
Multi-Factor Authentication for More Resilient
Distributed Storage in Wireless Networks

[Technical Report]

Scott Bell
Computing and Information Sciences

Kansas State University
Manhattan, KS 66506
Email: rsbell@ksu.edu

Eugene Vasserman
Computing and Information Sciences

Kansas State University
Manhattan, KS 66506
Email: eyv@ksu.edu

Daniel Andresen
Computing and Information Sciences

Kansas State University
Manhattan, KS 66506
Email: dan@ksu.edu

Abstract—Modern military units derive great tactical ad-
vantage from secure real-time sharing of data such as maps,
images and orders among soldiers. However, distributing this
information in real time in a combat situation creates significant
risk: when using a mobile communication network, the adversary
may capture one or more mobile devices, gaining access to this
data and endangering the entire unit. While these devices are
generally tamper-resistant and require a login, this would not
deter a well-funded and motivated attacker. In this work, we
present a protocol which significantly reduces the adversary’s
window of opportunity for attack by incorporating distributed
content storage and revocable authentication for users and
individual devices without increasing the difficulty of soldier-
device interaction. To further limit an adversary’s ability to
access this data, file requests must contain fresh authentication
information from both a trusted user and device. We analyze
the benefits and trade-offs of this protocol both theoretically
and through tests on real-world mobile devices, and find that
the computation, response, and battery overhead are acceptable
purely in software, and can be greatly reduced with inexpensive
hardware acceleration. Simulations indicate the probability of
data loss is significantly reduced over systems which only require
a user secret (password or PIN).

I. INTRODUCTION

Today’s military units employ rapid movement and tactics
that require real-time secure communication channels. The
ability for soldiers to access files such as maps and satellite
images provides a huge tactical advantage. The effectiveness
of this technology is evident in the Blue Force Tracker
system currently used in military vehicles to display real-
time locations of friendly (and enemy) forces and tactical
information [11]. While this technology can be installed within
a vehicle, the battery capacity and antenna requirements nec-
essary for this real-time satellite communication prevent the
deployment of such a system to the individual soldiers. One
of the most versatile methods for disseminating and displaying
information in real time, and the current tool of choice, is
a network of handheld wireless devices incorporating radio
communication, data storage and display capability [22].

However, the convenience provided by these devices leads
directly to vulnerability — because they are small and
lightweight, they can be easily lost or stolen, potentially
giving adversaries access to all the information the owner

would have been able to access. To prevent an adversary
who captures a device from immediately gaining access to
all stored data, devices encrypt stored data and require users
to enter a short PIN. The length and complexity of PIN
codes are unfortunately limited by the requirement that PINs
be entered quickly, making them vulnerable to brute-force
cracking once a device is captured, especially by a nation-state
adversary with the associated resources and computing power.
Although military-use mobile devices frequently incorporate
tamper-resistant technologies, these will not deter nation-state
adversaries in the long term. Therefore, we must assume that
the adversary will eventually gain access to the decrypted
content of the device local storage.

An alternative approach to data protection is to encrypt
then fragment files, distributing file fragments across multiple
devices. When capturing a device, the adversary would only
gain access to fragments of encrypted files — which are
useless without obtaining additional file fragments from other
devices and the decryption key. Using this strategy of as-
needed retrieval and peer-to-peer (P2P) storage that distributes
fragments across multiple devices for failure-tolerant retrieval
[10], [26], we avoid the single device capture vulnerability.
However, this introduces an even greater problem — if a
captured device’s network access is not revoked quickly, the
adversary may now access all files in the network given a
single compromised device as a “gateway.” Prior work has
not addressed the use of “active” but compromised devices,
assuming either that tamper resistance or PINs are sufficient
protection, or that devices are never lost. Neither assumption
is safe given a well-funded and skilled adversary in a military
context.

In this work, we introduce, analyze, and implement a new
protocol for practical secure storage and access of data on
mobile devices in a battlefield, resilient to device capture by
a powerful nation-state adversary, without relying on strong
hardware tamper resistance. Our system does this without
sacrificing usability in the field or incurring prohibitive com-
putation, time, or battery consumption costs.

We eliminate the assumption that any device (software or
hardware) which connects to the network be trusted to use
the on-demand file access, and greatly reduce the window
of vulnerability during which captured devices may act as

User DeviceA Token DeviceB

Sig User(Challenge)

PIN

Challenge(timestamp + device ID)

Hash(PIN) + Challenge + Sig User(Challenge) + Request + SigDevA(Request)

EDeviceA[File Fragment]

File

Fig. 1: Message passing protocol for mobile file access. Note that inter-device communication is assumed to be secure.

“network gateways.” Further, we allow devices and users to
be revoked independently, removing the requirement that a
user must be paired to a single device. Each device within
the network verifies that every file fragment request to which
it responds comes from a non-revoked device, a non-revoked
user, and was issued recently (preventing replay). As files
are reconstructed dynamically from the network, and never
stored, we no longer need to rely on device tamper-resistance
technologies.

Latency is a concern when using real-time file retrieval, but
it can be greatly reduced using erasure coding for file storage
and threshold cryptography to protect keys [10], [26]. For
instance, a file is split into n fragments which are distributed
across n different devices, but only m < n of these fragments
must be retrieved in order to reconstruct the file. This has two
benefits: 1) latency is minimized by requesting fragments in
parallel, with more than m requests in one batch, accounting
for the inevitable lack of response from some devices; and
2) security is greatly enhanced, since an adversary controlling
fewer than m devices cannot learn any information about the
stored contents.

