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Abstract. Policies have traditionally been a way to specify properties of a sys-
tem. In this paper, we show how policies can be applied to the Organization
Model for Adaptive Computational Systems (OMACS). In OMACS, policies
may constrain assignments of agents to roles, the structureof the goal model
for the organization, or how an agent may play a particular role. In this paper,
we focus on policies limiting system traces; this is done to leverage the work
already done for specification and verification of properties in concurrent pro-
grams. We show how traditional policies can be characterized as law policies;
that is, they must always be followed by a system. In the context of multiagent
systems, law policies limit the flexibility of the system. Thus, in order to preserve
the system flexibility while still being able to guide the system into preferring
certain behaviors, we introduce the concept ofguidance policies. Theseguidance
policiesneed not always be followed; when the system cannot continuewith the
guidance policies, they may be suspended. We show how this can guide how the
system achieves the top-level goal while not decreasing flexibility of the system.
Guidance policiesare formally defined and, since multipleguidance policiescan
introduce conflicts, a strategy for resolving conflicts is given.

1 Introduction

As computer systems have been charged with solving problemsof greater complexity,
the need for distributed, intelligent systems has increased. As a result, there has been a
focus on creating systems based on interacting autonomous agents. This investigation
has created an interest in multiagent systems and multiagent system engineering, which
proscribes formalisms and methods to help software engineers design multiagent sys-
tems. One aspect of multiagent systems that is receiving considerable attention is the
area of policies. These policies have been used to describe the properties of a multiagent
system–whether that be behavior or some other design constraints. Policies are essen-
tial in designing societies of agents that are both predictable and reliable [1]. Policies
have traditionally been interpreted as properties that must always hold. However, this
does not capture the notion of policies in human organizations, as they are often used
as normativeguidance, not strictlaws. Typically, when a policy cannot be followed in
a multiagent system, the system cannot achieve its goals, and thus, it cannot continue
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Fig. 1. Organization Model for Adaptive Computational Systems.

to perform. In contrast, policies in human organizations are often suspended in order to
achieve the overall goals of the organization. We believe that such an approach could be
extremely beneficial to multiagent systems residing in a dynamic environment. Thus,
we want to enable developers to guide the system without constraining it to the point
where it cannot function effectively or looses its autonomy.

The main contributions of this paper are: (1) aformaltrace-based foundation forlaw
(must always be followed) andguidance(need not always be followed) policies, (2) a
conflict resolution strategy for choosing between which guidance policies to violate,
and (3) validation of our approach through a set of simulatedmultiagent systems.

The rest of the paper is organized as follows. In Section 2, wegive some back-
ground on multiagent systems policies along with two multiagent system examples. In
Section 3, we define the notion ofsystem tracesfor a multiagent system, which are later
used to describe policies. Section 4 defineslaw policiesas well asguidance policies; we
give examples and show howguidance policiesare useful for multiagent systems and
describe a method for ordering guidance policies accordingto importance. Section 5
presents and analyzes experimental results from applying policies to the two multia-
gent system examples. Section 6 concludes and presents somefuture work.

2 Background

Policies have been considered for multiagent systems for some time. Efforts have been
made to characterize, represent, and reason [2] about policies in the context of mul-
tiagent systems. Policies have been referred to as laws in the past. Yoav Shoham and
Moshe Tennenholtz wrote in [3] aboutsocial lawsfor multiagent systems. They showed
how policies could help a system to work together, similar tohow our rules of driving
on a predetermined side of the road help the traffic to move smoothly.There has also
been work on detecting global properties [4] of a distributed system, which could in
turn be used to suggest policies for that system. Policies have also been proposed as
a way to help assure that agents and that the entire multiagent system behave within
certain boundaries. They have also been proposed as a way to specify security con-
straints in multiagent systems [5, 6]. There has been work todefine policy languages
by defining a description logic [7]. Policies have also been referred to asnorms. Much
work has been done on the formal specification of these norms [8]. We are taking this



formal approach in our specification of guidance and law policies. Norms, however, are
usually associated withopen systems–while we are concerned withclosed, cooperative
systems. We want to use formal methods to prove whether a given systemwill abide
by the policies as expected. Thus, we must give our guidance policies for multiagent
societies a solid formal foundation. In order to achieve this end, we borrow concepts
that are widely used in program analysis, in particular, model checking. Taking a model
checking approach to policies has been done [9] and is a natural extension of program
analysis.

