by seeding a new GP population. Previous positive results using both approaches
for learning in multi-agent systems (MAS) showed that incremental reuse using
easy missions achieves comparable or better overall fitness than single-layered
GP. A key unresolved issue dealt with hybrid reuse using ADF with easy mis-
sions. Results in the keep-away soccer (KAS) [2] domain (a test bed for MAS
learning) were also inconclusive on whether compactness-inducing reuse helped
or hurt overall agent performance. In this paper, we compare reuse using single-
layered (with and without ADF) GP and easy missions GPs to two new types
of GP learning systems with incremental reuse.

In our research we performed six experiments. The first experiment used
standard, conventional GP without any enhancement. We will refer to this as
single-layered GP. The second used using standard GP enhanced with ADF.
We will refer to this as single-layered ADF. The rest of the experiments used
double-layered (two stages of evolution). The third used ISLES with Standard
GP in the first and second stage. We will refer to this as ISLES - SGP/SGP.
The fourth used ISLES with Standard GP in the first stage and ADF in the
second stage. We will refer to this as ISLES - SGP/ADF. The fifth used ISLES
with ADF in the first stage and Standard GP in the second stage. We will refer
to this as ISLES - ADF/SGP. The sixth and final experiment used ISLES with
ADF in the first and second stage. We will refer to this as ISLES - ADF/ADF.

Each experiment was done using ECJ [3] and a KAS simulator created by
S. Gustafson [1]. For both single-layered experiments, the target concept was to
minimize the number of turn overs. For all of the experiments with ISLES, the
first stage goal was to maximize the number of successful passes between two
teammates in the absence of takers. The second stage goal was to minimize the
number of turnovers from keepers (3 keepers) to takers (1 taker).

We took the average of ten runs for each experiment. The population size for
all the experiments was 4000. For the single-layered experiments, we stopped at
the 101th generation. For the ISLES experiments we stopped the first stage at



the 10th generation and the second stage at the 90th generation. When going
from the first stage to the second stage, we used the individuals from the first
stage to seed the population of the second stage. For ISLES -SGP/ADF that
involved putting the GP trees into the ADF portions and initializing the main
trees to random sequences. For ISLES - ADF/SGP, it involved taking the ADF
trees and placing then into the main trees of the GP (discarding the main trees
of the ADF). For the others a simple transfer of the individuals was performed.

The results we obtained show evidence of the possible existence of a well de-
fined spectrum of behaviors that ranges from techniques that use compactness
inducing reuse (such as ADF) to those that use totally dynamic reuse (ISLES).
This spectrum is defined by a trade off between high fitness and space efficiency.
Our preliminary results allow us to hypothesize that for problems that surpass a
certain threshold of complexity, compactness inducing techniques, like ADF, will
tend to yield solutions that are far more efficient in terms of space. However,
this space saving comes at the cost of suboptimality in terms of fitness. This
conjecture is very interesting and poses several questions: is this phenomenon
problem independent? Is this phenomenon independent of the design of the sys-
tem, parameter tuning, inductive bias and other characteristics of the underlying
evolutionary engine? Unfortunately, given the premature nature of our results
and lack of diversity in terms of problems studied (as well as some uncertainty
introduced by the small amount of repetitions), it is impossible, for now, to an-
swer these questions. However, despite the weakness of these preliminary results
in terms of support for our conjecture, the issue posed herein is a very interest-
ing one and we believe that it should beintegrated into the current efforts of our
research community.

The ideas presented in this work have a potential effect on other well devel-
oped areas such as Schema Theory and Code Bloat Theory. Our long term goal
is to develop a theory that characterizes the behavior of GP in the presence of
different types of reuse. This theory should have both a qualitative and quanti-
tative value. In this sense it should not only give insight about how reuse affect
the way GP searches for problems, but also serve as a tool to determine under
what conditions reuse is beneficial, what kind of reuse should be applied or if it
should be avoided altogether.

References

1. Hsu, W.H., Gustafson, S.M.: Genetic programming and multi-agent layered learning
by reinforcements. In: GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, New York, Morgan Kaufmann Publishers (2002) 764-771

2. McAllester, D., Stone, P.: Keeping the ball from CMUnited-99. In: RoboCup-2000:
Robot Soccer World Cup IV. Springer Verlag, Berlin (2001)

3. Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies, Tree Gener-
ation, and Code Bloat. PhD thesis, Department of Computer Science, University
of Maryland, A. V. Williams Building, University of Maryland, College Park, MD
20742 USA (2000)