The presence of a user in our system is verified by
a challenge-response from a user-specific wearable token.
Without a response from a valid token, devices will not
unlock, will not make network requests, and other devices
within the network will not respond to file fragment requests
the adversary may attempt to make. We extend this idea
to individual mobile devices as well — a currently trusted
device must transmit user file fragment requests, and other
devices will ignore requests from a device which is suspected
as being compromised. Our system follows the protocol for
personal identification verification (PIV) as specified in FIPS
201-1 [20] for authentication using asymmetric cryptography
in a networked system.

We analyze the benefits of this system in two ways. Using
an attack tree, we show the probability that an adversary may
access the network using a compromised lost or stolen device
essentially reduces to the requirement of capturing a legitimate
user along with his or her device. In addition to analyzing the
benefits of our design theoretically, we developed a prototype
implementation and demonstrate experimentally that the costs

of these security mechanisms (in terms of increased response
time and battery consumption) are acceptable with a software-
only implementation, and can be further reduced through
inexpensive specialized hardware [7], [15].

The rest of this paper is organized as follows: Section II
describes the system design; Section III lays out the details
of our prototype implementation and gives the results of
evaluations; Section IV discusses related work; and finally
Section V presents a summary and future work.

II. DESIGN

Our design focuses on reducing the threat posed by an
adversary capturing a limited number of devices, and consists
of three primary components: the mobile devices participating
in the wireless network, the users, and user-wearable tokens.
Each token is bound to a specific user while mobile devices
are not. This allows a user to log into any device and gain
access to the distributed data files — like radios or physical
maps, devices are interchangeable. When logging into a device,
a user must enter a short numeric PIN associated with that
user. The PIN must be simple in order for the device to be
useful in combat, so we do not assume that this PIN provides
strong protection against a skilled adversary, and treat it more
like a user identifier. The device uses this PIN to access
both connection information for that user’s wireless token and
the user’s public key. The device then attempts to strengthen
user authentication by locating the token, which contains a
much stronger cryptographic key. The PIN in combination
with the presence of the correct token confirms the user’s
identity both to the local device and to other devices on the
network when making requests for file fragments. Figure 1
shows the communication process which occurs between the
system components.

A. Token

The token is a self-contained, tamper-resistant wireless
device containing a user’s unique private key, corresponding to
the public key known by all mobile devices within the network,
and associated with the user’s unique PIN (this is explained
more thoroughly in Section II-B1). The token provides a cryp-
tographically secure means of authenticating a user without

increasing the user’s involvement in the authentication process.
The token and a given device are initially paired to one another
by the user initiating the pairing sequence on the device and
pressing a button on the token to verify the pairing operation.
Once paired in this manner, the token ignores connection
requests and challenges from other devices until it is paired to
a different device using this same procedure. Once a mobile
device connects to the token, the device can issue challenge
messages which the token signs using the user’s private key
and then returns to the device.

In operation, a token can take many forms and utilize
one of several different wireless technologies. We envision
a ubiquitous wearable device such as a watch, ring, dog
tag, or smart card, whose loss is conspicuous to the user.
This makes it easier for users to keep the token on their
person at all times and also makes it more difficult for an
adversary to acquire a token without a user’s knowledge,
as opposed to a mobile device which may be dropped or
forgotten. The token could use wireless communication such
as standard Bluetooth, Bluetooth LE [2], ZigBee [27], Near
Field Communication [18], RFID [23] or any other short
range wireless protocol; the choice of technology is based
on application-specific requirements such as cost, operating
environment, token concealment, durability, availability, and
battery life expectations. The transmission range for token
communication should be limited to a few feet to reduce
battery consumption and to help ensure that the soldier who is
in possession of a specific token is the same person using the
mobile device. The pairing procedure also limits an adversary’s
ability to connect to the token remotely since the pairing
process must be verified by the user pressing the pairing button
on the token.

B. Device

Each mobile device provides a conduit for a user to
access files stored within the mobile network, and responds
to requests from other devices for file fragments which it
possesses. Like each user, each device has a device-specific
key pair. The state diagram in Figure 2 shows the progression
of states for a device once it has been initialized. Each state
will be discussed in order.

1) Initialization and Startup: All devices participating in
the system are initialized at the start of a mission with the
following information:

• The device’s own ID and key pair
• The ID and public keys for all other devices
• A hash of the unique PIN assigned to each authorized

user along with:
◦ Each user’s public key
◦ Each user’s token connection details

• An administrative account public key
• Loose clock synchronization information
• File fragment IDs and where each is stored
• The file fragments the device itself should store

The list of hashed PIN values and public keys allows each
device to associate a user who enters a given PIN with the cor-
rect public key that is used to authenticate the signed challenge
received from the user’s token (see Figure 1). The list of other

device IDs and public keys is used to authenticate file fragment
requests received from other devices. The administrative key
is used to authenticate commands from an account which will
be used only to revoke devices or users or to issue remote
disable commands. Device clocks are loosely synchronized
so that each device can accurately determine the freshness of
requests made by other devices. No file is stored entirely on
any single device, only fragments of the encrypted files are
stored on devices. Once initialized, a device starts in a locked
state where no file requests are allowed to be sent out.