The multiagent systems model we are using for this paper is called the Organiza-
tion Model for Adaptive Computational Systems (OMACS) [10]. Figure 1 is a graphical
depiction of the OMACS model. OMACS defines standard multiagent system compo-
nents such as goals, roles, capabilities, and agents. Rolesachievegoals, agentsposses
capabilities, and agents arecapableof playing roles depending on the capabilities they
posses. The organization, which represents the entire set of agents, decides which agents
to assignto what roles toachieveparticular goals. When the organization makes anas-
signmentof an agent to a particular role to achieve a specific goal, theorganization is
constrained by agents capabilities as well as any applicable policies. To model goals,
we use the Goal Model for Dynamic Systems (GMoDS) as defined in[11]. Events may
occur while an agent is playing a role. These events maytrigger (activate) goals. Only
active goals may be assigned to an agent.

2.1 Conference Management Example

A well known example in multiagent systems is the ConferenceManagement [12, 13]
example. The Conference Management example models the workings of a scientific
conference, for example, authors submit papers, reviewersreview the submitted papers,
and certain papers are selected for the conference and printed in the proceedings. Fig-
ure 2 shows the complete goal model for the conference management example, which
we are using to illustrate our policies. In this example, a multiagent system represents
the goals and tasks of a generic conference paper managementsystem. Goals of the
system are identified and are decomposed into subgoals.

The top-level goal,0. Manage conference submissions, is decomposed into several
“and” subgoals, which means that in order to achieve the top goal,the system must
achieve all of its subgoals. These subgoals are then associated through precedence and
trigger relations. Theprecedesarrow between goals indicates that the source of the
arrow must beachievedbefore the destination can become active. Thetriggers arrow
indicates that the domain-specific event in the source may trigger the goal in the des-
tination. Theoccursarrow from a goal to a domain-specific event indicates that while
pursuing that goal, said event may occur. A goal that triggers another goal may trigger
multiple instances of that goal.

Leaf goals are goals that have no children. The leaf goals in this example consist of
Collect papers, Distribute papers, Partition papers, Assign reviewers, Collect reviews,
Make decision, Inform accepted, Inform declined, Collect finals, andSend to printer.
For each of these leaf goals to be achieved, agents must play specific roles. The roles
required to achieve the leaf goals are depicted in Figure 3. The role model gives seven
roles as well as two outside actors. Each role contains a listof leaf goals that the role
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can achieve. For example, theAssignerrole can achieve theAssign reviewersleaf goal.
In GMoDS, roles only achieve leaf goals. The arrows between the roles indicates in-
teraction between particular roles. For example, once the agent playing thePartitioner
role has some partitions, it will need to hand off these partitions to the agent playing the
Assignerrole. OMACS allows an agent to play multiple roles simultaneously, as long
as it has the capabilities required by the roles and it is allowed by the policies.

2.2 Robotic Floor Cleaning Example

Another example to illustrate the usefulness of the conceptof guidance policies is the
Cooperative Robotic Floor Cleaning Company Example (CRFCC), which was first pre-
sented by Robby et al. in [14]. In this example, a team of robotic agents clean the floors
of a building. The team has a map of the building as well as indications of whether a
floor is tile or carpet. Each team member will have a certain set of capabilities (e.g.
vacuum, mop, etc). These capabilities may become defectiveover time. In their analy-
sis, Robby et al. showed how breaking up the capabilities affected a team’s flexibility to
overcome loss of capabilities. We have extended this example by giving the information
that the vacuum cleaner’s bag needs to be changed after vacuuming three rooms. Thus,
we want to minimize the number of bag changes. For this, we introduce a guidance
policy and show how it affects the performance of the organization.

