
Towards freedom of speech on the Internet:
Censorship-resistant communication and storage

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Eugene Y. Vasserman

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

June, 2010

c⃝ Eugene Y. Vasserman 2010

ALL RIGHTS RESERVED

Acknowledgements

I would like to thank my advisors, Nicholas Hopper and Yongdae Kim, for their con-

tinuing support, patience, and encouragement. I also offer profuse thanks to my other

committee members, Andrew Odlyzko and Zhi-Li Zhang, for helpful and insightful com-

ments on earlier drafts.

Early membership-concealing network designs were conceived with the help of Jon

McLachlan. Much of this work stems from earlier discussions with him, and I am

extremely grateful for his help.

i

Dedication

For my family, Моей семье.

for their infinite patience, За их бесконечное терпение,

never-ending support, постоянную поддержку, и за всё,

and their uncountable sacrifices. чем они пожертвовали ради меня.

Thank you. Спасибо.

i

Abstract

This work explores the problem space of censorship resistance with the explicit goal of

protecting a censorship-resistant system and its users from powerful adversaries who

control the network gateways. The result of this work is a document storage system

which is highly available and robust to targeted censorship. It is designed to resist

attacks from very powerful adversaries, who are willing to shut down large sections of the

Internet in order to accomplish their censorship goals. Our design aims to be as easy to

use, but far more robust than, some current centralized systems, so we use a completely

distributed peer-to-peer infrastructure but still support human-readable keyword search.

Network participants who contribute storage enjoy plausible deniability, in that they

have no easy way to determine what content they are storing locally. We also explicitly

support edited content, such that any information can be published, but only popular

or editor-approved information will be kept.

A major building block of our system is membership concealment — the idea of a

network that hides the real-world identities of participants. We formalize the concept

of membership concealment, show that it is required for censorship resistance, discuss a

number of attacks against existing systems, and present real-world attack results. Since

membership concealment requires resisting hypothesis testing and brute-force scanning,

we ensure that network members are not identifiable as such by unauthorized parties. To

that end, we construct an authenticated transmission control protocol, adding stegano-

graphic authentication to TCP in a provably undetectable manner. Finally, we show

through theoretical analysis and simulation that the complete system, while imposing a

factor of 10 storage overhead, can tolerate node failure rates up to 70% while retaining

the ability to route messages and retrieve every stored file with probability 99.99998666%,

even when the volume of stored content is on the order of hundreds of exabytes.

ii

Contents

Acknowledgements i

Dedication i

Abstract ii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Contribution of This Work . 4

1.1.1 Membership-concealing Overlay Networks 4

1.1.2 SilentKnock: Provably Covert Authentication 6

1.1.3 Censorship-resistant Overlay Publishing System 7

1.2 Justification . 8

2 Membership-concealing overlay networks 10

2.1 Relationships Between Concepts . 11

2.2 MCON Requirements . 13

2.2.1 Formal Definition of MCONs . 14

2.2.2 “Open” vs. “Closed” Networks 15

2.3 Related Work . 15

2.3.1 Freenet . 16

2.3.2 Tor Bridges . 17

iii

2.3.3 Other Systems . 18

2.3.4 Using Social Networks to Bootstrap Trust and Mitigate Sybil At-

tacks . 18

2.4 Attacks on Existing Systems . 20

2.4.1 Attacking Freenet Opennet . 22

2.4.2 Attacking Tor Bridges . 25

2.5 Design . 26

2.5.1 Efficient Design . 29

2.5.2 Robust Design . 36

2.5.3 Hybrid Design . 37

2.6 Theoretical Analysis . 38

2.6.1 Search Time . 38

2.6.2 Membership Concealment Intuition 39

2.6.3 Churn . 40

2.7 Simulation Results . 43

2.7.1 MCON Construction . 43

2.7.2 Routing and Search . 44

3 SilentKnock: practical, provably undetectable authentication 48

3.1 Related Work . 49

3.2 Formal Definition of Port Knocking . 52

3.2.1 Security Condition . 54

3.2.2 Related Notions . 56

3.2.3 Generic Provably Secure Port Knocking 58

3.3 System Design . 61

3.3.1 Universal Compatibility . 62

3.3.2 Design Choices . 62

3.3.3 Protocol . 63

3.3.4 System Architecture . 67

3.3.5 Prioritized Synchronization With Minimal Contention 72

3.3.6 Timing Analysis . 75

3.4 Discussion . 77

iv

3.4.1 Limitations of SilentKnock . 77

4 Censorship-resistant overlay publishing system 81

4.1 CROPS Requirements . 82

4.1.1 Security Requirements . 82

4.1.2 Targeted Blocking . 83

4.1.3 Existential Blocking . 84

4.1.4 Functional Requirements . 85

4.1.5 Adversary Models . 86

4.1.6 System Types and Parties of Interest 88

4.1.7 Formal Definition of Censorship Resistance 90

4.2 Related Work . 91

4.2.1 Limitations of Näıve Approaches 91

4.2.2 The State of the Art . 92

4.2.3 Robust Distributed Storage . 96

4.3 System Design . 97

4.3.1 Robust DHT-based Storage . 98

4.3.2 Resisting Massive Correlated Failures 99

4.3.3 The CROPS Protocol . 100

4.4 Theoretical Analysis . 107

4.4.1 Formal Statement of Censorship Resistance 109

5 Future work 114

5.1 Efficient MCON Formation and Routing 115

5.2 Implementing a Usable CROPS . 115

Bibliography 117

v

List of Tables

3.1 Average time difference between receiving a SYN packet and emitting a

SYN-ACK packet. The second experiment uses kernel modules (nf conntrack

and nf conntrack ipv4) to help clean stale connections. The third and

fourth experiments use only the user-level sknockd, and the sknockd

plus netfilter connection tracking modules, respectively. The time differ-

ence between the connection tracking modules alone and the connection

tracking modules with sknockd is not statistically significant. 76

4.1 Summary of attack resistance of current censorship-resistant systems. . 94

4.2 Expected fraction of failed, malicious, or blocked nodes (left); the dura-

bility of a given erasure-coded block in the network (D); and the network

robustness in terms of censorship resistance (ρ). 111

4.3 Expected fraction of failed, malicious, or blocked nodes (left); the dura-

bility of a given erasure-coded block in the network (D); and the network

robustness in terms of censorship resistance (ρ). 112

4.4 Expected fraction of failed, malicious, or blocked nodes (left); the dura-

bility of a given erasure-coded block in the network (D); and the network

robustness in terms of censorship resistance (ρ). 113

vi

List of Figures

2.1 Total unique Freenet nodes found over time. Dots show the time when

all marker nodes were found. 23

2.2 Unique running Freenet nodes for each 3-hour time period. The cycle is

likely the result of day-time versus night-time usage patterns. 23

2.3 Routing to a logical hop over 4 physical hops 29

2.4 Estimated probability of node disconnection. Churn is the fraction of

MCON members who are offline. 41

2.5 Results of MCON simulations. Cumulative distributions of: (a) physical

hops per DHT query with solid and dashed lines corresponding to efficient

and robust schemes, respectively; (b) node degree; and (c) pairwise distance. 44

2.6 Measured probability of query failure in MCON simulations. Churn is

the fraction of MCON members who are offline. 46

2.7 Probability of query failure in MCON simulations using clustered mali-

cious nodes. Non-malicious nodes obey the standard churn model. . . . 47

3.1 Definition of hidden world (top row) and plausible world (bottom row)

experiments. 55

3.2 Generic protocol definition, simplified to assume a random iv. 59

3.3 The TCP SYN packet after steganographic embedding. The “internal

consistency” adjustment in the sequence number is performed to keep

the modified sequence number consistent with what Linux is expected to

produce. 66

vii

3.4 The architecture of SilentKnock. The client-side application initiates

a connection to a server in the usual manner. The kernel composes a

SYN packet, but sknockproxy intercepts the packet before it is sent, and

embeds a MAC into the ISN and timestamp fields. The server receives

the packet, and sknockd examines it before passing it to the kernel. If

sknockd successfully extracts and verifies the MAC, the packet is passed

to the kernel; otherwise it is dropped. Once the SYN packet is accepted,

the user-space sknockd no longer examines other packets for that con-

nection (except for terminating packets FIN and RST), for the sake of

efficiency. The sknockd kernel module inspects every packet, but the

overhead of fast-path processing for all but SYN packets is minimal (a few

dozen machine instructions). sknockproxy, however, is forced to rewrite

every incoming and outgoing packet for the connection to prevent the

client TCP stack from getting confused due to a sequence number mis-

match. 68

3.5 The shared data structure. Each list has an associated mutex, and each

list entry has an associated barrier. A producer will not write to a list

whose mutex is locked, and a consumer will not read a list past an entry

with a barrier that is “closed.” . 73

4.1 A publisher encrypts a file and applies an m-of-n erasure coding scheme. 100

4.2 A publisher composes a file manifest containing the identities of all erasure-

coded file chunks, and a key manifest containing the key itself. 102

4.3 Determining the optimum erasure-coding variables to support up to 100

petabytes of network storage. n and m are erasure code parameters,

while the “y” axis is the robustness ρ of a censorship-resistant system,

showing the fraction of nodes that must be offline or malicious before

data loss begins to occur. 108

4.4 The robustness ρ of the censorship-resistant system using a given erasure

code configuration or simple replication. The 50-of-500 configuration is

a good tradeoff between overhead and robustness, as is 75-of-750. Both

impose a factor of 10 storage overhead. 109

viii

“The Net interprets censorship as damage and routes around it.”

John Gilmore, 1993 [1]

But what if the censor controls the routing infrastructure?

ix

Chapter 1

Introduction

1

2

The focus of this dissertation is constructing censorship-resistant systems for com-

municating and storing information prohibited by certain regimes or within certain

network domains. This topic of research is becoming increasingly important due to the

rise of Internet censorship by private and state interests, who use a variety of social

and technological means to limit expression or availability of information. The Open

Net Initiative (ONI) [2], which catalogs world-wide censorship efforts, groups them into

four different categories: (i) technical blocking (such as DNS filtering), IP blocking,

URL filtering, and content inspection; (ii) search removal, i.e. suppression of web sites

or terms from search engines; (iii) take-down, the use of legal or regulatory power to

demand the removal of content; and (iv) induced self-censorship, through intimidation

including surveillance or the perception of surveillance. In 2006, ONI reported strong

evidence of filtering in 26 of 40 countries surveyed [3], with anecdotal evidence sug-

gesting widespread use of social and legal means as well. This list includes Western

democracies such as the U.S. and EU member nations [4]. Such prevalence suggests

that censorship by governments, ISPs, and corporations represents a valid threat to

freedom of speech on the Internet.

Due to differing libel laws [5, 6], private corporate control of large-scale Internet-

accessible storage, and almost complete control of the core Internet routing fabric by

governments and private organizations, publishing controversial information online and

keeping it available is not easy. Whatever legal protections free speech and whistle-

blowing theoretically enjoy, online content can nonetheless be removed in practice using

mechanisms readily available to most large organizations, and available to anyone will-

ing to pay sufficiently for the privilege. Furthermore, since legal channels may be under

the control of the very same parties who are attempting to prevent disclosure of infor-

mation, we need technological measures to overcome these censorship efforts and bring

the technological possibilities of free speech in line with their theoretical ideals.

As more censorship-enabling systems are deployed, and as more legislative control is

imposed on online content, we see increased usage of censorship-resistance technologies

— tools designed to circumvent the technological filters and bypass or evade legislative

blocking. This dissertation provides a technological solution to this problem. While

numerous currently-deployed systems are already used for censorship resistance, such

as Tor bridges [7], Freenet [8], Anonymizer.com [9], and WikiLeaks [10], they are all

Anonymizer.com

3

vulnerable to a number of attacks. For instance, the use of several of these systems

is problematic in environments where they are explicitly proscribed. Some censorship-

resistant designs [11] have taken the all-or-nothing approach, assuming that an adversary

would want to disable access to selected content, but not to the entire system. Since

the most important requirement for censorship resistant networks is availability — an

attack against availability is in itself an act of censorship — any design candidate must

be robust to attempts at complete blocking. We advocate a powerful adversary model,

where the censor is willing to prevent access to popular services, websites, or even

sections of the IP address space in order to block some targeted content, regardless

of collateral damage. Events such as [12, 13, 14] support our position. It is likely

that such an adversary would be willing to persecute users of censorship circumvention

technologies as well, so censorship-resistant systems should also prevent the censor from

identifying the system’s participants, protecting both content and users not only from

technological, but also from social and judicial attacks. If neither content providers nor

users can be identified, they cannot be coerced to stop accessing content, publishing

new content, or otherwise participating in the network.

One example of an entity with similar goals is WikiLeaks, a website that publishes

documents of social significance, which are generally private and are “leaked” by indi-

viduals with privileged access. WikiLeaks’ stated mission is to “protect internal dissi-

dents, whistleblowers, journalists and bloggers who face legal or other threats related

to publishing” [10]. Their multi-jurisdictional management and hosting structure, com-

bined with anonymity and cryptographic technologies, make it difficult to discover the

source of leaked documents and/or restrict their online distribution. Unfortunately, this

approach is ultimately limited by the human and technological resources of the organi-

zation: WikiLeaks has a finite (and presumably small) number of servers and editors,

representing a relatively tractable attack surface for someone sufficiently motivated. A

fully-distributed system, on the other hand, spreads the information distribution role

over far more entities, and is thus more resistant to denial of service (DoS) and coersion

attacks. Such a system has the potential to be strictly more censorship-resistant than

WikiLeaks, since a distributed system will attract more individual users contributing

bandwidth, computation, and storage, and can also use all the technological resources

currently controlled by WikiLeaks.

4

Note that a censorship-resistant system does not aim to provide data privacy. The

opposite is true — all stored content should be searchable and available as conveniently

as possible. There are two exceptions to this rule: data on the wire must be encrypted to

avoid keyword-based blocking by a censor who controls the network, and member nodes

who contribute storage should have no easy way to determine what they are storing,

ensuring plausible deniability.

1.1 Contribution of This Work

We design a robust, highly available, and censorship-resistant system for permanent

online document storage that resists blocking attempts from very powerful adversaries

who are willing to shut down large sections of the Internet in order to accomplish their

censorship goals. While neither censorship resistance nor robust permanent storage are

new ideas, no design considers as strong an adversary model as a nation-state that

controls network entry and exit points. We show that with a storage overhead of a

factor of 10 our system can tolerate node failure rates up to 70% while retaining the

ability to route messages and retrieve all stored files with 99.99998666% probability,

even when the volume of stored content is on the order of hundreds of exabytes. Our

system allows anyone to publish and/or retrieve any content stored in the overlay using

a simple and intuitive keyword search, while preventing internal or external adversaries

from censoring or modifying content, or determining users’ physical identities1 . This

system is constructed of three major building blocks, described below.