2) User Authentication: As Figure 2 shows, before granting
a user local access, a device first requires a PIN from the
user. Longer PINs are more secure but can be more difficult
to remember as well as more difficult to enter when under
stress. Therefore, we utilize the token to reduce the need for
prohibitively long PINs, and treat the PIN more like a user ID
than as a security component when analyzing the security of
our system. Once a user enters a valid PIN, the device locates
the token associated with a hash of that PIN, and if necessary,
attempts to pair with the token (if they were not previously
paired as described in Section II-A). Then, the device issues a
challenge, which the token signs and returns. This challenge
contains a timestamp to prove the freshness of the message,
and includes the ID of the mobile device to show which device
issued the challenge. The device verifies the signature received
from the token using the public key that matches the hashed
value of the PIN, validating the user-PIN-token pairing. At
this point, the device has two-factor authentication of the user
and the user is allowed to request files within the system.
If the signature cannot be verified the device will drop the
connection to the token and return to the initial locked state.
Note that devices never store PINs “in the clear,” so PINs
cannot be recovered from captured devices. Even if the hash of
a PIN were recovered, it is useless without a valid challenge
signed using the corresponding private key contained on a
user’s token.

Stronger mechanisms for initial user identification are
available such as biometric scans (e.g., fingerprint or iris).
Implementing one of these mechanisms in place of using a
PIN would increase the time it takes an adversary to break into
the mobile device, thus making it more likely that the device
is discovered as missing before the adversary can access the
file system. In our analysis, we assume that the PIN does not
provide protection for the device and treat it as being cracked
immediately upon device capture. Incorporating any of these
stronger mechanisms for user identification would result in
even greater improvements in system security.

3) Logout/Timeout: The device periodically sends fresh
challenges to the token to ensure that the token is still within
transmission range. Each response is verified and replaces the
previous challenge response. If the token is not detected or
responds incorrectly, the device returns to the “locked” state
(Figure 2) and any files that are currently open are securely
deleted from memory. From the locked state, the user is
required to reenter a PIN and the token must be detected
in order to regain access to the device. Additionally, if the
device does not detect user interaction over a specified period
of time (the device is idle), it logs the user out and returns to
the “locked” state. Both of these features limit the window of
opportunity for an adversary to recover a device which is in a

Locked
Trusted

No File Requests Allowed

Searching For Token
Trusted

No File Requests Allowed
Local Access

Trusted
File Requests Allowed

Token Detected

Local Access
Untrusted

Logout/Timout

Valid PIN Entered

Logout/Timout

Locked
Untrusted

Valid PIN Entered

Devices Initialized

Logout/Timeout/Token Signal Lost

Device
Remotely
Disabled

Device Trusted

No User Detected

Device Trusted

User Detected

Device NOT Trusted

No User Detected

Device NOT Trusted

User Detected

Searching For Token
Untrusted

D
ev

ic
e

"r
ei

n
st

at
ed

"

D
ev

ic
e

"r
ei

n
st

at
ed

"

D
ev

ic
e

"b
la

ck
lis

te
d

"

D
ev

ic
e

"b
la

ck
lis

te
d

"

D
ev

ic
e

"b
la

ck
lis

te
d

"

D
ev

ic
e

"r
ei

n
st

at
ed

"

Token Detected

Logout/Timeout/Token Signal Lost

Fig. 2: State diagram for the mobile device, including transitions. Note the four different “trust quadrants.”

state that allows access to files in the system.

4) File Requests: As indicated in Figure 1, the next step
is the requesting device sending requests for file fragments to
other devices within the mobile wireless network. Each request
must contain enough information to prove the following:

• A currently authorized user is in possession of the
device sending the request

• The user authentication information is fresh and was
obtained by the requesting device, and

• The requesting device is currently authorized.

When a user requests a file, the device uses its local
information to determine which other devices in the network
hold fragments of that file, and constructs requests for m < n
fragments, where m is sufficient to reconstruct the file locally.
If fewer than m requests succeed, the device can send ad-
ditional requests to other devices until it receives at least m
fragments. The initial number of requests can be increased to
m+ ε in anticipation of some devices failing to respond. The
details of routing within the network is beyond the scope of this
paper, but it is assumed that communication between pairs of
devices is secure, preventing an adversary from eavesdropping
on messages sent across the network.

Individual file fragment requests provide multi-factor au-
thentication by including authentication information for both
the user and the requesting device, along with the identity
of the requested fragment. Specifically, the token challenge
response and a hash of the user PIN authenticate the user, while
a signature of the request using the requesting device’s secret
key authenticates that device. All of this is required, along
with freshness information, before other devices will honor a
request.

The responding device verifies this information using lo-
cally stored data. It also checks the freshness of the timestamp
contained in the challenge, and verifies that the device ID in
the challenge matches the ID of the requesting device. If all
of these checks are acceptable, the responding device returns

the file fragment to the requesting device. If not, the request
is ignored.

5) Blacklisting vs. Disabling a Device: Up to this point,
the device is in a trusted state (in the upper half of Figure 2)
meaning that other devices in the network will respond to its
requests as well as sending their own requests for fragments
the device possesses. If a device has not been detected within
the network for an extended period of time, or is thought to be
compromised, a message can be sent from the administrative
account (signed with the administrative key), informing other
devices within the system to “blacklist” the affected device.
This ensures that missing devices can be automatically black-
listed if they leave the “active” area. Other devices will then
ignore requests from the blacklisted device and will not send
it file fragment requests. States below the horizontal dashed
line in Figure 2 represent a device that has been “blacklisted”
and is not currently trusted by the other devices in the system
(but may still be accessed by a user). An example use case
is when a soldier with a device is separated from his or her
unit (and assumed captured). Such a “blacklisted” device may
be reinstated when the administrator is able to verify that the
device has not been compromised such as when the soldier
rejoins his or her unit with the intact device.