The goal model for the CRFCC system is fairly simple. As seen in Figure 4, the
overall goal of the system (Goal 0) is to clean the floors. Thisgoal is decomposed into
three conjunctive subgoals:1. Divide Area, 2. Pickup, and3. Clean. The3. Cleangoal is
decomposed into two disjunctive goals:3.1 Sweep & Mopand3.2 Vacuum. Depending
on the floor type, only one subgoal must be achieved to accomplish the3. Cleangoal.
If an area needs to be swept and mopped (i.e. it is tile), then goal 3.1 Sweep & Mop
is decomposed into two conjunctive goals:3.1.1 Sweepand3.1.2 Mop. After an agent
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achieves the1. Divide areagoal, a certain number of2. Pickupgoals will become active
(depending on how many pieces the area is divided into). After the2. Pickupgoals are
completed, a certain number of3. Cleangoals become active, again depending on how
many pieces the area was broken into. This then will activategoals for the tile areas
(3.1.1 Sweepand3.1.2 Mop) as well as goals for the carpeted areas (3.2 Vacuum).

Figure 5 gives the role model for the CRFCC. In this role model, each leaf goal
of the system is achieved by a specific role. The role model maybe designed many
different ways depending on the system’s goal, agent, and capability models. Thus,
depending on the agents and capabilities available, the system designer may choose
different role models. For this paper, we will look at just one of these possible role
models. In the role model in Figure 5, the only role requiringmore than one capability
is thePickuperrole. This role will require both thesearchandmovecapability. Thus,
in order to play this role, an agent must possess both capabilities.

Role Name Req. CapabilitiesGoals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1 Sweep
Mopper mop 3.1.2 Mop
Vacuummervacuum 3.2 Vacuum

Fig. 5. CRFCC Role Model.

3 Multiagent Traces

There are several observable events in an OMACS system. Asystem eventis simply an
action taken by the system. In this paper, we are concerned with specific actions that the
organization takes. For instance, an assignment of an agentto a role is a system event.



Event Definition
C(gi) goalgi has been completed.
T (gi) goalgi has been triggered.
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(a) System Events.

Property Definition
a.reviews the number of reviews
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agenta has vacuumed.
(b) Properties

Fig. 6. Events and Properties of Interest.

The completion of a goal is also a system event. In an OMACS system, we can have the
system events of interest shown in Figure 6(a).

At any stage in a multiagent system, there may be certain properties of interest.
Some may be domain-specific (only relevant to the current system), while others may
be general properties such as the number of roles an agent is currently playing. State
properties that are relevant to the examples we are presenting in the next section are
shown in Figure 6(b).

3.1 System Traces

In order to describe multiagent system execution, we use thenotion of a system trace.
An (abstract)system traceis a projection of system execution with only desired state
and event information preserved (role assignments, goal completions, domain-specific
state property changes, etc). In this paper, we are only concerned with the events and
properties given above and only traces that result in a successful completion of the sys-
tem goal. LetE be an event of interest andP be a property of interest. Achange of
interestin a property is a change for which a system designer has made some policy.
For example, if a certain integer should never exceed 5, a change of interest would be
when that integer became greater than 5 and when that integerbecame less than 5. Thus
a change of interest in a property is simply an abstraction ofall the changes in the prop-
erty.∆P indicates a change of interest in propertyP . A system trace may contain both
events and changes of interest in properties. Changes of interest in properties may be
viewed as events, however, for simplicity we include both and use both interchangeably.
Thus, a system trace is defined as:

E1 → E2 → . . . (1)

As shown in equation 1, a trace is simply a sequence of events.An example subtrace of
a multiagent system, whereg1 is a goal,a1 is an agent, andr1 is a role, might be:

. . . T (g1) → A(a1, r1, g1) → C(g1) . . . (2)

Formula 2 means that goalg1 is triggered, then agenta1 is assigned roler1 to achieve
goalg1, finally, goalg1 is completed.

We use the termslegal traceandillegal trace. An illegal traceis an execution we do
not want our system to exhibit, while alegal traceis an execution that our system may
exhibit. Intuitively, policies cause some traces to becomeillegal, while others remain
legal.