1.1.1 Membership-concealing Overlay Networks

If a censor who is both willing and capable of preventing access to a given network,

application, protocol, or large section of the Internet, any system whose participants

can be enumerated can be blocked (e.g. by listing participants’ IP addresses and adding

them to a blacklist at the network level), disrupting access to the service. Therefore, the

first building block of a robust censorship-resistant system is a communication layer with

a difficult-to-enumerate membership set. In Chapter 2 we initiate a systematic study

of membership concealment as a security goal. We introduce “membership-concealing

1 e.g. IP addresses

5

overlay networks” (MCONs), which are peer-to-peer (P2P) overlays whose membership

set is hidden from both insiders and outsiders. Overlays and membership concealment

may sound incompatible, since nodes must always rely on others for communication and

connectivity, but it is possible to minimize the number of other overlay nodes who know

the identity of any given node, to the point where a member only needs to disclose its

identity to a small constant number of other nodes. Such systems need pseudonyms to

allow for one-to-one communication. Pseudonyms should preserve unlinkability between

MCON identities and real-world identities, whether for targeted individuals or for a non-

trivial fraction of MCON members. To be useful, MCONs must support scalable and

efficient routing and search. Finally, robust censorship resistance requires that MCONs

remain available even during high member churn,2 and when under attack from insider

and/or outsider groups.

While membership concealment is not a new idea, and has been implicitly described

in other work (sometimes referred to as “darknet”), it was not rigorously defined. This

lack of formal definition caused membership concealment features to be implemented

in an ad-hoc fashion, usually resulting in vulnerabilities. We propose three proof-of-

concept membership-concealing designs: one that is more efficient, another that is more

robust to membership churn, and yet another which is a hybrid of the first two. All

schemes are robust to security problems present in prior approaches, protecting the

system from both insider and outsider attackers. Our MCON can be bootstrapped

from any social graph of offline face-to-face relationships. (Basing a network on a social

network graph allows us to use Sybil attack [15] mitigation systems such as SybilLimit

or SybilInfer [16, 17].) Membership is by invitation only, so our network is not “open”

in the same sense as other P2P systems, which allow anyone who knows at least one

member to become a member themselves. Finally, our designs use distributed hash

tables (DHTs) to enable efficient search and ensure that both popular and rare files can

be located within a predictable period of time.3

2 Members can go offline without disrupting the network
3 Files can be arbitrary named data, so “locating files” does not imply a traditional file-sharing

system.

6

1.1.2 SilentKnock: Provably Covert Authentication

A major problem with past approaches to censorship resistance has been vulnerability to

scanning and/or hypothesis testing — if an adversary can identify that a particular com-

puter is running a given service (such as the MCON network software), the membership-

hiding properties of that service are compromised. Therefore, MCON members must

not respond to communication attempts from unauthorized parties. To that end, we

use the previously ill-defined method of service hiding called “port knocking,” define it

rigorously, and describe a provably-secure design.

Port knockinghas historically been used to hide the services available on a given

server by concealing open ports from attackers has been historically used as an extra

layer of protection for web-facing servers. To use a server implementing port knocking,

a client must transmit a special “knock” that authenticates it. Any attempt to connect

that is not associated with the correct knock will be dropped; thus to an unauthorized

user it should appear as if no network services are running on the server. A variety

of knocking methods have been proposed, such as a sequence of dropped connection

attempts to closed ports [18], cryptographic authenticators in the initial connection

request packet [19], “funny-looking” DNS lookups [20], and IPsec tunneling [21]. How-

ever, many of these schemes have been accused of offering “security through obscurity,”

since it is trivially easy for an intelligent adversary to detect and steal knocks in non-

cryptographic systems. By making the distinction between flawed implementations,

which are only secure if the details of the system are unknown, and the concept of port

knocking (such that even given the details of a port knocking scheme one cannot tell if

it is being employed), we argue that the concept of port knocking is not fundamentally

flawed. In fact, it is a good fit to conceal the presence of MCON software on a given

system. This also means that the use of port knocking should itself be concealed, as it

may cause an adversary to assume a protected server is running an MCON, and physi-

cally confiscate it to examine the software. All existing port knocking implementations

fail to conceal their presence even under relatively weak attacker models.

In Chapter 3, we develop a formal security model which captures the notion of

provably undetectable port knocking. Our notion of security implies that while a com-

putationally bounded adversary may observe many authenticated sessions and arbi-

trarily inject, delete, and reorder messages between the client and server, he cannot

7

distinguish a port knocking client and server from a pair using ordinary TCP/IP plus

some out-of-band authentication mechanism that prevents unauthorized clients from

connecting. That is, our definition allows the adversary to observe authenticated ses-

sions and necessarily allows the adversary to observe that somehow sessions are being

authenticated, but ensures that no additional information about the authenticating

mechanism is leaked. This leaves many plausible explanations for the behavior, such as

dynamic firewall rules.4 We also present SilentKnock, our implementation of secure

port knocking including several necessary tricks for secure and reliable interaction with

TCP/IP, such as replay attack protection, client/server synchronization, and indistin-

guishability. We then analyze a number of possible attacks on our implementation and

show results demonstrating the performance of our system on real-world hardware.

1.1.3 Censorship-resistant Overlay Publishing System

Finally, Chapter 4 builds on our previous work and describes CROPS, a censorship-

resistant overlay publishing system implemented as a storage layer on top of an existing

MCON. CROPS allows anyone to publish and retrieve content stored in the overlay

while preventing internal or external adversaries from censoring or modifying content,

or determining the physical identities of participating entities. CROPS member nodes

can assume combinations of the following roles: a publisher, who uploads content; a

storer, who stores content; an intermediary, who helps route control and data messages

through the network; and a searcher, who searches and downloads content. All honest

nodes must serve at least as intermediaries, but not necessarily publishers, storers, or

searchers. Furthermore, all nodes are considered peers, or equal participants in the

network, (even if they do not contribute storage).5 We may refer to members

interchangeably by any one of their roles, or as peers or clients.

Our design supports keyword searches, so users are not required to know a crypto-

graphic hash of the file (or similar hard-to-remember information) in order to retrieve

content from the network. We do not discriminate based on file popularity, but instead

allow anything to be stored in the network for a limited period of time, while content

4 e.g. a service that is only available at given times, or a software firewall that allows the user to
manually approve connection requests.

5 An incentive scheme for storage contribution (similar to [22] and [23]) may be added later, if this
can be achieved in a membership-concealing manner.

8

vetted by designated editors is retained forever. CROPS incorporates a self-cleaning

mechanism, such that non-vetted and unpopular files are eventually removed from the

network, freeing space for more important content. We show that with a storage over-

head of a factor of 10 we can tolerate node failure or maliciousness rates up to 70%

while retaining the ability to route packets and retrieve all stored files with at least

99.99998666% probability, even when the volume of stored content is on the order of

hundreds of exabytes.

1.2 Justification

When people ask whether censorship resistance technology can be used for nefarious

purposes, the answer is a resounding “yes.” This technology, along with things like

kitchen utensils, common soil bacteria, or power generation equipment can all be re-

purposed for use in destruction and/or crime. This does not make censorship resistance

technologies any less valuable. On the contrary, as Noam Chomsky once said, “If you

believe in freedom of speech, you believe in freedom of speech for views you don’t

like” [24]. Since one certainly believes one’s own opinions to be true, in order for one to

embrace freedom of speech for others, one must defend their ability to express opinions

one does not share, and may even consider utterly false or downright offensive. Freedom

of speech is certainly a double-edged sword.

However, freedom of speech has received unambiguous recognition as a necessity.

The First Amendment to the United States’ Constitution [25] guarantees that no fed-

eral law will be passed “prohibiting . . . or abridging the freedom of speech” [26]. This

amendment has been historically interpreted even more broadly to guarantee freedom

of expression, not just speech, allowing opinions to be expressed freely in forms other

than oral communication. Freedom of expression is also considered a “universal hu-

man right,” as stated in Article 19 of the Universal Declaration of Human Rights [27],

adopted by the United Nations in 1948. While the ability to express one’s opinions freely

does not imply free access to mass communication technologies to do so, that same doc-

ument acknowledges the importance of distribution channels, stating that freedom of

expression “includes . . . to seek, receive and impart information and ideas through any

media and regardless of frontiers.”

9

Censorship resistance is a critical foundation for effective freedom of speech, versus

technical freedom of speech. We define the latter as the ability to express opinions with-

out fear of punishment, independent of the content of those opinions. However, if such

expression is blocked from distribution — if one cannot make one’s opinions available

to the intended audience, freedom of speech is fundamentally limited. Any distribution

channel that can be censored based on the content of the information it carries, is not

an effective means to express opinions. A censorship-resistant communication channel

is therefore required for freedom of speech to be meaningful.

Recall the previously-mentioned censorship resistance group WikiLeaks. Beyond

resisting censorship, their success also relies on protecting individuals submitting the

information that the website makes available. “Whistleblowers,” as these individuals

are sometimes called, face prosecution for their behavior, and thus the recipients of

leaked documents must protect the identity of their source. If individuals submitting

documents were frequently or even occasionally exposed, it would have a chilling effect

on sites like WikiLeaks. This is the reason for whistleblower protection laws [28, 29]

and the general recognition that journalists have the right (and perhaps obligation) to

protect the identities of their anonymous sources [30].

A major difference between technological solutions that completely shield the source

from identification and protections received from a single entity is that disclosure of an

anonymous source may be compelled when malicious behavior can be identified and

proven. Technological solutions such as ours prevent such recourse. However, since

technological solutions are clearly needed, we posit that enabling censorship resistant

communication is equivalent to preserving freedom of speech, however that freedom may

be exercised. We ask the reader to keep this in mind while considering the whole of the

following work.

Chapter 2

Membership-concealing overlay

networks

10

11

In this chapter we present the fundamental building block of censorship-resistant sys-

tems — membership-concealing overlay networks, or MCONs. We show three candidate

designs — one that is efficient in terms of communication, another is less efficient but is

extremely robust, and a third is a hybrid of the two, increasing efficiency over the second

scheme but at the cost of somewhat decreased robustness. We start by defining terms

relationships between anonymity concepts in Section 2.1. In Section 2.2 we describe the

requirements for a system to be considered an MCON, and discuss related work in Sec-

tion 2.3. In Section 2.4 we show show proof-of-concept attacks against Freenet [8] and

Tor bridges [7], two systems that implement membership-concealment-like features in

an ad-hoc manner. Our design is described in Section 2.5, and we present a theoretical

analysis in Section 2.6, and evaluate our system using simulation in Section 2.7.

2.1 Relationships Between Concepts

The concept of membership concealment is not new: organized crime and terrorist

networks routinely use compartmentalization to hide the identities of cell members

from people outside a given cell (a network is composed of many cells, which mostly

act independently). Such networks are not foreign to the computer science community

either: overlays with some membership concealment properties have been used for covert

activity, such as sharing classified, censored, or copyrighted content. Generally called

“darknets,” these networks are built to be difficult to join or detect, but most do not

protect from malicious insiders. One typically becomes a member through social means:

an existing member “vouches” for the newcomer [31].

Academically, membership concealment networks have remained less explored than,

and frequently confused with, related technologies such as privacy, anonymity, unlink-

ability, unobservability, pseudonymity, and censorship resistance.1

Unobservability

Related to anonymity, unobservability is usually endowed with one of two meanings.

Pfitzmann and Hansen define the term to mean that a principal in an anonymity scheme

cannot be “observed” to be sending or receiving a message (i.e. other nodes cannot

1 For a thorough treatment of some of these terms, see [32].

12

determine whether a given node sent or received a message at any particular time) [32].

Some authors have interpreted this to mean that it is difficult to distinguish whether a

principal participates in the network or not [33, 34]. The former clearly does not imply

membership concealment: a scheme that is unobservable in this sense would remain

unobservable if all principals periodically announced their participation. The latter

sense is membership concealment in terms of an outsider-only attack, since it is generally

necessary for some participants to be revealed to others in order for messages to be

delivered. The extent of this exposure determines the level of membership concealment

the network provides.

Pseudonymity and Anonymity

Pseudonymous credential systems [35, 36, 37] dissociate real-world identities from semi-

persistent network identities (pseudonyms). A real-world identity is any information,

such as participants’ names, credit card numbers, or IP addresses, that may reduce the

set of candidate identity-pseudonym pairings by a non-trivial amount. MCONs must

use pseudonyms to address members, and for a system to be membership-concealing it

must be impossible, with overwhelming probability, to determine the real-world identity

of a user given only that user’s pseudonym.

Anonymity, on the other hand, does not have the persistent identity property, but

instead hides any and all identifying information. Consider the relationship between

anonymity and membership concealment. The main goal of an anonymous network is

to conceal who is communicating with whom. However, this unlinkability or “relation-

ship anonymity” does not require concealment of who participates in the overlay, and

a scheme with perfect relationship anonymity would not sacrifice this property if a

complete list of participants was broadcast on a regular basis. MCONs clearly require

some type of minimal pseudonymity to prevent a passive insider from simply harvesting

identities — for example, messages should not include the real identity of the origi-

nator. However, MCONs do not guarantee or require anonymity or unlinkability, e.g.

each message may contain the pseudonym of both its source and destination, destroying

relationship anonymity but preserving membership concealment.

While aspects of some anonymity schemes in the literature can be seen as implicit

efforts to provide membership concealment, e.g. Bauer’s scheme seeks to hide the users

13

of a mix net among a larger set of web users [38], no deployed anonymity scheme explic-

itly claims to provide membership concealment, and it is largely accepted that sender

anonymity (origin obfuscation) can be achieved without it [39, 40]. Some schemes, such

as Tarzan [41], explicitly distribute a list of members. However, since this information

simplifies certain variants of the intersection attack [42], recent P2P anonymity schemes

such as Salsa [43] have mentioned hiding the membership list as a security goal. Un-

fortunately these schemes do not provide membership concealment under adversarial

conditions.

While the goal of MCONs is different from that of censorship-resistant networks,

robust censorship resistance requires membership concealment: if either an insider or an

outsider adversary can determine the IP address of a given participant in a censorship-

resistant system, that member can be blocked at the network border by an adversary

that controls the network ingress/egress points. MCONs are designed to make this task

difficult.