In a more severe case, when a device is known (rather
than suspected) to be compromised or lost, the administrative
account can also attempt to remotely disable the device, similar
to the BlackBerry standard security wipe feature [1]. This
is represented by the center state in Figure 2. An example
of this is a user explicitly reporting the device as lost. The
difference in the two states (disabled vs. blacklisted) is that a
disabled device is unrecoverable, e.g. may physically destroy
its own hardware or securely wipe all initialization information
listed in Section II-B1. To be usable again, a disabled device
must be reinitialized through physical interaction, whereas
a “blacklisted” device could potentially be reauthorized via
the network, once the administrator has verified that the
device is trustworthy. Note that this disabling operation is an
extra cautionary feature to deal with devices which are not

under adversarial control — adversaries are assumed to be
able to bypass this self-destruct mechanism prior to it being
triggered. It does, however, allow us to prevent adversaries
from obtaining functional devices which have been lost.

C. User

It is possible that a user’s information (both PIN and
token) is compromised, allowing the adversary to access the
file system from any mobile device which is trusted by the
network. The system handles this threat in a manner similar
to that discussed for a compromised device, by revoking the
user and token in question. When a user is suspected or known
to be compromised, each device within the system is notified,
and marks the PIN and key pair corresponding to that user
and token as “untrusted.” Requests made using that user’s
authentication information are ignored. As with devices, this
notification is expected to be initiated by an administrative
account If the user later is proven to be “trustworthy” then
devices are notified and will once again respond to requests
from that user. This type of revocation makes device compro-
mise less than trivial even for adversaries skilled in bypassing
tamper resistance technologies — there is now a time limit
after which the device and/or token are useless to the adversary.

III. EVALUATION

We evaluate our approach in two ways: we first examine
the security improvements which the system offers, then we
evaluate a prototype implementation to measure response time,
computation overhead, and battery consumption.

A. Security Improvement

Given the context in which our proposed system will
be deployed, and the possible capabilities of the adversary
(a nation-state), we cannot reasonably expect to completely
prevent the adversary from gaining access to the file system
through a captured device. We do, however, wish to reduce the
probability of this occurring or limit the timeframe in which the
adversary can carry out attacks. Figure 3 shows the attack tree
for adversaries attempting to access data files using the system.
Prior work has either assumed devices are never captured, or
that the adversary will be unable to break tamper resistance
or the PIN. We consider much stronger adversaries, who can
employ sophisticated techniques to crack device encryption,
bypass tamper resistance of the device or the user token, and
even capture targeted users to obtain their devices, tokens, and
login information.

The left-most branch shows the case wherein a user is
captured. In this case, the adversary likely gains access to
both the device and the token. This leaves the PIN as the only
feature keeping the adversary from accessing the system. The
PIN is a far weaker secret than the cryptographic information
held by the token, so even if the adversary is not able to get
the user to reveal the PIN, it would only take a small amount
of brute-force computation to crack it. We therefore assume
that the probability of cracking the PIN is 1, and happens
almost instantly. The unknown variable in this branch is the
time required to realize the user, device, and token have been
captured, and to blacklist the user and device, denying the
adversary access to the system even if the device and token

are physically compromised. If the probability of detection
prior to the adversary cracking the PIN is 0.2, then that is
the improvement to security that our system provides along
this branch when compared to systems which do not provide
the ability to revoke access to file fragments. In this scenario,
detection of captured users is vital for security of the system.

The middle branch covers scenarios wherein the device
and token are independently acquired by the adversary. For
example, a device may fall out of a vehicle and the adversary
can obtain it independently of a token, which might later be
stolen from an authorized user. In this situation, it is imperative
that soldiers report lost or stolen devices and/or tokens as soon
as possible to limit the window of opportunity an adversary has
to use these items to access the system. It should be noted that
compromised tokens and/or devices can only be utilized on the
network for which they have been initialized as other devices
within the network must be able to recognize the signature of
any token or device used to make fragment requests.

In the case on the far right, where a user is collaborating
with the enemy, the adversary is assured access to the data.
Our system has no effect on this attack, and insider attack
protection is beyond the scope of this paper.

We compare the performance of our system with the
existing systems, which do not implement revocation or multi-
factor authentication, based on the probability that an adversary
is able to access the system and thus access the distributed
files. First, we utilize two equations to compare the relative
probability of an adversary gaining access to a system with
and then without our protocol being implemented. Then, we
implement a simulation to show how our system performs
compared to the other systems over time.

1) Calculations: In Equations (1a)and (1b), P [c] is the
probability that a user is captured with a device and to-
ken, P [m] is the probability that a user is malicious, P [d]
is the probability that a device is obtained and physically
compromised, P [p] is the probability that a user’s PIN is
compromised, P [t] is the probability that a token is obtained
and physically compromised, and P [nbl] is the probability that
the compromised components are not blacklisted. We can use
these equations to compare the likelihood that the adversary
will gain access to a system using our design, versus systems
using other designs.

P [a] = P [c] + P [m] + P [d] ∗ P [p] ∗ P [t] ∗ P [nbl] (1a)
P [b] = P [c] + P [m] + P [d] ∗ P [p] (1b)

Equation (1a) represents the probability that the adversary
will gain access to a system implementing our design, while
equation (1b) represents the probability that the adversary will
gain access using a system not implementing our security
improvements. It is easy to see that the strength of our solution
lies in the difficulty of obtaining a token (P [t]) and in the quick
response by the administrator to blacklist missing devices and
tokens, reflected in the probability that the device and user
are not blacklisted (P [nbl]). Note that for both systems, we
take a conservative approach and assume that when a soldier
is captured, the adversary is able to compromise the system.
We do not allow for the possibility of either the device or

Access To Files

User
Captured

Malicious
User

Device
Compromised

User Info
Compromised

Device and User
Information

Stolen
Lost
then

Found

Token
Compromised

PIN
cracked
(100%)

Stolen
Lost
then

Found

OR

AND

OR

AND

Neither User
Nor Device has

been blacklisted Gives Adversary
Device/Token/PIN

Adversary
Gets Device/

Token

OR

PIN
cracked
(100%)

AND

Neither User
Nor Device
has been

blacklisted

Fig. 3: Attack tree showing possible paths for an adversary to gain access to files within the network.

token being blacklisted before the adversary is able to do this.
This represents the normal case for a system not implementing
our security improvements and the worst case for a system
with our improvements implemented. This leaves the middle
branch, where the token and device are acquired independently,
as the focus of our calculations. To evaluate the two systems,
we make the assumptions shown in Table I for the range of
each variable in the equations above.