We are able to use the notion of system traces because the framework we are using
to build multiagent systems constructs mathematically specified models (e.g [10, 11])
of various aspects of the system (goal model, role model, etc.). This can be leveraged
to formally specify policies as restrictions of system traces. Once we have a formal
definition of system traces, we can leverage existing research on property specification
and concurrent program analysis.

4 Policies

Policies may restrict or proscribe behaviors of a system. Policies concerning agent as-
signments to roles have the effect of constraining the set ofpossible assignments. This
can greatly reduce the search space when looking for the optimal assignment set [15].

Other policies can be used for verifying that a goal model meets certain criteria.
This allows the system designer to more easily state properties of the goal model that
may be verified against candidate goal models at design time.For example, one might
want to ensure that our goal model in Figure 2 will always trigger aReview Papergoal
for each paper submitted.

Yet, other policies may restrict the way that roles can be played. For example,when
an agent is moving down the sidewalk it always keeps to the right. These behavior
policies also restrict how an agent interacts with its environment, which in turn means
that they can restrict protocols and agent interactions. One such policy might be that an
agent playing theReviewerrole must always give each review a unique number. These
sort of policies rely heavily on domain-specific information. Thus it is important to have
an ontology for relevant state and event information prior to designing policies [16].

4.1 Language for policy analysis

To describe our policies, we use temporal formula with quantification similar to [17].
This may be converted into Linear Temporal Logic (LTL) [18] or Büchi automata [19]
for infinite system traces, or to something like Quantified Regular Expressions [20]
for finite system traces. The formulas consist of predicatesover goals, roles, events,
and assignments (recall that an assignment is the joining ofan agent and role for the
purpose of achieving a goal). The temporal operators we currently use are as follows:
2(x), meaningx holds always;3(x), meaningx holds eventually; andx U y, meaning
x holds untily holds.1 We use a mixture of state properties as well as events [21] to
obtain compact and readable policies. An example of one suchpolicy formula is:

∀a1 : Agents, L :2(sizeOf(a1.reviews) ≤ 5) (3)

Formula 3 states that it should always be the case that each agent never review more than
five papers. TheL : indicates that this is alaw policy. The property.reviews can be
considered as part of the system’s state information. This is domain-specific and allows
a more compact representation of the property. This policy may be easily represented
by a finite automata as shown in Figure 7.

1 We only reason about bounded liveness properties because weonly consider successful traces.



∀a : Agents, p : Papers

a.reviews ≤ 5 Bad

a.reviews > 5

a.reviews = 5 ∧ A(a, REV IEWER,Review(p))

*

a.reviews < 5 ∨ ¬A(a,REV IEWER,Review(p))

Fig. 7. No agent may review more than five papers.

The use of theA() predicate in Figure 7 indicates an assignment of theReviewerrole
to achieve theReview papergoal, which is parametrized on the paperp. This automata
depicts the policy in Formula 3, but in a manner for a model checker or some other
policy enforcement mechanism to detect when violation occurs. The accepting state
indicates that a violation has occurred. Normally, this automata would be run alongside
the system, either at design time with a model checker [22], or at run-time with some
policy enforcement mechanism [23].

We would like to emphasize here that we do not expect the designer to specify their
policies by hand editing LTL. LTL is complex and designing policies in LTL would be
very error prone and thus could potentially mislead the designer into a false sense of
security or simply compose incorrect policies. There has been some work in facilitating
the creation of properties in LTL (and other formalisms) forprogram analysis such as
specification patterns [24]. There has also been work done tohelp system property spec-
ification writers to graphically create properties [25] (backed by LTL) by manipulating
automata and answering simple questions regarding elements of the property.

4.2 Law Policies

The traditional notion of a policy is a rule that must always be followed. We refer to
these policies aslaw policies. An example of a law policy with respect to our conference
management example would beno agent may review more than five papers.This means
that our system can never assign an agent to theReviewerrole more than five times. A
law policy can be defined as:

L :Conditions → Property (4)

Conditions are predicates over state properties and events, which, when held true,
imply that theProperty holds true. TheConditions portion of the policy may be
omitted if theProperty portion should hold in all conditions, as in Formula 3.