Censorship Resistance and Availability

Censorship-resistant networks are designed to prevent adversaries from denying users’

access to a particular resource or file. Censorship resistance does not imply member-

ship concealment: communication between two parties is blocking-resistant if they use

a covert channel to communicate, but regularly announce that they are in contact with

each other. Neither does membership concealment imply censorship resistance: MCON

members may exchange unencrypted content, so censorship would simply require block-

ing messages that contain selected keywords, even if the identities of communicating

nodes are hidden. This keyword-based blocking at the network layer is similar to the

approach used by China’s “Great Firewall” [44].

2.2 MCON Requirements

Informally, we define an MCON to be a communication system that hides the identities

of its members from both insider and outsider attackers (network members and non-

members, respectively), while retaining members’ ability to communicate efficiently.

14

The goal is to reveal no information about the network participants that would al-

low them to be identified in the “real world.” Honest nodes have one fixed network

pseudonym, which allows other members to uniquely address them. (We will refer to

overlay-level identities as “pseudonyms” and real-world identities as “identities” from

now on.) For the purposes of this work, we assume that obtaining a node’s network (IP)

address is both necessary and sufficient to identify the real-world user of the network.2

In addition to hiding member information, this network must be robust to link

failure and partitioning: we must maintain availability both in the presence of normal

network events and attackers. (A related requirement is node-equity, i.e. no node is

more important to the network than another.) It should also be scalable, allowing

for the membership set to grow while maintaining routing efficiency and minimizing

communication, computation, and storage overhead. Finally, it should provide efficient

search functionality, which can reliably locate any information stored in the network

within a predictable time window.

As Rhea et al. [45] point out, a rich set of overlay network operations can be built

from a consistent put/get functionality. Thus a major functional requirement for an

MCON is scalable support for the put(key, value) and get(key) operations. Scaling to

large networks induces two secondary requirements. First, put and get should have low

cost in terms of the network size to avoid high bandwidth costs — ideally, polylogarith-

mic in N . Second, any large group of users will experience some rate of churn — users

going offline and coming back on — and thus the scheme should be resilient to churn,

continuing to function in its presence.

2.2.1 Formal Definition of MCONs

We assume an adversary with the resources of a large ISP or state government. This

means that the adversary can monitor or disrupt traffic on some fraction ℓ of links;

can communicate with arbitrary nodes on the network; and can selectively “corrupt”

2 If users voluntarily disclose their real-world attributes, then IP addresses become sufficient, but
not necessary, to de-anonymize them.

15

or otherwise assume control of some fraction γ of selected nodes. We call this an (ℓ, γ)-

adversary. Formally, we say that an overlay network protocol is (Λ,Γ, f)-membership-

concealing if no (ℓ, γ)-adversary monitoring ℓ ≤ Λ links and corrupting γ ≤ Γ members

can identify more than f(ℓ, γ,N) members, where N is the total number of MCON

participants. When f(ℓ, γ,N) = Θ(ℓ, γ) we call the protocol a membership-concealing

network protocol. We note that no overlay protocol that permits communication be-

tween peers can be (Λ,Γ, o(Λ+Γ))-membership-concealing since at least one node must

deliver messages to each corrupted or monitored identity, and an adversary can always

choose to corrupt or monitor identities with no common neighbors.

2.2.2 “Open” vs. “Closed” Networks

As a brief aside, consider three types of membership schemes in access-controlled net-

works: open access, controlled access, and closed access. In an open network, any node

can become a member at any time (usually just by contacting another member). In a

controlled network, checks are performed to ensure that a node meets certain criteria

for joining. In closed networks, only “approved” nodes can become members, e.g. some

networks may require new members to be introduced to the network by existing mem-

bers. Without loss of generality we can refer to a necessary condition for joining an

MCON as having a non-replayable “token,” which can be a proof of work, a certificate,

or a voucher from an existing member. In the case of open networks, the only identifying

feature of a node is its network (IP) address, but this information is not used to limit

network membership. This situation reduces to defending against Sybil attack, which

is provably impossible in the general case [15]. This leads us to the conclusion that it

is not possible to design an open network with membership concealment properties.

2.3 Related Work

Arguably the first darknet was WASTE [46], released in 2003. It was designed to

facilitate secure collaboration by small groups. Some file sharing applications have

recently added darknet features [47, 48], and applications for “friend-to-friend” (F2F)

sharing have been developed [49]. The latter scheme is meant to allow sharing through

trusted intermediaries, preventing the disclosure of the uploader’s identity. [48] and [49]

16

are also fundamentally different from previous darknet designs, since they hide the

network member set even from other network members. Unfortunately, all of these

systems share similar problems, such as forming partitioned groups instead of larger

networks, scalability limitations, search efficiency issues, and security vulnerabilities.

2.3.1 Freenet

The system that is currently most similar to an MCON is Freenet [8]. It is a censorship

resistant network which hides the publisher, querier, and storage location of files by

obfuscating their names and contents, making it difficult for any party other than the

querier to identify the content that is being retrieved. Moreover, Freenet uses recursive

routing to reduce the number of nodes who are aware of each other’s existence. (Re-

cursive routing sends queries through a series of intermediate nodes instead of directly

between source and destination.) Freenet version 0.7 is designed to allow for two modes

of operation: “opennet” and “darknet.” In opennet mode, nodes may freely connect

to any other opennet node. Identities of other Freenet nodes are obtained through an-

nouncements, which are requests from peers to join some other node’s routing table.

A node replies to an announcement with its pseudonym and IP address if it has room

to add the announcing node into its routing table, otherwise it responds with its IP

address only and forwards the announcement through the network. Announcements

can be made to arbitrary logical “locations” in the network, and since there are fewer

nodes than available locations, a single node is responsible for responding to requests

made to its own exact location as well as nearby locations. This response strategy is

an inherent weakness in the membership concealment properties of Freenet; we show a

proof-of-concept exploit in Section 2.4.

Darknet mode allows connections with other nodes only by prior out-of-band agree-

ment, presumably based on mutual trust [48]. This provides protection from malicious

nodes crawling Freenet for membership information. Note that because darknet nodes

do not communicate with opennet nodes, there may be many disconnected darknets

instead of one large network. Darknet mode incorporates location swapping as a part of

its routing algorithm, wherein a node will compute the total distance between all of its

friends and itself at the current location and at a new proposed location, to which it will

potentially swap. The result of this distance measurement, along with a probabilistic

17

factor, is used to determine whether or not the swap will proceed. The swap is intended

to improve search efficiency — decreasing the length of communication paths to peers

reduces the number of logical hops required to reach a destination.

Routing and searching in Freenet is done by flooding. File transfers are recursive,

and intermediate nodes will cache files. Freenet claims a search time of O(log2N), and

a theoretical asymptotic minimum search time (in a long-running network) of O(logN)

in an open, non-darknet network [48], but no concrete statistics are readily available.

Moreover, since these calculations rely on caching (which allows nodes to service a

request for content that they’ve seen before but are not the original storage point or

location), locating rare files may prove extremely difficult in practice.

2.3.2 Tor Bridges

Tor [39] is a popular anonymizing network that offers sender anonymity. It employs

a “client-server” overlay design, where a smaller, publicly known list of members re-

lay traffic for a larger set of users, whose identities are neither explicitly revealed nor

explicitly protected. The system is heterogeneous, with the server-like relays volunteer-

ing their bandwidth and processing power to forward data, and clients making use of

these dedicated relays but not providing a service. The public nature of the router set,

which is required for anonymity against various attacks, has implications for censorship:

an adversary who wishes to deny access to Tor can download the relay list and block

connections to the listed IP addresses. China did just that in September 2009 [14].

Tor designers have been actively working on “bridge” functionality [7] that would make

Tor more difficult to block. Tor bridges are not dedicated relays; they are Tor clients

who allow users in censored regions to contact them directly as a first step into the

Tor network. Since bridges are client nodes, they are more numerous and experience

higher churn than dedicated relays, so blocking them is a more difficult task. This is

implicitly a membership concealment feature – one cannot selectively block what one

cannot detect.

Tor currently relies on a publicly-known centralized authority or out-of-band (social)

communication for distribution of bridge descriptors, but the authority can itself be

blocked. Although the authority takes precautions to avoid providing bridge descriptors

18

en masse to anyone who asks,3 the system is vulnerable to attack: an adversary

who controls many IP addresses can query the authority repeatedly, pretending to be

different nodes. While other defense mechanisms are in the works, they are not in place

as of the writing of this document.

2.3.3 Other Systems

Other anonymity schemes [33, 34] have also attempted to provide “blocking resistance”

by hiding their members among a larger set. However, even if an adversary cannot block

access to all members of an overlay, he might be able to block queries for particular types

of content. Since most storage networks provide an efficient lookup feature, an adversary

knowing the identifying information of the content (hash, ID, etc.) can look up the

node(s) storing that content and selectively deny access to those nodes. Censorship

resistance requires blocking resistance, but it is orthogonal to membership concealment.

2.3.4 Using Social Networks to Bootstrap Trust and Mitigate Sybil

Attacks

Social network-based Sybil-defense systems such as SybilLimit [16] and SybilInfer [16]

attempt to distinguish Sybil identities from real users by exploiting hypothesized prop-

erties of social network graphs: if Sybil nodes form tight clusters in the network, these

clusters may be detectable in a centralized or decentralized manner, and members of

these clusters can be marked as malicious. SybilLimit, for example, conjectures that

Sybil clusters are more sparsely connected to the rest of the social network than other,

honest communities, and uses the number of inter-cluster edges as an implicit metric.

Nodes with few such edges are believed to be malicious. This method requires assum-

ing that social networks are fast-mixing — that when performing a random walk, the

starting position is hard to determine with overwhelming probability from the position

after a relatively small number of steps.

Danezis et al. also use social networks to bootstrap a Sybil-resistant DHT [50].

DHTs are structured overlay networks that allow for very efficient searching [51, 52, 53].

3 If a client already knows a bridge descriptor, it can ask the bridge authority for the current IP
address of that bridge. This will later become an important factor for an attack against the membership-
concealing properties of bridges.

19

Each DHT node has a random pseudonym, and is responsible for responding to queries

that are lexicographically close to that pseudonym. Each node maintains a routing

table of O(logN) peers that allows it to efficiently identify the node responsible for a

query in O(logN) hops. Based on the same assumptions as above — that adversaries

are connected to a social network in few places compared to honest members — the

Sybil-resistant DHT builds trust profiles for individual nodes along a query path and

favors nodes who usually yield correct results. Since the majority of adversarial (Sybil)

nodes will be connected to the DHT through very few honest nodes, those connection

points will (with high probability) return Sybil nodes as next hops, eventually producing

incorrect results when adversarial nodes misbehave. The trust profile of that honest

node is then reduced, and little trust will be placed in results returned by queries going

through that node in the future. By using multiple queries with different trust profiles,

querying nodes can be confident that correct results will be returned.

Some systems use social networks as an explicit basis of trust — an edge between

nodes implies a trust relationship. Freenet darknet [48] and Turtle [54] are examples

of networks that bootstrap from a social network that expresses mutual trust. Queries

are flooded and do not terminate until either every node in the network has responded

or the maximal query depth is reached. Unfortunately, it is rare for social networks

to explicitly express trust. Kaleidoscope [55] also uses social networks to distribute

proxy information, mitigating Sybil attacks. However, Kaleidoscope also uses a cen-

tralized server to distribute information about proxies to newly-joining nodes, and so it

represents the same centralized point of failure as the Tor bridge authority.

A recent system called OneSwarm aims to be a privacy-preserving P2P file sharing

system by utilizing F2F and recursive routing in order to disclose who shares which

files to only a trusted set of neighbors and yet allow searching the entire network for

files shared by any user [49]. Unfortunately, the system shares some drawbacks with

Freenet, Turtle, and Kaleidoscope — none of them is completely resistant to at least

some membership-disclosure attacks. This is not entirely surprising, since most of those

systems (except for Tor bridges, OneSwarm, and possibly Freenet) are not meant to be

membership-concealing. We discuss possible attacks, as well as their results, in the next

section.

20

2.4 Attacks on Existing Systems

The primary goal of MCONs is resistance to member identification attacks, in which

either an insider (MCON member) or an outsider attempts to determine the “real-

world” identities of network members. These attacks may take two forms: existential

and targeted. In the former case, which can also be called the harvesting attack, an

adversary attempts to determine the identities of as many network members as possible.

The latter attack allows an adversary to match a network pseudonym with an identity,

or to significantly reduce the number of candidate identities for a given pseudonym as

a precursor to rubber-hose cryptanalysis.

Most existing systems are vulnerable to at least one type of harvesting attack. The

simplest variant exploits systems that do not limit the number of identities that a single

member can collect simply by querying the network repeatedly. Since the attack is

active, it may be detected and the attacker could be blacklisted, but the adversary can

always throttle or otherwise mask his actions to appear benign. A harder-to-detect

variation is the passive harvesting attack: an adversary runs a network node that logs

all direct communication attempts, learning the identities of all other nodes over a long-

enough timeline. Both attacks become faster with more adversaries. Another example of

a harvesting attack is the multiple join, or bootstrap attack, in which an adversary either

sequentially joins the network multiple times at multiple logical locations (which are the

Freenet equivalent of DHT IDs), or creates multiple (Sybil) nodes and simultaneously

joins them to the network. Since every joining node must obtain the identity of at least

one other network member, multiple joins allow the adversary to learn the IP addresses

of a large fraction of network members.

The celebrity attack affects systems that use social networks to bootstrap trust, such

as [8, 54, 55, 49]. If the social network topology can be discovered, then an adversary

can choose to corrupt or monitor nodes with many friends, learning disproportionally

many other network members. (Mislove et al. report node degrees of up to 10, 000 in

many popular social networks [56].) Only a few very popular network nodes need to

be corrupted or monitored in order to learn the vast majority of network members [57].

This can be generalized to attacks against “tasty targets,” applicable when networks

that bootstrap from social networks but do not “smooth out” node degree. It also

21

applies to networks with so-called “supernodes” — members who have more power

than other members. An MCON should either not contain any targets of compromise

that know disproportionally more member information than any other target, or should

ensure that such nodes are difficult to identify.

Social networks also expose the constructed MCON to a graph overlap attack —

Narayanan and Shmatikov have shown that anonymized graphs can be de-anonymized

based only on topology knowledge and access to an overlapping non-anonymized

graph [58]. This means we cannot anonymize a graph by simply replacing identities

with pseudonyms; we must either restrict adversaries from constructing a complete

view of the anonymized graph topology and/or perturb node degrees. While some of

the above networks would resemble MCONs more closely if they were not vulnerable

to the celebrity attack, most of them expose their topology while not enforcing node

degree limits.