TABLE I

Variable Min Max
P [c] 0.001 0.035
P [m] 0.0001 0.00015
P [d] 0.009 0.03
P [p] 1.0 1.0
P [t] 0.036 0.018
P [nbl] 0.01 0.02

These values represent our conservative estimate of what
is expected in practice. It is important to note that the resulting
probability of compromise is substantially reduced in systems
implementing our design, as long as 1) the secret contained
within the token is cryptographically secure, 2) the token is
difficult for the adversary to obtain, and 3) the administrator
is diligent in revoking access for devices and users that are
compromised.

We performed calculations using both equations, with each
variable being assigned a random value within it’s estimated
range and then calculating both P[a] and P[b]. This operation
was repeated 1,000,000 times and the results were averaged to
give the following values: P [a] = 0.018 and P [b] = 0.0376.
This shows a 52% improvement in security by implementing
our solution, even when assuming that a captured soldier will
always result in a compromised system. In fact, the results
with our security implemented are essentially reduced to the
probability of a soldier being captured with a device and that
device always being compromised since the median value for
P [c] = 0.018. If we change our assumption to include the
possibility that the device and/or token from a captured soldier
can be “blacklisted” prior to the adversary compromising the
system, the security improvement will become even greater.

2) Simulation: In order to better understand and visualize
the benefits of our protocol, we developed a simulator to
determine the probability of system compromise over time
by an adversary who simultaneously gains access to a mobile
device and token. The simulation iterates through slices of
time, tracking the number of tokens and devices that are in
each of 3 states:

• Possessed by a soldier
• Lost or stolen
• Blacklisted

Transition from one state to another is based on the
probability of a device or token being lost or stolen during
a given time slice and subsequently its absence being noted
and reported to the other devices (which black list the device)
during a later time slice. If, at any point in a simulation run,
both a token and a device have been lost or stolen and neither
has been blacklisted, OR a soldier is captured, the system is
considered to be compromised and we record the time step
during which this occurs (note that we assume conservatively
that a missing token and device are in the possession of the
same adversary).

Figure 4 shows the results of this simulation. The difference
in the two curves shows the increase in security provided by
our use of the token to provide multi-factor authentication
both when a user connects to a device as well as when the
user attempts to make requests for data file fragments from
other devices. We performed 6000 iterations of this simulation,
and record how often the system is compromised during each
time slice. These values are divided by the total number of
iterations (6000) to give the probability of a compromise
occurring during a given time slice. Finally, the cumulative
value of all probabilities prior to a given time slice are added
to that slice’s probability to give the probability that the
system is compromised at or before a given point in time. The
probabilities we use for the simulator are given in Table II.

These values differ from those used in the equations
discussed in Section III-A1. In those equations, we are general-
izing the probabilities for multiple devices and tokens over the
span of an entire mission, while in the simulator, we account
for each device and token individually and iterate over multiple
segments of time. Thus, the probabilities used here are much

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 50	 100	 150	 200	 250	 300	

With	 Token	

Without	 Token	

Fig. 4: Cumulative Distribution Function for the probability of an adversary compromising the system over time

TABLE II

Variable Value
Numberofdevices/tokens 40
P (soldiercaptured)] 0.001
P (devicelost/stolen) 0.0008
P (tokenlost/stolen) 0.0012
P (deviceblacklisted) 0.50
P (tokenblacklisted) 0.85

smaller than those given in Section III-A1. These probabilities
are our best conservative estimates of what these values would
be in a real-world scenario.

We do not specify the units of time, as our main concern
is to determine how the two configurations perform compared
to one another. It is clear that during a reasonably large
timespan (number of iterations), the system utilizing multi-
factor authentication provides substantially stronger security
than systems which do not.

B. Implementation

We implement a prototype of our design in three com-
ponents: one mobile device acts as the requesting device, a
second acts as the responding device which holds the file
fragment and responds to file requests, and a laptop acts as
the wireless token. Each component of the system is described
in detail below. In the deployed implementation, each mobile
device will run at least 2 processes: one responds to incoming
requests for local file fragments, and the other performs user
authentication, makes requests to other devices, and handles
reconstruction of data once the requisite number of fragments
have been received.

For testing, we used a Samsung Galaxy Tab 10.1 Tablets
for both the requesting and responding mobile devices. These
devices have a 1 GHz dual core processor, 16 GB of RAM
and were running the Android version 4.0.4 operating system.
We chose Bluetooth for communication with the token due to
the wide availability of commodity hardware implementations
and cross-platform API libraries. The token was simulated
using a Java application running on a laptop. When launched,
the application waits for a connection request over the Blue-

tooth socket and, once connected, continuously loops through
a (receive challenge)/(sign challenge)/(respond) sequence. If
the connection is broken or fails, the device returns to the
initial state, waiting for a new socket connection. All mobile
development used Java SE and the Android SDK [9] with the
standard Java Bluetooth API.