Intuitively, for the example above, no trace in the system may contain a subtrace in
which an agent is assigned to theReviewerrole more than five times. This will limit the
number of legal traces in the system. In general,law policies reduce the number of legal
traces for a multiagent system. The policy to limit the number of reviews an agent can
perform is helpful in that it will ensure that our system doesnot overburden any agent
with too many papers to review. This policy as a pure law policy, however, could lead to



NodeDefinition
P1 No agent should review more than 5 papers.
P2 PC Chair should not review papers.
P3 Each paper should receive at least 3 reviews.
P4 An agent should not review a paper from

someone whom they wrote a paper with.
Table 1.Conference Management Policies.

trouble in that the system may no longer be able to achieve itsgoal. Imagine that more
papers than expected are submitted. If there are not sufficient agents to spread the load,
the system will fail since it is cannot assign more than five papers to any agent. This is a
common problem with using only law policies. They limit theflexibility of the system,
which we define ashow well the system can adapt to changes[14].

4.3 Guidance Policies

While the policy in (3) is a seemingly useful policy, it reduces flexibility. To overcome
this problem, we have defined another, weaker type of policy calledguidance policies.
Take for example the policy used above, but as aguidance policy:

∀a1 : Agents, G :2(sizeOf(a1.reviews) ≤ 5) (5)

This is the same as the policy as in (3) except for theG :, which indicates that it is
a guidance policy. In essence, the formalization for guidance and law policies are the
same, the difference is the intention of the system designer. Law policiesshould be used
when the designer wants to make sure that some property is always true (e.g. for safety
or security), whileguidance policiesshould be used when the designer simply wants
to guide the system. This guidance policy limits our agents to reviewing no more than
five papers,when possible. Now, the system can still be successful when it gets more
submissions than expected since it can assign more than five papers to an agent. When
there are sufficient agents, the policy still limits each agent to five or fewer reviews.

Guidance policies more closely emulate how policies are implemented in human
societies. They also provide a clearer and simpler construct for more easily and accu-
rately describing the design of a multiagent organization.In contrast to policy resolution
complexity of detecting and resolving policy contradictions in [2], our methodology of
using guidance policies present an incremental approach topolicy resolution. That is,
the system will still work under conflicting policies; its behaviors are amenable to anal-
ysis, thus allowing iterative policy refinement.

In the definition ofguidance policies, we have not specified how the system should
choose which guidance policy to violate in a given situation. We propose a partial or-
dering of guidance policies to allow the system designer to set precedence relationships
between guidance policies. We arrange the guidance policies as a lattice, such that a
policy that is a parent of another policy in the lattice, ismore-important-thanits chil-
dren. By analyzing a system trace, one can determine a set of policies that were violated
during that trace. This set of violations may be computed by examining the policies and
checking for matches against the trace. When there are two traces that violate policies
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Fig. 8. Partial orders of Guidance Policies.

with a common ancestor, and one (and only one) of the traces violate the common
ancestor policy, we mark the trace violating that common ancestor policy as illegal.
Intuitively, this trace is illegal because the system couldhave violated a less important
policy. Thus, if the highest policy node violated in each of the two traces is an ancestor
of every node violated in both traces, and that node is not violated in both traces, then
we know the trace violating that node is illegal and should not have happened.

Take, for example, the four policies in the Table 1. Let thesepolicies be arranged in
the lattice shown in Figure 8(a). The lattice in Figure 8(a) means that policyP1 is more
important thanP2 andP3, andP2 is more important thanP4. Thus, if there is any trace
that violates any guidance policies other thanP1 (and does not violate a law policy), it
should be chosen over one which violatesP1.

When a system cannot achieve its goals without violating policies, it may violate
guidance policies. There may be traces that are still illegal, though, depending on the
ordering between policies.For every pair of traces, if the least upper bound of the
policies violated in both traces, let us call this policy violation P , is in one (and only
one) of the traces, the trace withP is illegal. For example, consider the ordering in
Figure 8(a), let tracet1 violate P1 andP2, while tracet2 violatesP2 andP3. Round
nodes represent policies violated int1, box nodes represent policies violated int2, and
boxes with rounded corners represent policies violated in botht1 andt2. SinceP1 is the
least upper bound ofP1, P2, andP3 and sinceP1 is not int2, t1 is illegal.