Another serious attack on a membership-concealing network is the confirmation at-

tack. If an MCON requires nodes to respond in a distinctive way to connection attempts,

then a non-member adversary can “cast a wide net” and identify a large number of nodes

by attempting to connect to them. As an example, consider a network administrator at

a large corporation who wishes to identify users on the internal network who are using

a file-sharing application. Assume that the most popular application uses a certain

port number in the default configuration. Our adversarial network administrator can

“probe” each host on the internal network, connecting to that default port, identifying

users by the tell-tale replies from the file-sharing client.

Finally, MCONs must resist protocol identification attacks when communicating with

other network members as well as when joining, leaving, or inviting others to the MCON.

Such an attack would allow passive identification of MCON users by monitoring com-

munication patterns without peeking at content [59]. Consider once again our sneaky

system administrator from above. Since there are only a small number of exit points

from the internal network to the Internet, our adversary can monitor protocol traffic at

those locations, identifying all users of the targeted protocol.

22

2.4.1 Attacking Freenet Opennet

The following attacks on Freenet opennet are instantiations of harvesting attacks de-

scribed above, with the goal of breaking the hypothetical membership concealment

properties. However, our attacks do not generalize to Freenet nodes running in darknet

mode.

Freenet nodes have persistent identities and locations, which are the long-term

pseudonym of a node and its logical placement in the Freenet network, respectively.

Both are generated upon node creation and remain fixed throughout the existence of

the node, but can be changed manually by editing the Freenet configuration file. Lo-

cations are represented by a double precision floating point number between zero and

one, resulting in an address space of 1016 — far greater than the expected number of

participating Freenet nodes.

We implemented a passive harvesting attack using well-behaved Freenet clients4 in

“opennet” low-security mode, whose only modified behavior is passive logging of com-

munication with others.5 Their pseudonyms and locations were randomly generated

at creation time, and do not change throughout the experiment. We call these nodes

“markers” because we use them to measure the success of our attack — since they have

random pseudonyms, the time required to locate all marker nodes will be close to the

upper time bound to find all nodes in the Freenet network.6 We also implemented

an active harvesting attacker, which announces itself to random logical locations in the

network, collecting pseudonyms and IP addresses of responding Freenet nodes who are

located “near” the announcement point in the Freenet logical coordinate space. To

eliminate the effects of dynamic IP addresses we only counted node pseudonyms, which

are unique and constant.

Figure 2.1 provides a comparison of each of our attacks on Freenet, using 80 marker

nodes and a single announcer. Announcements were broadcast at a rate of once per

second. When increasing to 10 per second, we did not observe significantly better

results, likely due to the Freenet throttling feature, which inhibits replies to nodes that

flood the network with requests. In fact, 50 announcements per second collected fewer

4 Based on Freenet 0.7 Build #1204 r25665 (2-17-2009)
5 Our attacks require no customization of the Freenet client other than to facilitate logging.
6 There is no way to be certain that any given attack has uncovered every node, especially considering

that some may be down for the entire duration of our experiment.

23

0 10 20 30 40 50 60 70

Time (hours)
0

1

2

3

4

5

N
o
d

e
s
 (

1
0
0
0
s
)

Announcer
Markers

Figure 2.1: Total unique Freenet nodes found over time. Dots show the time when all
marker nodes were found.

0 50 100 150 200

Time (hours)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
d

e
s
 (

1
0
0
0
s
)

nodes
trend

Figure 2.2: Unique running Freenet nodes for each 3-hour time period. The cycle is
likely the result of day-time versus night-time usage patterns.

24

node references than the one-second attacker. (Data for the 10- and 50-announcement

attackers is not included in the figure.) Both attacks collected new unique pseudonyms

at an ever-decreasing rate, with a combined total of 7, 794 unique pseudonyms found

by the markers in 380 hours, and 7, 317 pseudonyms found by the announcer in 200

hours.7 Each individual marker node was only able to find an average of 51.03 of

the other 79 marker nodes, with a range of 24 to 63 and standard deviation of 7.93.

However, combining data from all markers shows that when taken together, they also

found all other makers, but in 11.03 hours. The single active attacker outperforms all

80 passive attackers in terms of speed, but collection speed can always be increased by

adding more attackers — the bandwidth and processing costs are not a bottleneck.

The dots in Figure 2.1 represent the time when each attack discovered all 80 marker

nodes, signalling that we have likely enumerated the majority of running nodes. Our

passive attackers were able to enumerate all markers in 11.03 hours, and the active

attacker found all of them in 2.43 hours. Figure 2.2 shows the membership of opennet

derived from snapshots of 3 hours each — since it took our announcer less than 3 hours

to find our markers, we expect this graph to be an accurate measure of the membership

of opennet at any given time. We observe an interesting cycle-like pattern, and if we

assume that most users are online during the day and some users offline at night, we

conjecture that most Freenet users are likely European or British, since the low part

of the cycle is around 3am GMT and the high at around 8pm. (The shaded areas

are 8pm to 8am GMT.) There is a slight upward trend of 0.95 new nodes every hour,

possibly attributable to the expanding membership space of opennet as more users join

the system.

We observed between 2, 000 and 3, 000 running opennet nodes at any given time.

While the total number of existing opennet nodes cannot be counted accurately since

a large number are likely to remain offline for the duration of the experiment, we dis-

covered a total of 11, 100 unique node pseudonyms. We expect that several users join

transiently, only casually using the system. Note that these attacks do not generalize to

darknet mode, whose interaction with opennet is not well-documented. It is therefore

unclear how the interplay between opennet and darknet affects the connectedness or

7 At around 200 hours into the experiment, our announcer becomes unstable because its peers
disconnect themselves due to our ambitious announce rate.

25

security of Freenet.

It is interesting to note that Freenet resists confirmation attacks by requiring that

any message to a Freenet node be encrypted with that node’s public key, thus requiring

either a copy of a message the node previously accepted, or prior knowledge of the

node’s identity before the node can be queried. Additionally, since Freenet uses UDP (a

stateless, connectionless protocol), an adversary cannot even check if the default Freenet

port is open on any given Internet-connected computer, since messages not encrypted

with the node’s key simply receive no reply.

2.4.2 Attacking Tor Bridges

We also launched a passive harvesting attack against Tor bridges using an unmodified

Tor router,8 configured as a middleman (non-exit) node and offering 100MB/sec

of bandwidth (attracting disproportionally many client connections).9 Our router

should receive connections from clients, bridges, and other Tor routers. We weed out

routers using several tests, including TLS handshake fingerprinting, querying all running

directory authorities to see if they know the router, as well as by connecting back to

the router and examining its descriptor [61]. Once we eliminate the routers we are left

with clients and bridges. To differentiate between them we attempt a connection using

common bridge ports. If our connection succeeds and we get a descriptor [7], we launch

a confirmation attack by extracting the fingerprint from the descriptor and querying

each directory authority. A router will appear in at least one, while bridges will not.

(Note that these tests are all performed in real time.) Since we expect that all bridges

will eventually connect to our router due to Tor’s selection rules, we can eventually

build a complete list of bridges. We collected 61 unique Tor bridge identities in 4 days,

a clear vulnerability in the membership concealment capability of Tor bridges. Like the

Freenet attack, we can increase the speed of collection by running multiple routers. It

is once again impossible for us (or anyone without access to the Tor bridge authority)

to definitively state that a given list of bridges is complete.

The Tor bridge specification [62] states that the bridge authority will respond with

a bridge’s descriptor when asked with a valid fingerprint, but we did not observe this

8 Based on Tor 0.2.1.11-alpha r18192 (1-20-2009)
9 Although directory servers cap advertised bandwidth at 10MB/sec [60].

26

behavior. Had the bridge authority been following specification, its response alone would

have confirmed that the node is a bridge. If we cannot definitively determine that a

given node is a bridge, it is not included in the bridge count.

2.5 Design

This section outlines three proof-of-concept MCON designs. As in several previous

works [54, 55, 50], we use a social network based on offline relationships as a starting

point. We bootstrap our MCON from a small fully-connected “seed” network of “social

neighbors” (nodes connected by an edge in the social network). This allows us to

mitigate the Sybil attack problem [15], based on the observation that that a single

person will have trouble convincing others that he or she represents different real-world

identities. To this end, we assume that for each physical person in the world there

exists at most one unique social network member with high (but not overwhelming)

probability. That is, we allow a fraction of people to have multiple identities in the

social network. Social networks also allow us to exploit the small-world property to

ensure that the distance between any two nodes is small.

The MCON grows by having existing members invite new nodes based on social

relationships. When joining, nodes are assigned persistent pseudonyms and DHT IDs.

After the MCON is built and after a period of DHT routing table discovery, we use a

VRR-like protocol [63] to allow nodes to communicate with the DHT recursively through

a small set of “physical neighbors.” We define physical neighbors as those nodes who

are allowed to directly communicate over IP. (This system may be considered a double

overlay — we use DHT communication for efficient search, over a source-routing overlay,

over IP.) To avoid celebrity attacks, every MCON node can only communicate directly

with a constant k other nodes, since direct IP communication is sufficient to break

membership-concealment. Most communication takes place through the DHT overlay,

which connects any two nodes by O(logN) logical hops, where N is the total number of

members. This contributes significantly to the scalability and efficiency of our system.

Many popular DHT designs use iterative routing, where a node will communicate

with its DHT neighbor to ask for the IP address of the next DHT hop, with which it

will then communicate directly. The process repeats until the desired node is found,

27

at which time the origin and the destination can communicate directly over IP. We

cannot achieve membership concealment in the iterative scheme, since an adversary

can learn the IP addresses of all intermediate nodes as well as the final destination by

repeatedly searching the network. Moreover, as Mittal and Borisov [64] and Kang et

al. [65] point out, iterative routing implies that an adversary who controls m nodes will

see a 1 − (1 − m/N)logN of all queries; if m = Ω(N). This means iterative schemes

cannot be made to work for MCONs, since a small number of adversaries will be able

to monitor all queries and assemble a list of network participants. In recursive routing,

nodes communicate only with their DHT neighbors, who forward requests to the next

DHT hop on behalf of the originator. In this scheme, all communication between source

and destination happens through multiple intermediaries. Sometimes recursive routing

also carries the benefit of plausible deniability of query origin — a node receiving a

message from a physical neighbor cannot distinguish whether that neighbor originated

or forwarded the message.

Our design relies on a trusted central authority (the Membership and Invitation

Authority, or MIA) to invite new nodes into the MCON and act as a key issuer. The

MIA is also responsible for keeping track of node degree, ensuring that nodes do not

exceed the global constraint. Since future designs will distribute the functionality of the

MIA throughout the network, we want to minimize our current dependence on it. To

that end, the MIA is only needed when a new node joins. Moreover, it does not have

to respond in real time, and so can be offline and does not constitute a central point

of failure for denial of availability attacks. Unlike the Tor authority, nodes need never

contact the MIA directly, so it can remain hidden.

To prevent Sybil attacks, the authority can use existing systems such as SybilLimit

or SybilInfer [16, 17], which use a social network to bound the number of Sybil identities

accepted into the network. Note thatmembership concealing properties of our scheme do

not depend on the number of Sybil nodes in the network, provided they are not connected

to honest nodes. Since honest nodes will not directly communicate with anyone other

than their neighbors, Sybil nodes without edges to honest nodes will only affect the

robustness of routing in our network, not its security.

Below we present three MCON designs: the first is more efficient, the second is more

robust in high-churn situations, and the third is a hybrid. They all function similarly,

28

and all functionality can be split into three major categories: invitation and join, route

discovery, and overlay routing.

Invitation and join. The network is built by starting from a small “seed” and

adding nodes one by one, expanding it to form the full MCON. While the seed can

be an arbitrary group of social network nodes matching certain mutual connectivity

parameters, growing that network is challenging. In our system, nodes who are already

part of the MCON invite other nodes with whom they share connections in the social

network. Nodes must receive multiple invitations in order to join the MCON, and

the entire process must be somehow mediated to ensure admission control and key

distribution for the MCON. While this is currently handled by a centralized entity,

future designs will incorporate distributed computation of this information by MCON

members.

Route discovery. Once node A has been admitted to the MCON, it must con-

struct a DHT routing table for efficient communication. The routing table consists of

source routes to other DHT nodes that share different prefix lengths with A. Routes are

discovered by flooding requests over the “physical” network. Since nodes only communi-

cate with their neighbors, route responses must conceal information about intermediate

nodes. We accomplish this by using private routing tokens. A node building a routing

table obtains information about the next hop (one of his direct neighbors), the desti-

nation (one of his DHT neighbors), and no information about the set of intermediate

nodes, other than its size.

Overlay routing. Finally, once a node builds its DHT routing table, it can route

to arbitrary DHT keys. As in route discovery, communication happens strictly through

the node’s “physical” neighbors, and DHT communication is recursively routed. MCON

communication consists of two layers: routing to a DHT hop, and routing between DHT

hops. In the first step, the node uses the collected private routing tokens to deliver

a message to the first DHT hop. That DHT node will then use its routing table to

transport the message to the next DHT hop, and so on until the destination is reached.

Nodes never communicate directly with anyone other than their physical neighbors,

and layers of encryption prevent the exposure of the DHT message as well as the source

and destination. We ensure resistance to confirmation and brute-force scanning attacks

by using strong binding — an MCON node will only communicate directly with her

29

physical neighbors, ignoring all messages from other nodes (enforced by cryptographic

signatures and discussed further in Chapter 3).

2.5.1 Efficient Design

Network Construction

We start network construction with a clique of ⌈k/2⌉ social network neighbors, where

k is the maximum number of allowed MCON physical neighbors. The MIA iteratively

Figure 2.3: Routing to a logical hop over 4

physical hops

“grows” the network by finding nodes to

invite. Node A can be invited if: a) A

has at least ⌈k/2⌉ social friends in the cur-

rent MCON, b) those friends have at most

k − 1 “physical neighbors,” and c) A is

not in the MCON, and has not been pre-

viously invited. Call A’s friends satisfying

(a) and (b) her potential physical neigh-

bors. Once A has been identified, the

MIA randomly chooses ⌈k/2⌉ of A’s po-

tential physical neighbors, tells them A’s

new pseudonym, and instructs them to (1)

add A to their list of physical neighbors

and (2) send an invitation to A with their

IP addresses, MCON pseudonyms, public

keys, and DHT ID. (We will later use the

ID-based keys to emulate fuzzy identity-

based encryption [66].) Once A receives

the invitation and joins, the MIA assigns

her a private key and a set of identity-

based private keys [67]. Note that the MIA is in a position to both enforce that no node

joins the MCON more than once for any given social network identity, and that every

MCON member’s node degree is no greater than k.