Recall that when the user wants to access files, he or she
must first authenticate (weakly) using a PIN. Once a valid
PIN is entered, the mobile device retrieves the identifying
information for that user’s token and launches a separate thread
to connect to it via Bluetooth. It then sends a challenge
containing a current timestamp and the mobile device’s ID
to the token, which responds by signing the challenge. The
device verifies the signature using the public key associated
with the entered user PIN. An additional change required to
comply with FIPS 201-1 is certificate verification [20] — we
leave this for future work.

1) File Fragment Requests: In order to reconstruct a file,
the requesting device retrieves the corresponding file fragments
from other devices in the network. We use IP connections over
Wi-Fi for inter-device communication in order to match our
expected use case — two different modes of radio communi-
cation when using a dedicated wearable token. (Methods of
managing wireless mobile networks have been studied exten-
sively in the literature [3], [16], [8] and are outside of the scope
of our work.) Once a secure socket is created between the
two mobile devices, the requesting device sends information
to prove that the user and requesting device are authorized
to access the requested file, and that the token replied to a
challenge from the requesting device. The responding device
independently verifies the challenge-response data, including
the signature from the token, and also verifies that the device
ID in the challenge is the same as the ID of the device making
the request. Additionally, since a timestamp was included in
the challenge and device clocks were synchronized during
initialization, the responding device can verify the freshness
of the request. Finally, the signed copy of the request can be
verified using the public key for the requesting device, stored
by the responding device at initialization time. If all checks
pass, the device returns the file fragment over the socket,
otherwise the device drops the request.

(a) Time to complete the indicated number of requests (b) Time per request

Fig. 5: Average time overhead: overall (a), and (b) per request, when using the token for additional authentication, with and
without cryptographic overhead.

C. System Response

We measured the additional time overhead due to the
signing and verification operations on the devices to ensure that
users will not see significant increases in latency. While the
device would typically send one request to each remote device
containing a needed file fragment, each of our tests consists of
5 to 100 request/response cycles. This ensures that the times
being measured are not dominated and masked by other oper-
ations, such as polling the token, which occurs in a separate
thread. Response time is evaluated at the requesting device by
measuring the time between generation of the request message
and receipt of the response. We tested our system with and
without cryptographic operations. For testing purposes, we
used RSA with 1024-bit keys, but other algorithms might
provide better security or performance metrics. While our
implementations are software-only, we expect that dedicated
cryptographic hardware will be used for the token and as part
of the device, making our protocol even more power-efficient
and further reducing latency [7], [15].

Figure 5a shows the results of our tests. Time overhead
grows linearly with the number of request/response cycles in
a given test run, but at different rates, reflecting the additional
time needed for cryptographic operations. Both graphs show
a Y-intercept near 0, indicating that our results are not sig-
nificantly influenced by outside background operations of the
device, or various radio noise and potentially competing Wi-
Fi networks (otherwise the lines would cross the time axis
above zero). Figure 5b shows that the average response time
per request for each set of tests is consistent even while varying
the number of requests per run. The average response time
for the base case tests which do not implement cryptographic
operations is 67± 0.4 milliseconds — unnoticeable to a user.

In our second set of tests, we enabled cryptographic
operations on both the requesting and responding devices as
described in Section III-B. As Figure 5b shows, the average
response time increases to an overall average of 128 ± 0.4
milliseconds. Based on this configuration and the tests we
performed, the cryptographic operations add approximately 61
milliseconds to the request/response cycle. Note that although

this may be noticeable for a user, delays do not increase
linearly with the number of requests under normal operation.
A portion of the delay occurs at the responding device, and
since many devices will be queried simultaneously for file
fragments, these delays occur in parallel after the requests
are sent. Considering a mobile wireless network with multiple
devices distributed throughout a military unit’s operating area,
the expected round-trip transmission times to recover the file
fragments will dominate, so the cryptographic delay does not
contribute significantly to latency.

D. Battery Consumption

Given the context in which our system is expected to be
deployed, it is crucial that consumption of battery power be
considered in any decisions that are made concerning mobile
device operations. For that reason, we performed a set of tests
to determine the expected change in battery consumption for
both the requesting and responding devices when implement-
ing our system. We tested battery consumption for file requests
in a manner similar to the response time tests above. Instead
of performing a set number of request/response operations, we
repeated these tests until the battery level dropped by a given
percentage and then we compare the results found with and
without the cryptographic operations being implemented.

1) Requesting Device: For the requesting device, we re-
peated these tests until the battery level dropped by 3%. This
test was performed multiple times, both with and without
cryptography. Figure 6a shows the average number of requests
required to deplete the battery by 3%. Without cryptography,
the average number of requests was 13245±461 (4415 requests
per 1%) , and cryptography reduced this to 8209± 257 (2736
requests per 1%).

Tests not incorporating cryptographic operations showed
greater variability (suggesting interference from background
processes). While the battery drain is naturally increased when
using cryptography, the number of requests in our tests was
much greater than we would expect in practice. Per-request
power consumption is quite small when the cryptographic
operations are enabled. The battery lifetime of a requesting

(a) Galaxy Tab Requesting device (b) Galaxy Tab Responding device (c) Droid Pro Requesting Device

Fig. 6: Number of requests needed on each device to drain battery power by 1%

device would be entirely dependent on the number of file
accesses a user makes as well as the size and number of
fragments required to reconstruct whole files, where there is
a direct trade-off between battery consumption and security
— more required fragments means the adversary is less likely
to learn any information by compromising devices only, but
requires a higher rate of battery depletion to reconstruct files.

2) Responding Device: Next, we tested battery consump-
tion on the responding device, with results shown in Figure 6b.
Again, we performed these tests until a battery drain of 3%
was measured. With cryptography enabled, 2601±42 requests
consume 3% of the tablet’s battery power (867 per 1%).
Without cryptography, 10094± 382 requests are necessary to
cause a 3% drop (3365 per 1%).