As shown in Figure 8(b), the policies may be ordered in such a way that the policy
violations of two traces do not have a least upper bound. If there is no least upper bound,
P , such thatP is in one of the traces, the two traces cannot be compared and thus both
traces are legal. The reason they cannot be compared is that we have no information
about which policies are more important. Thus, either option is legal. It is important to
see here that all the guidance policies do not need to be ordered into a single lattice.
The system designer could create several unrelated lattices. These lattices then can be
iteratively refined by observing the system behaviors or by looking at metrics generated



for a certain policy set and ordering (e.g., [14]). This allows the system designer to
influence the behavior of the system by making logical choices as to what paths are
considered better. Using the lattice in Figure 8(a), we may even have the situation where
P1 is not violated by either trace. In this case, the violation sets cannot be compared,
and thus, both traces are legal. In situations such as these,the system designer may want
to impose more ordering on the policies.

Intuitively, guidance policies constrain the system such that at any given state, tran-
sitions that will not violate a guidance policy are always chosen over transitions that
violate a guidance policy. If guidance policy violation cannot be avoided, a partial or-
dering of guidance policies is used to choose which policiesto violate.

5 Evaluation

5.1 CRFCC

Using our CRFCC example and a modified simulator from [14], wecollected results
running simulations with the guidance policy:no agent should vacuum more than three
rooms. We contrast this with the law policy:no agent may vacuum more than three
rooms. The guidance policy is presented formally in Equation 6.

∀a1 : Agents, G :2(a1.vacuumedRooms ≤ 3) (6)

For this experiment, we used five agents each having the following capabilities:
a1, org, search, and move;a2, search, move, and vacuum;a3, vacuum and sweep;a4,
sweep and mop; anda5, org and mop. These capabilities restrict the roles our simulator
can assign to particular agents. For example, the Organizerrole may only be played
by agenta1 or agenta5, since those are the only agents with theorg capability. In the
simulation we randomly choose capabilities to fail based ona probability given by the
capability failure rate.

For each experiment, the result of 1000 runs at each capability failure rate was av-
eraged. At each simulation step, a goal being played by an agent is randomly achieved.
Using the capability failure rate, at each step, a random capability from a random agent
may be selected to fail. Once a capability fails it cannot be repaired.

Figure 9 shows that while the system success rate decreases when we enforce the
law policy, it does not, however, decrease when we enforce the guidance policy. Fig-
ure 10 shows the total number of times the system assigned vacuuming to an agent who
already vacuumed at least 3 rooms for 1000 runs of the simulation at each failure rate.
With no policy, it can be seen that the system will in fact assign an agent to vacuum
more than 3 rooms quite often. With the guidance policy, however, the extra vacuum
assignments (> 3) stay minimal. The violations of the guidance policy increase as the
system must adapt to an increasing failure of capabilities until it reaches a peak. At the
peak, increased violations do not aid in goal achievement and eventually the system
cannot succeed even without the policy. Thus, the system designer may now wish to
purchase equipment with a lower rate of failure, or add more redundancy to the system
to compensate. The system designer may also evaluate the graph and determine whether
the cost of the maximum number of violations exceeds the maximum cost he is willing
to incur, and if not, make appropriate adjustments.
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5.2 Conference Management System

We also simulated the conference management system described in Section 2.1. We
held the number of agents constant, while increasing the number of papers submitted
to the conference. The system was constructed with a total of13 agents, 1PC Member
agent, 1Databaseagent, 1PC Chairagent, and 10Revieweragents. The simulation ran-
domly makes goals available to achieve, while still following the constraints imposed
by GMoDS. Roles that achieve the goal are chosen at random as well as agents that
can play the given role. The policies are given priority using themore-important-than
relation as depicted in Figure 8(a).

Figure 11 shows a plot of how many times a guidance policy is violated versus the
number of papers submitted for review. For each set of paper submissions (from 1 to
100) we ran the simulation 1000 times and then took the average of the 1000 runs to
determine the average number of violations. In all the runs the system succeeded in
achieving the top level goal.