30

Route Discovery Request

After joining, A can discover her logical neighbors and build a routing table. The

routing table is composed of source routes to DHT nodes whose pseudonyms share a

common prefix with A’s pseudonym. (For instance, in the Kademlia DHT protocol [53],

A acquires K routing table entries for every i-bit prefix of A’s pseudonym, for a total of

logN entries. We must use a fixed number since we are not certain about the size of the

MCON. For instance, if MCON pseudonyms are 128 bits wide, A might have 16 buckets,

the first being a 16-bit match with her pseudonym, the second with a 32-bit match, and

so on.) This is a difficult feat to accomplish while concealing a node’s identity from the

rest of the network. The solution is to only communicate with the node’s neighbors —

only nodes who know each other in the social network may communicate directly. So,

source routes are discovered by scoped flooding over the physical links of the MCON,

analogously to a wireless ad-hoc routing protocol, such as Virtual Ring Routing [63].

A continues sending discovery requests, increasing the scope of each by one, until her

entire routing table is filled. (This constitutes a depth-limited breadth-first search of

the network.) While expensive, floods are only needed during initial route discovery. A

uses these source routes to establish onion routes to each of its routing table entries,

similar to Tor tunnels [39]. Onion-wrapped source routes ensure that for most routes

neither the source nor the destination learn anything about each other except that they

share a common pseudonym prefix. Moreover, most intermediate nodes in a source

route know neither the source nor the destination, making sender-receiver unlinkability

a likely (but not guaranteed) property of this protocol. Note that messages using the

same path are still linkable to each other by each node along that path using the path

keys themselves,10 but outsiders or non-adjacent nodes along the same path cannot

determine whether two message they have seen are traveling over the same path.

The cryptographic requirements for discovery message are:

• The final recipient of the message must be authenticated as someone sharing a

common pseudonym prefix (of a given size) with the originator

• The random route string must only be disclosed to the above-mentioned node and

10 This is unavoidable while using private routing tokens, since they are not verifiable by any party
other than their creator, and so could themselves be marked to link messages which use those tokens.

31

the first node on the return path

Route discovery messages are in the form of (ID, scope, gx, IBEprefix(z,R)), where

IBE is identity-based encryption [67], scope is the flood depth, gx is a Diffie-Hellman

half-key,11 R is a route descriptor, z is a random number, and ID is h(h(z)), with h

being a cryptographically secure hash function. IBEprefix is an identity-based encryp-

tion to an i-bit prefix of A’s pseudonym [67], meaning that only a node matching the

search parameters can open the message. The route descriptor is a random bit-string of

some fixed size. A stores z, the prefix, the route, and the DH half-key for later reference.

When relaying a route discovery message, each node will decrement the scope by one,

dropping messages whose scope is 0. Relaying nodes will also record the request ID and

physical neighbor from whom it came. These records are kept either until a reply is

received or a timer expires. If identical requests are received from multiple neighbors,

all their identities are stored.

Route Discovery Reply

When node F receives a route discovery request which he can decrypt (meaning F ’s

DHT ID contains the prefix to which the message is encrypted), he generates a DH half-

key and composes a response in the form of (ID′, gy, R,Ek(z),MACk′(Ek(z))), where

k and k′ are keys derived from the full DH key, i.e. k = h(0, gxy) and k′ = h(1, gxy),

and ID′ is h(z), the pre-image of the request ID. The response also includes R from

the route discovery message (unchanged), and a message authentication code (MAC) of

z. F sends this response to D, and also floods the original request, decrementing the

scope. The resulting source route is shown in Figure 2.3.

The cryptographic requirements for the discovery reply message are:

• All nodes along the path of a discovery reply message and the originator of the

discovery message can confirm that it was correctly decrypted by its intended

destination node

• No node other than the one originating a route token should be able to derive

meaningful information from it

11 If the shared DH key is gxy, where x and y are private keys, then one DH half-key is gx and the
other is gy.

32

• The source and destination of the discovery message must derive the same shared

key

Once D receives a route reply from F , he looks up h(h(z)) in a table of previous

request IDs to verify that the request was correctly opened and to find the next hop

where the response must be sent. He constructs a “route token,” encrypts it with his

public key, and prepends the resulting ciphertext to the route contained in the response.

He also removes an equal-length token from the end of the route string. This “padded”

route string works in the same way as padding for onion routing cells [68]: the originator

creates a route data structure of a fixed length larger than required to store the returned

route. When a node adds itself to the route it composes a routing token consisting of a

hash of the next and previous hops along that route and a nonce, and encrypts it using

his public key. He the prepends it to the beginning of the route data structure, removing

the equivalent number of bits from the end. Since the initialized route string is longer

than the actual route, the token removed from the end will be a random one. The source

route received by the query originator will thus consist of a series of meaningful tokens

followed by random tokens. (Note that each non-random token is only meaningful to

the node that composed it.)

The new token identifies the next and previous hops along that route, and can only

be decrypted by D. The encryption should include a random component to prevent

every token that points to the same node from being identical, since the route is visible

to intermediate nodes. D then sends the response to the appropriate physical neighbor.

In this way, the originator of the request (A) will get back a series of tokens that are

meaningless to her, but that comprise a source route to her logical neighbor. Addition-

ally, since A generated the original random route string, she can ensure that it passes

some rudimentary sanity checks: she knows the exact length of the route since she it-

eratively increased the scope of the flood, allowing her to check that only the correct

number of routing tokens have been changed. An incorrect count would indicate that

someone is not following the protocol, and the route should be discarded (this is possible

since A would either get multiple replies for a single prefix match and can thus pick

correctly-formed ones, or she can simply continue the search).

Since A is likely to get multiple replies to a route request, she must arbitrarily select

full-bucket subset of all received replies. She cannot fill part of her bucket from scope

33

x and the rest from scope x + 1 since nodes who responded to requests with smaller

scopes will again respond to requests with larger scopes, leading to duplicate bucket

entries. We must be careful to defend against multiple adversarial replies, although any

such countermeasure would ultimately prove futile since a single adversary “close” to A

may respond on behalf of any and all adversaries in the network. To reduce the number

of adversaries in A’s routing table, she should select at least one reply from every

physical neighbor, picking a random subset of that neighbor’s replies. The intuition

behind this strategy is that the distribution of DHT IDs should be similar independent

of which “direction” in the network the request is routed, so the number of responses

from each physical neighbor should be comparable. A large response set may indicate

an adversarial node, especially if more than enough responses to fill a single bucket come

from only a single node. We avoid wormhole attacks [69] since A already knows the cost

of each route — the scope of the flood — and thus knows that each route returned for

a given scope has the same cost upper bound.

After route discovery, A sets up shared keys with each node along the physical route

in a process similar to constructing a Tor tunnel [39]. While A does not know the

identities or pseudonyms of nodes along the route and cannot authenticate their DH

keys, the final DH key (shared with F) is authenticated, since only a node with a given

pseudonym prefix could have decoded the half-key. A can use this information to detect

man-in-the-middle attacks and discard compromised routes. Key agreement proceeds

recursively, starting with A contacting the first node in the return route and deriving

a shared DH key. A will next provide that node its routing token, and initiate key

agreement with the next node in the chain. The process repeats until A reaches the

logical hop, with which it already shares a key, and can thus authenticate as the correct

end-point. Note that a node performing a man-in-the-middle attack will be able to learn

all the routing tokens. However, this attack would be detected, as key agreement will

not terminate at the correct (authenticated) end node in the correct number of rounds,

and the route will be discarded, invalidating the exposed tokens.

The cryptographic requirements for key agreement are:

• All nodes along the path of a discovery reply message must derive different shared

keys with the source of the discovery message

34

• A route token should only be visible to the node originating it

• Man-in-the-middle attacks must be detected and the route discarded, since these

attacks cause route tokens to be exposed

DHT Routing

Once the logical routing table has been built, MCON routing is identical to DHT rout-

ing, with the exception that messages to every logical hop must traverse a number of

physical hops. To prevent examination and tampering, those messages are encrypted

and MACed. Routing to a single logical hop in the efficient design is sketched in Fig-

ure 2.3.

When searching, A hashes the search term to determine the destination (X) and

the closest logical hop in A’s routing table (F). She then retrieves the DH key shared

with F , along with the source route (B,C,D) and the associated keys shared with

each physical hop. A uses identity-based encryption to encipher the hash of the search

term so only a node logically close to X can open the message. (Authenticating the

final logical hop prevents arbitrary DHT nodes falsely claiming responsibility for a given

key.) She composes a message containing the resulting ciphertext, encrypts it to F using

the shared DH key, attaches a MAC, and onion-wraps it such that each physical hop

must remove a layer of encryption to forward the message. Route tokens are included

in the onion-wrapped portions so that each hop only receives its own token.

DHT (overlay) messages are in the form of

(ID, Ek1(token1, Ek2(token2, . . . (Eks(tokens, Eks(M))),MACk′(ID,Ek(M))))), where ki

is the shared key between the source and the ith physical hop in the route and ID is

the message identifier, followed by repeated layers of onion encryption containing route

tokens. s is the path length (the scope of the message when it reached the replying

node). The inner-most onion layer is composed using the verified DH key k shared with

the logical hop and contains a message M for the final DHT hop. M is in the form of

L1, IBEL1(L2, IBEL2(· · · (IBELn(h(search term))))), where Li is the DHT (logical)

destination prefix. Each logical hop will be able to remove a layer of identity-based

encryption corresponding to its neighborhood to reveal only the next logical hop, but

35

not the message payload. Only a node in the same neighborhood as the query destina-

tion will be able to decrypt the full payload.

The cryptographic requirements for DHT messages are:

• No node along the source route should be able to derive any information about

the contents of the message to the logical hop

• Only a logical hop in the neighborhood of the destination should be able to decrypt

the DHT message payload

• No logical hop in a neighborhood other than the destination neighborhood should

be able to derive any information about the contents of the DHT message payload

• A route token should only be visible to the message source, and the node that

composed the token

Time Padding

Onion-wrapping messages and randomizing routing tokens provides some protection

from A, B, and C linking messages or learning the MCON topology. However, any one

of them may monitor the amount of time between query and response along a given

source route, and can deduce the magnitude of the ID prefix match between the source

and destination nodes. (Messages sent to an early logical hop along a route will take a

long time to return a result, while messages sent from the last logical hop to the query

destination would see an almost immediate response.) We can prevent this attack by

asking each logical hop to delay query responses for a fixed amount of time. Since the

number of logical hops required to complete a query is uniform for a given network size,

and since each logical hop knows its logical distance from the destination, the required

delay can be estimated within a factor of 2. This increases the total time required to

receive a response to every query, but also ensures that the time is constant (so query

failure is easy to detect).

If the query originator or a logical hop fails to receive a response (within a timeout

period) from the next logical hop (which can be the result of failure at the logical hop

or any physical hop along the way), it picks the next best logical hop and repeats the

attempt, until it either succeeds (receives a response) or runs out of logical hops to try.

36

In the latter case, it would admit failure, and not return a response. While this is not a

complete solution for churn, it does provide a certain level of robustness against offline

nodes and packet loss. A more robust scheme is discussed in the next section.

2.5.2 Robust Design

Robustness is somewhat tricky to achieve in the efficient design, since a single offline

physical hop along a source route renders the entire source route unusable. In this

section, we discuss a design that trades increased robustness for decreased efficiency

and larger number of disclosed IP addresses. We employ what we call a “skipping

stones” approach:12 in addition to sending a message to a single hop along a physical

route, the message is sent to each neighbor of that hop. Each of those nodes sends to

each of the neighbors of the next physical hop, and so on. This reduces the probability

of failure because only one node per “neighborhood” needs to be honest and online in

order for a message to get through. To that end, all MCON nodes must know not only

the IP addresses and cryptographic keys of each neighbor, but also addresses and keys of

each neighbor’s neighbor. The MIA will reveal that information during the bootstrap

phase. Furthermore, the entire neighborhood needs a shared key for use with route

tokens. This key can either be given out by the MIA or agreed-upon by neighborhood

members using a key agreement scheme such as in [70].

Although DHT routing does not change in the robust scheme, we must alter our

physical hop routing and discovery to accommodate neighborhood-wide routing deci-

sions. When a neighborhood receives a route discovery reply, a majority of neighbors

must come to a consensus regarding the contents of their routing token (and thus the

previous and next hops for the reply). They sign the agreed-upon token using a thresh-

old signature scheme [71],13 which requires m out of n nodes to partially sign a message

before a full signature can be derived. For a simple majority, m would be ⌈n+1
2 ⌉. Each

node can then independently encrypt the signed token with the shared neighborhood

key, prepend it to the route reply, and forward it. Note that majority agreement is re-

quired only during route discovery and during shared key exchange with the originator.

12 A stone skipped over water makes contact with the surface repeatedly, creating ripples at each
contact point.

13 Threshold signatures allow some nodes to disagree or be offline during route discovery.

37

Multiple route replies are handled the same way as in the efficient scheme, but now

they are far less likely to be malicious since multiple nodes must agree on the route

— a malicious majority at one of the intermediate neighborhoods would be required to

produce a compromised route.

In order to send a message in the robust scheme, the originator sends messages to

each neighbor of the next physical hop along the route. When a message arrives, each

neighbor can independently decrypt the enclosed routing token (using the neighborhood

key) and verify the signature to ensure it is correctly formed. Since only the final

destination can determine message validity by verifying the enclosed MAC, intermediate

nodes will not know if a message is legitimate. If an intermediate node gets different

messages with identical IDs, it must forward one of each copy, potentially increasing the

number of messages proportionally to the number of adversaries encountered en route.

While offering superior robustness under heavy churn, this scheme has higher over-

head than our efficient scheme. We face a constant-factor increase in the number of

real-world identities every MCON member knows, since every node must now keep

track of the IP addresses not only of its physical neighbors, but also of their neighbors.

However, since the number of identities each node knows is still constant, this does not

compromise membership-concealment. We also lose plausible deniability: any one of

a node’s neighbors can perform packet counting [72] and timing attacks [39] to deter-

mine if a message is being forwarded or originated. However, we can recover plausible

deniability by using cover traffic.