There is a greater increase in battery consumption on
the responding device than on the requesting device. This
would reflect the extra verification that is required on this
device. Likewise, the overall cost per request is higher on
the responding device. Battery consumption for responding
devices will be dependent upon what file fragments a device
is storing. If a device possesses fragments from ‘popular’
files which are accessed often, then that device is likely to
respond to more fragment requests than a device which stores
less ‘popular’ fragments. Additionally, the use of a larger
number of fragments will require a greater number of devices
to respond when a given user wants to access a file.

3) Additional Requesting Device: Given that the tablets
utilized in our testing have more powerful batteries than typical
handheld mobile devices, additional tests were performed
using a Droid Pro mobile phone as the requesting device.
This device should more closely resemble the type of device
a soldier might carry as well as demonstrate the variability in
performance that might occur on different devices. The battery
consumption tests were performed exactly as described above
with one exception. Since the API for this device only provides
battery measurements in 10% increments, the tests were run
until a drop of 10% was measured. As expected, it required
fewer requests to realize a 1% drop in battery power using
this device. The tests incorporating cryptographic operations
averaged 3708 ± 53 requests for a 10% drop (371 per 1%
drop), while the tests without cryptography averaged 7789 ±
182 requests for a 10% drop (779 per 1% drop).

4) Token: Assuming the token is self-powered, and gener-
alizing from worst-case power consumption results (requesting
device), and given a 30 second polling interval for the token,
we would drain 1% of the token battery in over 3 hours of
continuous operation, allowing for more than 12 days of use
before recharging. Since the token will only be performing a
single operation (signing the received challenge), performance
is expected to be much better per cycle than what was found
for the requesting device. Additionally, given that the token is
expected to be composed of dedicated, specialized hardware,
battery life can be greatly prolonged with relatively little
monetary investment [14], [12], [17].

IV. RELATED WORK

The National Institute of Standards and Technology has
published a standard that addresses proximity-based authen-
tication for mobile devices. The authors describe the use of
Bluetooth tokens for user authentication to a single mobile
device, with a long-term pairing between the mobile device
and token (paired at initialization) [13]. However, there is no
discussion of extending this security to the application level.
In [19] and [4], the authors also suggest a wearable token to
authenticate a user, but their system is limited to letting the
computer or mobile device detect when the token has moved
too far away, and logging the user out or locking the device.
Our system allows users to connect to different devices within
the system as needed, without long-term explicit pairing, and
utilizes the authentication information provided by the token
as a means to authenticate individual file fragment requests
made to other devices.

Tahoe-LAFS is a free, open source system for distributed
federated data storage [26]. Users are issued capabilities (a
copy of the key to a given ciphertext) to specific files which
they can then delegate to other users by sharing the key
with them. Tahoe-LAFS uses erasure coding of files across
multiple servers to provide data resiliency and pre-erasure
coding encryption for confidentiality. This system puts the
burden of access control and user management on the owners
of the data — individual system users — through capability
delegation. One compromised user is able to share irrevocable
access with any number of additional users. The number of
servers, however, is limited, so the system is not peer-to-peer
and is a poor choice for ad-hoc wireless networks.

MDFS is a distributed file system for mobile networks built
for security of files with the assumption that an adversary can
gain possession of a device and access local storage [10]. It
is intended for military use and provides data replication and
secrecy using encrypted then erasure-coded files distributed
across multiple mobile devices in an ad-hoc peer-to-peer
network. The encryption key for each file is split using
Shamir secret sharing [25], with key fragments distributed
across multiple devices as well. This system provides resilient
data storage, and limited protection of the data in that an
adversary is unable to recover any information from the data
file fragments stored on a single device. However, the authors
do not attempt to address restricting access to files on the
system from a compromised device. Anyone possessing a
device that is recognized as part of the network is able to
obtain access to any of the shared files once they have cracked
the PIN required for logging into the device.

V. CONCLUSION

We reduce the risk posed by an adversary who is trying
to gain access to confidential files stored within a mobile
wireless network in a combat setting. By utilizing multi-factor
authentication we alleviate the problem of full network access
from logged-in devices and provide revocation capabilities
for users and devices independently. Our system provides
a significant improvement in security over MDFS, without
increasing user interaction complexity or the length of PINs.
Our system is flexible enough to allow users to operate any
device on the system, but still limits an adversary’s window
of opportunity to use a device that is stolen or found after
being lost. None of these benefits requires improved tamper
resistance.

Our tests show a slowdown of .061 seconds on average for
each file fragment request – barely noticeable to a user. While
the delay could become more pronounced if there are large
numbers of file fragments that must be retrieved, these requests
are pipelined and parallelized across multiple communication
paths so the user-perceived delay is minimized. Evaluation
on real-world devices also shows that per-fragment request
battery consumption nearly doubles due to cryptographic over-
head, but even with this increase, our test requesting device
make over 2730 fragment requests at the cost of 1% battery
consumption, and our responding device can service more
than 860 requests to cause 1% battery power drop. Therefore,
practical costs of implementing our proposed security strategy
are reasonable, especially given the security benefits.

There are numerous opportunities to expand this work,
including testing various device-token communication proto-
cols and evaluating designs for dedicated crypto-tokens, which
have become quite inexpensive [7], [15]. As noted, we did not
implement certificate verification, which must be added to meet
FIPS 201-1 specifications. Additionally, investigating poten-
tially faster and more power-efficient cryptographic algorithms
such as elliptic curves may help improve system response times
and reduce battery consumption [24], [6], [21], [5].