As seen by the graph in Figure 11, no policies are violated until around 17 papers
(this number is explained below). The two least important policies (P2 and P3) are
violated right away. The violation ofP2, however, levels off since it is interacting with
P1. The violations ofP3 is seen to grow at a much greater rate since it is the least
important policy.

We then changed all the guidance policies to law policies andre-ran the simulation.
For 17 or more submissions, the system always failed to achieve the top level goal. This
makes sense because we have only 10 Reviewer agents and we have the policies: the
PC Chair should not review papers and no agent should review more than 5 papers. This



means the system can only produce5× 10 = 50 reviews. But, since we have the policy
that each paper should have at least 3 reviews, 17 submissions would need17× 3 = 51
reviews. For 16 or fewer papers submitted, the law policies perform identical to the
guidance policies.

5.3 Common Results

As the experimental results in Figure 9 show, guidance policies do not decrease the
flexibility of a system to adapt to a changing environment, while law policiesdo de-
crease the flexibility of a system to adapt to a changing environment. Guidance policies,
however, do help guide the system and improve performance asshown in Figure 10 and
Figure 11. The partial ordering using themore-important-thanrelation helps a system
designer put priorities on what policies they consider to bemore important and helps
the system decide which policies to violate in a manner consistent with the designer’s
intentions.

6 Conclusions and Future Work

Policies have proven to be useful in the development of multiagent systems. However, if
implemented inflexibly, situations such as described in [26] will occur (a policy caused
a spacecraft to crash into an asteroid). Guidance policies allow a system designer to
guide the system while giving it a chance to adapt to new situations.

With the introduction of guidance policies, policies are aneven better mechanism
for describing desired properties and behaviors of a system. It is our belief that guidance
policies more closely capture how policies work in human organizations. Guidance
policies allow for more flexibility than law policies in thatthey may be violated under
certain circumstances. In this paper, we demonstrated a technique to resolve conflicts
when faced with the choice of which guidance policies to violate. Guidance policies,
since they may be violated, can have a partial ordering. Thatis, one policy may be
considered more important than another. In this manner, we allow the system to make
better choices on which policies to violate. Traditional policies may be viewed aslaw
policies, since they must never be violated. Law policies are still useful when the system
designer never wants a policy to be violated–regardless of system success. Such policies
might concern security or human safety.

Policies may be applied in an OMACS system by constraining assignments of
agents to roles, the structure of the goal model for the organization, or how the agent
may play a particular role. Through the use of OMACS, the metrics described in [14],
and the policy formalisms presented here, we are able to provide an environment in
which a system designer may formally evaluate a candidate design, as well as evaluate
the impact of changes to that design without deploying or even completely developing
the system.

Policies can dramatically improve run-time of reorganization algorithms in OMACS
as shown in [15]. Guidance policies can be a way to achieve this run-time improvement
without sacrificing system flexibility. The greater the flexibility, the better the chance
that the system will be able to achieve its goals.



Policies are an important part of a multiagent system. Future work is planned to ease
the expression and analysis of policies. Some work has already been done in this area
[24, 25], but it has not been integrated with a multiagent system engineering framework.
Another area of work is to provide a verification framework from design all the way to
implementation. The goal would be to determine the minimum guarantees needed from
the agents to guarantee the overall system behavior specified by the policies. These min-
imum guarantees could then be checked against the agent implementations to determine
whether the implemented system follows the policies given.

Guidance policies add an important tool to multiagent policy specification. How-
ever, with this tool comes complexity. Care must be taken to insure that the partial
ordering given causes the system to exhibit the behavior intended. Tools which can
visually depict the impact of orderings would be helpful to the engineer considering
various orderings. We are currently working on inferring new policies from a given set
of policies. For example, if a system designer wanted to get their system to a state for
which they defined policy, we would automatically generate guidance policies. This
could be useful when the policies are defined as finishing moves in chess. That is they
proscribe optimal behavior, given a state. Thus, we would like to get to the state where
we know that optimal behavior. Another exciting area of research is to determine a
method of dynamically learning guidance policies, which would allow an organization
to evolve within its changing environment.
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