2.5.3 Hybrid Design

The hybrid scheme maintains most of the robustness properties of the previous scheme

while significantly reducing communication costs. We take a similar approach to Saia

and Young [73] and modify our robust scheme such that nodes discover the identities of

their neighbors’ neighbors only if h1(ID1) mod m = h2(ID2) mod m for some small

constant m, where ID1 and ID2 are the DHT IDs of the two nodes. If the equality does

not hold, nodes simply do not learn about each other. Since introductions are handled

by the MIA, this invariant is trivial to enforce. Intuitively, this design probabilistically

guarantees that every node of the next neighborhood receives at least one copy of each

38

message. As we increase the modulus m, fewer messages are sent and robustness de-

creases. However, this reduction is acceptable when we consider that message overhead

(combining communication time, bandwidth, and cryptographic overhead) is reduced

by a factor of m.

2.6 Theoretical Analysis

Our MCON designs do not share the flaws of existing schemes such as Freenet [8], Tor

bridges [7], Turtle [54], or Kaleidescope [55]. The latter two, being based on social

network, are susceptible to targeted corruption and celebrity attacks since nodes are

not degree-constrained, and therefore some are “tasty targets” for compromise, which

would lead to the discovery of a non-trivial fraction of network members.14 Freenet

opennet is vulnerable to the same attacks, and also to both passive and active harvesting.

Bridges are vulnerable to confirmation and passive harvesting attacks. Moreover, our

designs likely provide sender-receiver unlinkability, and our efficient design provides

plausible deniability. Unlike Freenet and OneSwarm [49], our search completes within

a guaranteed time bound while making rare files as easy to find as popular files.

2.6.1 Search Time

While Freenet claims a search time of O(log2N) in either open or darknet mode, and

a theoretical asymptotic (in a long-running network) minimum search time of O(logN)

for popular files in an open, non-darknet network, no concrete statistics are readily

available. DHT, on the other hand, guarantees an average search time of O(logN)

logical hops. When incorporating physical hops, this becomes O(log2N) in the worst

case. Incorporating caching should help this situation, and should bring this value

closer to O(logN) in a long-running network. Note, however, that the Freenet limit is a

theoretical asymptotic limit while the DHT limit is a probabilistically guaranteed one,

and that we do not require flooding during search to achieve this result.

14 We note a celebrity could split her contact lists into many nodes with a small number of neighbors
each, and remain a logically tasty target while maintaining a low target profile at the network layer.
This attack is unlikely at the social layer, since a celebrity must maintain her celebrity status to get
contacts, and any system that enforces a maximal node degree at the membership concealing layer will
not create multiple pseudonyms from a single social network-level identity.

39

2.6.2 Membership Concealment Intuition

To verify that our designs do not fall victim to identity disclosure, we check that 1)

only physical neighbors communicate directly over IP (preventing harvesting), 2) no

adversary can query arbitrary Internet hosts or otherwise elicit an IP-level response

identifiable as an MCON message (preventing confirmation), and 3) no adversary learns

the identity of a node who does not directly connect to corrupted or monitored nodes

(preventing information leakage). In our system, (1) and (2) are handled by the strong

binding property — nodes will only respond to messages that are signed by their physical

neighbors, and neither initiate nor respond to IP-level contact with any other nodes

using the MCON network protocol. (3) presents a greater challenge: a powerful network-

monitoring adversary may monitor not only individual nodes but entire networks, and

use some encryption-oblivious fingerprinting technique to identify MCON members [59].

The defense is protocol-level obfuscation (steganography) such as used in [74], which,

while not explicitly implemented in our current system, is a natural extension. While

we impede graph de-anonymization attacks by perturbing the maximal MCON node

degree, making it independent of nodes’ social degree, our main defense is to prevent

topology exploration by both insider and outsider adversaries. The success of the latter

mechanism depends on the quality of traffic obfuscation.

Recall our (ℓ, γ)-adversary, who can monitor ℓ links and can corrupt γ network

members. Since he can only learn k additional members from every member he cor-

rupts or monitors, he is limited to learning at most kℓ + kγ correctly-functioning

members (k2ℓ + k2γ in the robust scheme). Without protocol obfuscation, we say

that our network is (N2k ,
N
2k , f)-membership-concealing for f(ℓ, γ,N) = kℓ + kγ, since

f(ℓ, γ,N) = Θ(ℓ, γ), where N is the total number of MCON participants. In the robust

scheme, the network is (N
2k2

, N
2k2

, f)-membership-concealing for f(ℓ, γ,N) = k2(ℓ + γ).

If we use protocol obfuscation then membership hiding properties will depend on the

details of the steganographic system, but with perfect obfuscation our efficient network

would be (N, Nk , f)-membership-concealing and our robust network would be (N, N
k2
, f)-

membership-concealing for f(ℓ, γ,N) = kℓ and f(ℓ, γ,N) = k2ℓ, respectively.

40

2.6.3 Churn

Churn, or the constant leaving and re-joining of nodes, causes problems in peer-to-peer

networks — nodes in such networks are not expected to be long-lived, and if all of a

peer’s contacts go offline, the peer will be disconnected from the network and must

re-join, discovering new (online) network contacts in the process. Churn is particularly

problematic in MCONs because disconnected nodes are not allowed to acquire new

MCON contacts and any level of churn reduces the efficiency of our routing scheme

by invalidating some optimal routes whose member nodes are offline. Node degrees in

the MCONs must be large enough to handle churn, and yet small enough to minimize

identity exposure. We use a very strong churn model in our analysis: we do not assume

any relationship between the online status of a node from one moment to the next,

i.e. any node has the same probability of being offline at any time, independent of

its previous online status. While we do not currently consider nodes who permanently

leave the MCON, we can add an MIA-mediated revocation system — nodes who have

been offline for a long time can have their keys revoked. Neighbors of those nodes can

then be allowed to acquire more neighbors, since they will still not know more than k

MCON members — the revoked node no longer counts among the member set. Neither

do we consider social network churn because we do not use social network edges as trust

relationships. Therefore, the loss of a social network edge need not affect the topology

of the MCON. As for new edges, we support issuing invitations as long as all other

conditions, such as node degree, continue to hold. The MIA can discover such edges as

they are created.

Connectedness

A node becomes disconnected when all of his physical neighbors are offline. Assuming

nodes come online and go offline independently of each other, the probability of discon-

nection is ck, where c is the churn rate and k is the MCON node degree limit. This

means that at k = 7, around 90% of MCON nodes have to be offline for a node to be

disconnected half the time in our efficient scheme. The chance of disconnection in the

41

0.0 0.2 0.4 0.6 0.8 1.0

Node failure probability
0.0

0.2

0.4

0.6

0.8

1.0

D
is

c
o
n

n
e
c
ti

o
n

 p
ro

b
a
b

il
it

y

Efficient
Robust

Figure 2.4: Estimated probability of node disconnection. Churn is the fraction of MCON
members who are offline.

42

robust scheme is not significant when churn is less than 90%. This is shown in Fig-

ure 2.4. Analysis of Freenet data shows a churn rate in the vicinity of 70%,15 meaning

that we can be almost certain that nodes are always connected in our scheme. However,

a problem can occur that causes nodes to permanently lose track of each other: if node

A goes offline, and B, A’s physical neighbor, goes offline sometime later, and they both

change IP addresses before returning, they will have no way to communicate with each

other when re-joining. The solution is to have nodes periodically publish their signed

IP addresses to a known DHT location, combined with a random value, encrypted with

their physical neighbors’ keys. This ensures that physical neighbors can always keep

track of each other while providing no information to unauthorized parties.

Reachability

Nodes cannot reach a network destination (even if both nodes are technically connected)

if there is no DHT route between them. This may happen if all required DHT hops are

down, or if they are not reachable through source routes. In our efficient scheme, the

probability that all nodes along a given source route are up and forwarding packets is

(1 − c)d, with offline probability c and route length d, which is at worst the network

diameter. The robust scheme is more forgiving since it uses more resilient source routes

— only one neighborhood node in every source route needs to be forwarding packets.

In this scheme, our failure probability becomes (1 − (1 − c)k)d. Note that since k is

constant, we cannot guarantee resilient routing, but this is unlikely to be a problem in

practice — while we need O(log logN) nodes per group for provable resilience, we can

set k to 11 and support a network of 100 billion nodes. In the next section we present

simulation results measuring reachability when re-routing is taken into account.

Denial of Service Attacks

An unfortunate sideeffect of plausible deniability in the efficient scheme is the inability

to prevent nodes from flooding the network, since it is impossible to determine if a node

legitimately initiated such a flood or is forwarding the message for another node. This

leads to the problem of denial of service (DoS) attacks through network floods. We can

15 discounting nodes that we see only once throughout the experiment

43

counter this using oblivious throttling, where neighbors of a node sending packets faster

than a certain threshold will refuse to forward some of those packets, independent of

their ultimate origin or destination. This prevents undue usage of network bandwidth

but degrades the maximum possible performance of the network.

Even without plausible deniability, the robust and hybrid schemes fall victim to

DoS due to the amplification factor of messages — for every message sent by a node,

multiple message must be sent by recipients. While nodes can refuse to forward duplicate

messages, adversarial intermediaries modifying messages will cause both the original and

the modified messages to be propagated. With enough adversaries, the final destination

could be overwhelmed with messages, all of which require decryption and verification.

Rate-limiting messages at intermediate nodes could alleviate the problem, but would

also limit the usable bandwidth of the network since distinguishing between malicious

and honest traffic is difficult or impossible.

2.7 Simulation Results

We simulated MCON construction and routing using the Orkut dataset from Mislove

et al. [56]. The data contains 3, 072, 606 nodes,16 of which 75, 229 were eliminated due

to asymmetric links, resulting in 2, 997, 377 usable nodes, with an average node degree

of 74. We assume this data to be representative of social networks in general.

2.7.1 MCON Construction

From the social network dataset, we constructed an MCON with a node degree limit

of 7. The bootstrap protocol randomly selects an initial seed clique of four nodes (⌈72⌉)
from the social network and iteratively adds nodes to the seed based on social network

relationships. The final MCON contained just over 85% of the nodes in the social

network. (3.61% of nodes in the Orkut dataset have node degrees too low to ever join.17

) Slightly fewer than 35% of MCON nodes had under-full routing tables, resulting in

16 Less than 12% of Orkut’s network at the time of collection
17 This situation can be repaired by allowing “leaf nodes,” who only originate or consume traffic, and

never serve as intermediates. Whether or not to accept leaf nodes is a decision best left to individual
MCON members, who expose themselves to more danger by having more than the usual number of
neighbors, and who bear the burden of servicing traffic from those neighbors.

44

100 101 102 103

Peer hops (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 f

ra
c
ti

o
n

Efficient
Robust

(a)

3 4 5 6 7

Node degree
0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 f

ra
c
ti

o
n

(b)

10 10.5 11

Peer distance
0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 f

ra
c
ti

o
n

(c)

Figure 2.5: Results of MCON simulations. Cumulative distributions of: (a) physical
hops per DHT query with solid and dashed lines corresponding to efficient and robust
schemes, respectively; (b) node degree; and (c) pairwise distance.

average node degree of 5.997 (Figure 2.5(b)), with an average pairwise physical distance

of 10 (Figure 2.5(c)). The small pairwise distance implies that although we smoothed

out the degree distribution, we still retain the small-world property. Setting k = 5

increases the number of nodes who can join the MCON to almost 90% of the social

network nodes. The average node degree was 4, with 41% having under-full routing

tables. While the above results are very consistent across different simulations using

different random cliques when the maximum node degree is 5 or 7, when we set the

maximum node degree to 9, the simulations became highly sensitive to seed locations

— only 26% successfully constructed an MCON. The failure occurs early in the process,

and can be fixed by selecting a different seed clique.

2.7.2 Routing and Search

Our DHT uses the Kad routing protocol (a variation of Kademlia [53]), using routing

table of 16 buckets of 8 entries each. The average number of DHT hops between any two

MCON nodes is 2.5, which translates to an average of 13 physical hops in the efficient

case, and 26 hops in the robust case. (The probability distribution of physical hops per

query with no churn is shown in Figure 2.5(a).) “Physical hops” is a misnomer in the

robust case, but rather represents the number of nodes contacted, up to 8 in parallel.

Note that due to the greedy nature of routing table construction, which preferentially

incorporates the nearest node with a given prefix match, the average number of physical

hops per logical hop is lower than the average number of physical hops between any two

45

random nodes in the MCON. Assuming average round trip times of 180ms (computed

from the “King” dataset [75]), a search should complete in fewer than 2.5 seconds

without time padding.

When a route fails, we select the next best route and continue trying until we succeed

or reach 25 failed routes per node. The rates of DHT query failure with churn for all

three schemes are shown in Figure 2.6. Data was collected using 500 independent trials,

routing between two randomly-selected nodes. In the efficient scheme, the worst-case

number of logical hops is 18 and the worst case for physical hops is 178, which translates

to a query time of just under 33 seconds. In the worst case for the robust scheme, average

performance is 127 logical hops and 395 physical hops, which would require 71 seconds

on average. (Note that many of these physical hops are contacted in parallel, making

the time estimate strictly pessimistic.) The efficient scheme reached its performance

limit at 21% churn, and the robust scheme at 75% churn. Hybrid scheme performance

depends on the modulus.

Freenet is reported to perform well when up to 30% of paths have failed. We mea-

sured Freenet churn by comparing consecutive 3-hour network snapshots to determine

whether nodes in the earlier snapshot are still present in the latter one. Nodes were

recorded by Freenet ID, and not IP address, to ensure that dynamic IPs do not inter-

fere with our measurements. We recorded a churn rate approaching 71%, meaning that

the efficient scheme would not be very effective. However, our robust scheme shows

resilience to up to 75% churn, meaning it would perform well in Freenet-like conditions.

Routing performance in the efficient scheme shows only marginal improvement when

k is raised from 7 to 9. Connectivity improvements are likewise not significant. Reducing

k to 5 leads to small reduction in connectivity and routing efficiency. These results

suggest that our initial guess of k = 7 is most likely optimal for the Orkut network in

terms of performance, connectivity, and security.

Finally, the robust scheme may provide worse-than-expected resilience in certain

topologies, such as when adversarial nodes form clusters in the MCON due to dense

social network relationships among them. Clusters reduce the adversaries’ knowledge

of honest MCON nodes (since most of her neighbors are malicious), but impede routing

— adversarial clusters have a high chance of forming neighborhoods with malicious

majorities. However, assuming route discovery proceeds correctly, we only require one

46

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Fr
ac

tio
n

of

fa
ile

d
qu

er
ie

s

Node failure probability
Efficient Hybrid mod 3 Hybrid mod 2 Robust

Figure 2.6: Measured probability of query failure in MCON simulations. Churn is the
fraction of MCON members who are offline.

honest node per neighborhood for message forwarding to succeed.