REFERENCES

[1] BLACKBERRY. Erasing file systems on BlackBerry devices, 2012.
[Online] http://docs.blackberry.com/en/admin/deliverables/4322/
Erasing%20file%20systems%20on%20BlackBerry%20devices%20-%
204.1.6%20-%20Technical%20Overview.pdf.

[2] BLUETOOTH SIG. Bluetooth specification version 4.0, 2010. [Online]
https://www.bluetooth.org.

[3] CANDOLIN, C., AND KARI, H. A security architecture for wireless ad
hoc networks. In MILCOM (2002).

[4] CHEN, Y., AND SINCLAIR, M. Tangible security for mobile devices.
In Mobiquitous (2008).

[5] EBERLE, H., WANDER, A., GURA, N., CHANG-SHANTZ, S., AND
GUPTA, V. Architectural extensions for elliptic curve cryptography
over GF(2m) on 8-bit microprocessors. In ASAP (2005).

[6] ENGLISH, T., KELLER, M., MAN, K. L., POPOVICI, E.,
SCHELLEKENS, M., AND MARNANE, W. A low-power pairing-
based cryptographic accelerator for embedded security applications. In
SOCC (2009).

[7] FELDHOFER, M., DOMINIKUS, S., AND WOLKERSTORFER, J. Strong
authentication for RFID systems using the AES algorithm. In CHES
(2004).

[8] GARG, N., AND MAHAPATRA, R. Manet security issues. International
Journal of Computer Science and Network Security 9, 8 (2009).

[9] GOOGLE. Android SDK, 2012. [Online] http://developer.android.com.
[10] HUCHTON, S. Secure mobile distributed file system. Master’s thesis,

Naval Postgraduate School, 2011.
[11] HUGHES, G. personal conversation.
[12] HWANG, D., LAI, B.-C., SCHAUMONT, P., SAKIYAMA, K., FAN, Y.,

YANG, S., HODJAT, A., AND VERBAUWHEDE, I. Design flow for
HW/SW acceleration transparency in the thumbpod secure embedded
system. In Design automation conference (2003).

[13] JENSEN, W., GAVRILA, S., AND KOROLEV, V. Proximity-based
authentication for mobile devices. In International Conference on
Security and Management (2005).

[14] MATSUOKA, Y., SCHAUMONT, P., TIRI, K., AND VERBAUWHEDE,
I. Java cryptography on kvm and its performance and security
optimization using hw/sw co-design techniques. In CASES (2004).

[15] MCLOONE, M., AND ROBSHAW, M. Public key cryptography and
RFID tags. In CT-RSA (2006).

[16] MICHALAKIS, N., AND KALOFONOS, D. Designing an NFS-based
mobile distributed file system for ephemeral sharing in proximity
networks. In ASWN (2004).

[17] NAMBIAR, V., KHALIL-HANI, M., AND ZABIDI, M. Accelerating the
AES encryption function in OpenSSL for embedded systems. In ICED
(2008).

[18] NFC FORUM. Near field communication specification, 2012. [Online]
http://www.nfc-forum.org/specs/.

[19] NOBLE, B. D., AND CORNER, M. D. The case for transient authenti-
cation. In ACM SIGOPS European workshop (2002), EW 10.

[20] OF COMMERCE, U. D. Fips 201-1, 2006. [Online] http://csrc.nist.gov/
publications/.

[21] OLIVEIRA, L., ARANHA, D., MORAIS, E., DAGUANO, F., LOPEZ, J.,
AND DAHAB, R. TinyTate: Computing the Tate pairing in resource-
constrained sensor nodes. In NCA (2007).

[22] OSBORN, K. Smart phones increase ‘SPOT’ reporting in Army
evaluations, June 2011. [Online] http://www.army.mil/article/59435.

[23] PENDL, C., PELNAR, M., AND HUTTER, M. Elliptic curve cryptogra-
phy on the WISP UHF RFID tag.

[24] SCOTT, M., COSTIGAN, N., AND ABDULWAHAB, W. Implementing
cryptographic pairings on smartcards. In CHES (2006).

[25] SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (1979).
[26] WILCOX-O’HEARN, Z., AND WARNER, B. TAHOE: The least-

authority filesystem. In StorageSS (2008).
[27] ZIGBEE ALLIANCE. ZigBee 2007 specification, 2007. [Online] http:

//www.zigbee.org.

http://docs.blackberry.com/en/admin/deliverables/4322/Erasing%20file%20systems%20on%20BlackBerry%20devices%20-%204.1.6%20-%20Technical%20Overview.pdf
http://docs.blackberry.com/en/admin/deliverables/4322/Erasing%20file%20systems%20on%20BlackBerry%20devices%20-%204.1.6%20-%20Technical%20Overview.pdf
http://docs.blackberry.com/en/admin/deliverables/4322/Erasing%20file%20systems%20on%20BlackBerry%20devices%20-%204.1.6%20-%20Technical%20Overview.pdf
https://www.bluetooth.org
http://developer.android.com
http://www.nfc-forum.org/specs/
http://csrc.nist.gov/publications/
http://csrc.nist.gov/publications/
http://www.army.mil/article/59435
http://www.zigbee.org
http://www.zigbee.org

	Introduction
	Design
	Token
	Device
	Initialization and Startup
	User Authentication
	Logout/Timeout
	File Requests
	Blacklisting vs. Disabling a Device

	User

	Evaluation
	Security Improvement
	Calculations
	Simulation

	Implementation
	File Fragment Requests

	System Response
	Battery Consumption
	Requesting Device
	Responding Device
	Additional Requesting Device
	Token

	Related Work
	Conclusion
	References