Routing With Malicious Clusters

We had previously conjectured that malicious nodes (Sybil or otherwise) will form

groups in the social network. It is then reasonable to assume that invitations will

be issued in such a way as to preserve this “malicious cluster” behavior in the MCON.

While we do not rely on it for protection from attack, it may prove detrimental for

the purposes of routing, since even the robust scheme is vulnerable to malicious groups.

To that end, we carried out routing simulations where neighbors of malicious nodes

were preferentially malicious as well. The test topologies were constructed by taking

a previously-constructed MCON and marking nodes as malicious following a growth

pattern produced by a modified version of the algorithm in [76]. Topologies were con-

structed such that the network either had a large number of small clusters of malicious

nodes, or a small number of large malicious clusters.

Figure 2.7 shows the results of our simulations. Note that the “x” axis now dis-

plays the sum of honest but offline nodes as well as malicious nodes (who never forward

47

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Fr
ac

tio
n

of

fa
ile

d
qu

er
ie

s

Node failure probability

Control Many small clusters
Very many small clusters Few large clusters
Very few large clusters

Figure 2.7: Probability of query failure in MCON simulations using clustered malicious
nodes. Non-malicious nodes obey the standard churn model.

messages and can thus be considered offline). The results show that both clustering

strategies are similarly effective in reducing the robustness of the network, with a small

number of very large clusters being most effective (likely by isolating a small num-

ber of unlucky nodes) and very few small clusters being least effective, since a single

honest node is enough to cause a query to succeed even if all surrounding nodes are

malicious. When malicious nodes are clustered, the initial failure rate is higher, but

the network is more robust at higher honest churn values. We therefore conclude that

failure of randomly-placed nodes is more detrimental to long-run network performance

than clustered malicious nodes.

Chapter 3

SilentKnock: practical, provably

undetectable authentication 1

1 A version of the work included in this chapter appears in [77] and is available at
http://www.springerlink.com/content/427082v0r5300205/. The final publication is available
at www.springerlink.com.

48

http://www.springerlink.com/content/427082v0r5300205/
www.springerlink.com

49

As we have discussed in Chapter 2, MCON neighbors need to implement a form

of authenticated communication in order to protect against hypothesis testing attacks,

where adversaries connect to a node to check whether it will respond with an MCON

protocol message. In this chapter we present an example of a covert authentication

protocol that can be used for this purpose. We prove that a scheme which is secure

in our model also resists forgery and provides replay attack protection against a global

active adversary. We outline a protocol for a generic networking scheme, which makes

rudimentary use of provably secure steganography [78], and show that this protocol

satisfies our strong notion of security. Furthermore, we describe and analyze the se-

curity of SilentKnock, an implementation of our generic protocol for the Linux 2.6

TCP/IP stack. SilentKnock combines simple TCP steganography [79] with a very

fast cryptographic message authentication code (MAC) [80] to provide efficient, provably

secure connection authentication that integrates seamlessly with existing applications

by hooking directly into the operating system kernel, eliminating the need to recom-

pile. SilentKnock produces packets that are provably indistinguishable from those

generated by the Linux 2.6 implementation of TCP, under the assumption that AES or

HMAC-SHA1 (depending on the choice of MAC) and a variant of MD4 are pseudoran-

dom functions.2 No applications need to be altered, no shared libraries need to be

replaced, and no potentially-conflicting protocols emerge. SilentKnock is lightweight,

has minimal computational overhead, and is freely available for download [82].

We first discuss related work and the history of covert communication in Section 3.1.

After formally defining secure port knocking in Section 3.2, we present the design of

our scheme as both kernel- and user-space implementations, along with performance

analyses. Finally, we discuss some limitations of this work in Section 3.4.

3.1 Related Work

Port knocking was originally used to deal with port scans: a kind of network attack (or

attack precursor) in which an adversary attempts to connect to all, or some subset of,

2 Linux 2.6 chooses TCP sequence numbers using 24 rounds of MD4 applied to the source and des-
tination IP address, destination port, and 32 secret random bits, using an initially randomly-generated
secret chaining value that changes every 5 minutes. See the functions secure tcp sequence number and
half md4 transform in [81].

50

TCP and UDP ports at a given IP address. Port scans are useful to attackers because

the results often indicate the operating system, architecture, and even a set of specific

binaries that a host is running. This information can then be used for the purposes of a

confirmation attack, to determine what software exploits should be used to attack the

host, or what level of compromise might be likely.

Of course, if a server runs no vulnerable or secret software, a port scan is not a serious

threat, but software security is a sufficiently hard problem that this cannot be seen as

an immediate solution. A popular method of protecting against such network attacks

is the firewall, which simply blocks all connection attempts to “internal” network hosts

from “external” ones. Since there are many reasons why it might be desirable for a given

service to be externally accessible — for instance, users may access a network service

from a priori unknown network addresses depending on their physical location — this

solution is not always satisfactory. Another option is virtual private networking (VPN),

which is a layer of authentication allowing authorized users to get through the firewall

and access internal services directly. However, VPN use is obvious at the network level

and the VPN service itself presents a tempting target to an adversary.

Another class of proposed solutions to this problem is “port knocking”: a firewall

is deployed to protect a server, and before allowing a client connection to a particular

port, that client must transmit a special “knock” that authenticates it. This knock may

be either common to all authorized users of the system, or may be unique to a given

user. Any attempt to connect that is not associated with the correct knock will be

dropped; thus to an unauthorized user it should appear as if no network services are

running on the server. Note that without a correct knock it is not immediately obvious

to a näıve adversary that a port knocking service is being used. A variety of knocking

methods have been proposed, such as a sequence of dropped connection attempts to

closed ports [18], inclusion of a cryptographic authenticator in the initial connection

request packet [19], “funny-looking” DNS lookups [20], and IPsec tunneling [21].

Many previous proposals for port knocking schemes have been accused of offering

“security through obscurity,” since it is trivially easy for an intelligent adversary to de-

tect and steal knocks in non-cryptographic systems. By making the distinction between

flawed implementations, which are only secure if the details of the system are unknown,

51

and the concept of port knocking (such that even given the details of a port knock-

ing scheme one cannot tell if it is being employed), we argue that the concept of port

knocking is not fundamentally flawed. Since revealing the presence of a service can only

help an adversary — for example, by revealing which of a list of hundreds of exploits

are most likely to succeed, thereby decreasing the cost of an attack — the notion of

concealing services from unauthenticated users is a potentially useful one, when used in

addition to regular network and software security measures. Separating authentication

from applications is also a sound choice, since it enforces least privilege and economy of

mechanism, in addition to easing deployment.

Given that the goal of a port knocking scheme should be to conceal the set of services

running on a network host, all existing implementations exhibit a potentially undesirable

oversight. Under relatively weak attack models, these schemes fail to conceal that a port

knocking service itself is running. The fact that port knocking is active may aid the

attacker in exploiting the port knocking service itself. Of course a port knocking service

may well be a relatively simple program, but even simple programs may use libraries or

language environments that make exploits possible. For example, at the end of 2009,

the Open Source Vulnerability Database [83] listed 63 exploitable vulnerabilities in the

popular OpenSSL cryptographic library, 16 in the popular zlib compression library, and

so on. Moreover, even if a vulnerability in port knocking does not allow an attacker

access to the system, it at least constitutes a denial of service attack if fail-closed

semantics are used, and allows for port-scanning and other service identification in a

fail-open design. Since the port knocking service is such a high-value target, we argue

that the presence of port knocking itself should not be detectable.

The first published description of a port knocking scheme seems to be a 2001 mailing

list post by Borss [84]. In the first academic treatment, Barham et al. [19] describe a

scheme whereby a pass-phrase is transmitted (in cleartext) to a firewall either through

a series of SYN packets, in a single “knock” packet, or as an option in the SYN packet.

Krzywinski [18] describes a similar scheme where a client opens a port by attempting

connections to a secret sequence of port numbers;3 a number of similar systems are

3 The server will monitor connection attempts on all closed ports and will open a port if a specific
sequence of connection attempts is detected.

52

listed at [85]. Several authors [20, 86, 21] observed that knocks should be cryptograph-

ically protected and prevent replay attacks, but all resulting systems still involve the

use of extra packets or nonstandard TCP options that allow detection of knocks (these

systems provide authentication only, i.e. they make no attempt to hide the use of au-

thentication mechanisms). deGraaf et al. [21] and Manzanares et al. [87] describe some

other attacks and weaknesses of previous port knocking schemes, which our notion of

security precludes — i.e. any scheme that satisfies our security notion is necessarily

secure against the attacks mentioned in these papers.

There is extensive literature on TCP/IP steganography and covert channels [79, 88,

89, 90, 91], although Murdoch and Lewis [79] show that many of these schemes are

easily detected. We introduce a cryptographic formulation of security similar to that

in [78], and our notion of a secure port knocking scheme can be seen as a simple instance

of covert computation [92] or the dining Freemasons problem [93]. We are, however,

unaware of previous work relating steganographic computation and port knocking, or

any previous work implementing the schemes of [92, 93]. We note that our system, like

those in [92, 93], differs from covert channels alone because we provide covert one-way

authentication, handle synchronization issues, and formally reason about what it should

mean to hide an authentication service.

3.2 Formal Definition of Port Knocking

In this section we formally define a secure port knocking scheme and prove several

relationships between our definition and some security properties mentioned earlier.

While our scheme currently only works with TCP, it could be adapted to any network

protocol that offers fields containing a sufficient quantity of entropy to be used for

steganographic embedding. In the case of TCP, we use the initial sequence number

(ISN) and the least significant byte of the timestamp.

While no definition of port knocking can be said to be definitive, we claim that any

service that hides the presence of other services running on a given machine can be

considered a port knocking scheme. While the term itself seems to indicate connection

attempts to closed ports on a machine, the spirit of port knocking is to add an extra

layer of authentication before revealing services offered by a protected host. We can

53

define a generic port knocking scheme as a system that manipulates network packets in

application-agnostic ways to add such an authentication layer. (The number of packets

that must be manipulated in this manner is design-specific, or can even be a configurable

parameter.) One can think of our formal definition of port knocking as a generalization

of traditional port knocking to any form of transport-layer connection authentication.

Therefore, we abuse the terminology, which we previously used to identify port knocking

designs (since we are no longer concerned about ports), and move the design of port

knocking systems to join other connection authentication schemes such as IPsec [94],

TCP-MD5 [95], as well as systems that have been traditionally designated as port

knocking.

Definition 1. A TCP implementation is a triple P of efficient probabilistic programs

Client, Server, and Init. Both Client and Server take three arguments, consisting of a

state, a packet, and a command, and output a new state and a new packet. Server will

additionally output a message m. Init takes a single argument which is a string “client”

or “server,” and outputs an initial state suitable for use by the entity identified in the

argument to Init.

All TCP/IP connections are uniquely identified by the 4-tuple (source IP address,

source port, destination IP address, destination port), with port information carried

by TCP and IP address information by IP. TCP packets p have flags which signal the

current state of the connection. Here we are concerned with the SYN flag, which signals

the start of every new connection.

Most sequences of TCP Client commands consist of connection setup, message send-

ing, and connection teardown. They are in the form of “connect from local port x to

remote port y,” “send message M through local port x connected to some remote port,”

and “disconnect local port x from the remote port.” TCP Server commands are similar,

and most are in the form of “listen for connections on port x,” “receive data on con-

nected local port x,” and “close connection between local port x and remote port y.” A

null Client command causes it to output the next packet to be transmitted, while a null

command causes the Server to output a packet acknowledging the receipt of data in the

last received packet. Both Client and Server contain state about all active connections,

buffered messages, and commands.

54

We define a standard session of a TCP implementation P with the command se-

quence C ∈ (command × command)∗ in the following manner. First the initial server

state Ss0 and initial client state Cs0 are initialized: Ss0 ← Init(“server′′,E); Cs0 ←
Init(“client′′,E′). Both the client packet Cp0 and server packet Sp0 are initialized to

null. For each command pair (Cci, Sci) ∈ C let (Csi, Cpi) ← Client(Csi−1, Cci, Spi−1)

and (Ssi, Spi,mi) ← Server(Ssi−1, Sci, Spi−1). The output P(C) is defined as the con-

catenation of messages output by Server: m0||m1|| · · · ||mn.

Definition 2. A TCP port knocking protocol is a modification of the TCP implemen-

tation in Definition 1 such that Client and Server take two additional identical inputs:

a shared secret κ and a set of public parameters Φ. Denote this modified protocol as

Hκ,Φ(C).

We say that H extends TCP implementation P if for every command sequence C

there is an efficiently-computable Φ and command sequence C ′ such that P(C) and

Hκ,Φ(C
′) are computationally indistinguishable for a uniformly-chosen random κ. This

implies backward compatibility between our port knocking protocol and TCP. Note that

for a null keyspace our modified implementation of TCP is trivially insecure. Moreover,

note that unlike previous definitions of port knocking, we do not require additional

packets to be transmitted, since this would compromise indistinguishability.

3.2.1 Security Condition

Informally, the idea behind our construction is that port knocking should not only

hide the set of services running on a protected server, but also hide the presence of

port knocking itself. This condition should hold even when an adversary is allowed

to observe the network traffic for the server and the client as well as make connection

attempts to the server. To that end, we define the security of our port knocking scheme,

a modified TCP implementation H, in terms of the adversary’s inability to distinguish

between two “worlds” in which he may find himself: in the first “hidden” world, the

server is protected by port knocking and clients gain access by using H instead of

C; in the second “plausible” world, the client and server share a secure out-of-band

communication channel through which the client notifies the server of its IP address

and intent to make an inbound connection at a specific time. The adversary is given

55

Oracle HClient∗(c, r):
(q′, p)← H.Client(K,Q, c, r)
Q← q′

return p

Oracle HServer∗(c, p):
(s′, r,m)← H.Server(K, S, c, p)
S← s′

return r

Experiment ExphwH,A(1
k):

K← Uk

Q← H.Init(client)
S← H.Init(server)
return AHClient∗,HServer∗(1k)

Oracle PClient∗(c, r):
(q′, p)← P.Client(Q, c, r)
Q← q′

if p.syn then
append p to RecentQ

end if
return p

Oracle PServer∗(c, p):
if p.syn and
p← front(RecentQ) then

remove p from RecentQ
add p.id to Open

else if p.id /∈ Open then
p← ∅

end if
(s′, r,m)← P.Server(S, c, p)
S← s′

return r

Experiment ExppwP,A(1
k):

RecentQ← ()
Open← ∅
Q← P.Init(client)
S← P.Init(server)
return APClient∗,PServer∗(1k)

Figure 3.1: Definition of hidden world (top row) and plausible world (bottom row)
experiments.

black-box access to previously-initialized Client and Server — although it cannot observe

the internal state of either one, it is fully aware of their implementation details. The

attacker may issue commands to either entity and observe the output.

In the hidden world, Client and Server use H initialized with a secret key and public

parameters. In the plausible world, Client and Server use C but share a private queue

Q. The server also maintains a list of active connections L. Whenever a client wishes

to connect to the server, it inserts the id of the initial packet p into Q. When the

server receives a connection request packet p, it allows the connection if p.id ∈ Q,

removes the id form Q and adds it to L. When a server receives a packet p such that

p.id /∈ Q ∧ p.id /∈ L the packet is discarded. Once the client closes the connection, p.id

is removed form L. Notice that the output of the “plausible” world is identical to that

of the “hidden” world provided the client and server share a key and public parameters.

However, adversaries attempting to connect to the server will be unable to do so —

their packets will be dropped. Both worlds reveal the presence of an authentication

mechanism, but the inability to distinguish between the worlds prevents the adversary

from determining the nature of that mechanism.

56

Formally we define a hidden-world experiment ExphwH,A and a plausible-world exper-

iment ExppwP,A (see Figure 3.1) and define the port knocking advantage of adversary A

against H with respect to P as

AdvpkA,H,P(k) = Pr[ExphwH,A(1
k) = 1]− Pr[ExppwP,A(1

k) = 1].

We say that H is a (t, qC , qS , ϵ)-secure port knocking scheme with respect to P if for

every time-t adversary A that makes at most qC Client queries and qS Server queries,

AdvpkA,H,P(k) ≤ ϵ. We call this a (t, qS , qC) adversary.

3.2.2 Related Notions

We have selected a security definition, but we have so far failed to ask whether it is the

right definition. In this section we consider some security conditions which have been

explicitly or implicitly stated as security goals, and show that our definition is in fact

the strongest.

Hidden Server

The minimal requirement for a port knocking scheme is it prevents an unauthorized

outsider from identifying Internet-facing services which may be vulnerable to attack.

Note that service identification takes place at the TCP/IP layer — a server’s existence

may be determined by monitoring lower-level communication, such as ARP, but this

does not reveal any information about the services offered. Since a port scan is just an

instance of a (t, 0, n)-attacker, it is modeled by our security definition. The converse

of this statement, that hidden server security is implied by our definition is clearly not

accurate. For instance, any scheme that embeds an authentication field into TCP/IP

(such as [95]) allows an adversary to distinguish between the plausible world, where

packets lack an authenticator field, and the hidden world.

Malicious Server

A related notion is one where an adversary, masquerading as a server, cannot determine

whether a given client is attempting to covertly authenticate. This is an instance of the

“Dining Freemasons” problem [93], and is strictly weaker than our notion of security,

57

since we can model it as an (t, n, 0)-adversary. Once again we can see that the converse

is not true — malicious server security does not imply security under our definition.

A counterexample is a server who “reveals” the presence of a port knocking scheme

by always choosing the same initial sequence number. An attacker who never queries

the server does not learn whether port knocking is used, but any attacker making two

queries (a (t, qC , 2)-attacker) can distinguish between the hidden and plausible world

with overwhelming probability.

Semi-Passive Adversary

An adversary that is allowed to arbitrarily modify communication taxes our “plausible”

argument of an out-of-band channel. Instead, we use the intermediate notion of a semi-

passive adversary who always correctly relays communication but can send his own

messages to the client or server. Our framework can model this type of adversary, and

thus implies security against semi-passive adversaries. Yet again, the converse statement

that semi-passive adversaries imply security under our definition is not true. As in the

Hidden Server model, client packets may contain authentication fields in the hidden

world that make them distinguishable from the plausible world. In a more extreme

example, every packet sent from the client may simply include the string “I am a port

knocking client,” allowing an adversary making a single client query to distinguish

between the two worlds.

Replay Attacks

A number of previous port knocking schemes have been vulnerable to replay attacks

that allowed adversaries to simply re-emit a previously seen packet or packet sequence

that lead to a successful client connection. A replay attack can be used to distinguish

between the plausible and hidden worlds: in the plausible world experiment Server

removes “allowed” packets from the queue as soon as they are accepted, so replay

attacks never succeed. Therefore, the probability of a successful replay attack in a

(t, qC , qS , ϵ)-secure port knocking scheme by time-t adversaries should be at most ϵ.

58

Version Hiding

A desirable property of secure port knocking schemes is that observing a port knocking

session should not be sufficient to reveal which port knocking scheme is in use. It is

straightforward to show that our condition implies implementation hiding. Suppose H
and K are port knocking schemes that implement network protocol P. We define the

version-distinguishing advantage of an adversary A as

AdvvnA,H,K(k) = Pr[ExphwH,A(1
k) = 1]− Pr[ExphwK,A(1

k) = 1] .

Then any (t, qC , qS) adversary with version-distinguishing advantage ϵ gives an ad-

versary for H1 or H2 with advantage at least ϵ
2 , since

AdvpkA,H,P(k) = Pr[ExphwH,A(1
k) = 1]− Pr[ExppwP,A(1

k) = 1]

= AdvvnA,H,K(k) + AdvpkA,K,P(k)

= ϵ+ AdvpkA,K,P(k)

Differentiated Service Hiding

When dealing with a multi-user environment, it may be prudent to not reveal the

presence of some services to a subset of authenticated users. Our design is all-or-nothing,

meaning that any port knocking-authenticated user is allowed to enumerate all services

running on the server. Differential service hiding, while desirable, is orthogonal to the

goals of this work, and a variety of techniques are known explicitly for this purpose [96,

97].

3.2.3 Generic Provably Secure Port Knocking

Here we define a generic design for a provably secure TCP-based port knocking

system (see Figure 3.2). Let P be a TCP implementation that satisfies at least the

following properties:

59

Program Client(K, q, c, r):
ρ1 ← Uk; ρ2 ← U∗
(q′, p)← P.Client(q.pst, c, r; ρ1||ρ2)
if p.syn then

τ =M.TagK(q.ctr, p.id)
(q′, p)← P.Client(q.pst, c, r; τ ||ρ2)
Q.ctr = q.ctr + 1

else
Q.ctr = q.ctr

end if
Q.pst← q′

return Q, p

Program Server(K, s, c, p):
S.ctr = s.ctr
if p.syn and
M.VerK(s.ctr, p.id, p.iv) then

add p.id to Open
S.ctr = s.ctr + 1

else if p.id /∈ Open then
p← ∅

end if
(s′, r,m)← P.Server(s.pst, c, p)
S.pst← s′

return S, r,m

Program Init(t):
S.ctr = 0
S.pst = P.Init(t)
return S

Figure 3.2: Generic protocol definition, simplified to assume a random iv.

• There exists a TCP field iv which is included in the connection initiation packet

(those with only the SYN flag set) which is uniformly random 4 and independent

of client state that can be efficiently computed by an external entity.

• P.Client can be modified so that on any command that results in the output of a

packet with only the SYN flag set, 1) the first k bits of a random input are copied

directly into iv; and 2) all remaining fields of the packet are independent of the

first k bits of the random input.5

Note that 2) can be somewhat relaxed if the remaining fields can be efficiently

computed by the client, but not by an external entity, from the first k bits of

the random input. They would then need to be adjusted in the packet that

incorporates the random input.

We use the initial sequence number (ISN) as the iv field in implementations of TCP

that produce uniformly random ISNs. Some implementations produce mostly random

ISNs, with some bits either set to invariant values or dependent on other bits. These

can be adjusted when copying k into the ISN, provided that enough entropy is available

to accommodate k. The core idea is to compute a MAC over some invariant fields of

packet p and encode the resulting tag into p.iv. The nonce is a monotonically-increasing

counter shared by the client and server, but incremented independently.

4 The entire field may not be required to be uniformly random as long as the non-random bits are
known by the packet originator and receiver.

5 If some parts of iv are not uniformly random, they would be skipped when doing a bitwise copy
of the random input into iv.

60

For our generic construction of a secure port knocking scheme relative to P we use a

secure nonce-based message authentication codeM = (Tag,Verify). Tag is called with

a k-bit key K, a nonce N , and a message m; the output is a tag τ . Verify takes a

k-bit key K, a nonce N , a message m, and a tag τ , and outputs True if τ is a valid

tag with respect to K, N , and m; False otherwise. We define the security of the mes-

sage authentication code (MAC) against a nonce-respecting adversary6 A such that it

has advantage Advuf−cma
A,M (k) ≤ ϵ. Additionally, we require that tags produced by Tag

should be pseudorandom — i.e. an adversary querying a MAC oracle cannot distinguish

between valid responses and random bit-strings with advantage AdvprtA,M(k) ≤ ϵ when

running in time t and making q queries. This requirement is incompatible with un-

forgeability, but is provided by many MAC schemes, including Carter-Wegman-Shoup

authenticators [98], and MACs that are pseudorandom functions, such as NMAC [99].

Theorem 1. If M is (t, qC , ϵF)-secure against forgery and (t, qC , ϵR)-pseudorandom,

then H is a (t, qC , qS , ϵR + qSϵF)-secure port knocking scheme with respect to P.

Proof. Consider an arbitrary adversary A running in time t and making at most qC and

qS queries to Client∗ and Server∗, respectively. We can use A to create adversaries AF

and AR against the unforgeability and pseudorandomness of M , such that

AdvpkA,H,P(k) ≤ qSAdv
uf−cma
AF ,M (k) + AdvprtAR,M(k) ,

which implies the theorem.

Consider the hybrid experiment ExphybH,P,A(k), which runs adversary A with the plau-

sible world client and server oracles, with H.Client and P.Server. Since the only packets

that are dropped by this hybrid world’s Server∗ oracle and not dropped by the hidden

world’s Server∗ oracle are those with forged MACs, we define adversary AF : given a

tagging oracle TK , use it to simulate the Client∗ and Server∗ oracles of the hybrid ex-

periment to A; let p1, p2, . . . , pq be the sequence of packets A submits to Server∗ and

let ctri be the number of times MAC verification has been executed when pi is sub-

mitted. AF picks j ∈ {1, . . . , qS} uniformly at random and returns (ctrj , pj .id, pj .iv)

as its forgery. An inductive argument (as in [67]) shows that although our simulation

becomes inconsistent with ExphwH,A(k) after a forgery, the probability of finding a forgery

6 Recall our notion of a semi-passive adversary

61

is the same. Also, when a forgery is found by A in this simulation, AF will output this

forgery with probability at least 1/qS . Thus Advuf−cma
AF ,M (k) ≥ 1/qS

(
Pr[ExphwH,A(k) = 1]

− Pr[ExphybH,P,A(k) = 1]
)
.

We similarly define the pseudorandomness adversary AR to simulate the hybrid

world to A using its sequence of inputs in place of the MAC tags computed in H.Client.
Since we assumed p.iv is uniformly distributed in the cases of interest to H.Client, then
when AR’s input is random, this experiment will be identically distributed to ExppwP,A(k),

and when AR’s input is a sequence of MAC tags, the experiment will be identically

distributed to ExphybH,P,A(k). Thus if AR simply outputs the result of A at the end of

the simulation, we will have AdvprtAR,M(k) = Pr[ExphybH,P,A(k) = 1] − Pr[ExppwP,A(k) = 1],

completing the proof.

3.3 System Design

In this section we introduce SilentKnock, our implementation of the generic secure

port knocking primitive introduced in the previous section, and show that this imple-

mentation correctly instantiates the provably-secure system defined above. We first

discuss several adaptations necessary for secure and reliable interaction with TCP/IP,

such as replay attack protection, client/server synchronization, and indistinguishabil-

ity. We then analyze a number of possible attacks on our implementation. Finally, we

present results demonstrating the performance of our system on real-world hardware.

SilentKnock is designed to be an application-agnostic, backward compatible transport-

level authentication layer. It resists forgery and replay attacks while leaking no in-

formation about the authentication method employed. It is composed of two parts:

a server-side packet monitor and a client-side packet-mangling proxy. The server-side

component is available in two flavors: a user-space daemon, or a loadable kernel module.

(The user-space module greatly simplifies the design and limits damage from program-

ming errors, while the kernel module offers increased speed and efficiency.) We provide

an implementation of a previously proposed operating system-specific steganographic

embedding scheme for TCP/IP [79] and use it to embed authentication information

into TCP headers. Specifically, we use keyed MACs as secure authenticators to resist

62

forgery and a two-part counter to counteract replay attacks and ensure that the client

and server stay synchronized even in the presence of moderate packet loss. We avoid

requiring loadable libraries or recompilation by hooking directly into the kernel. This

ensures that applications do not need to explicitly support our system in order to benefit

from it.

3.3.1 Universal Compatibility

Our application-agnostic design is trivial to use for end-users (who do not even need to

know of its existence) and simple to set up for system administrators, who must only

compose a configuration file with shared parameters and server names. Since we hook

into the kernel rather than directly modifying it, we avoid requiring operating system

or software changes to accommodate our design. This approach allows any application

to transparently use SilentKnock provided that the network protocol used by the

application has a steganographic embedding/extraction method supported by Silent-

Knock. We note that for certain protocols, such as TCP, where different implementa-

tions of the protocol may have subtle differences, each implementation may require a

different steganographic embedding routine to preserve indistinguishability. Our goal is

to seamlessly support as many transport protocol implementations as possible, although

currently only TCP under Linux 2.6 is supported. A plugin-like architecture could be

developed in order to ease the writing of protocol- and operating system-specific packet

mangling routines.

3.3.2 Design Choices

Our implementation is designed for the Linux 2.6 kernel. We chose Linux 2.6 due to our

familiarity with the system and the availability of the netfilter/libIPQ API [100], which

allowed us to implement one version of the server component entirely in user space. We

use Poly1305-AES [80] as our MAC since it is explicitly optimized for network packets

and is implemented in optimized assembly for a number of popular platforms.7 We

7 For the kernel module version, we must use a function that is exported by the Linux kernel, so
we employ SHA1 HMAC instead of importing Poly1305-AES into the kernel. The speed decrease from
using a slower hash function is more than offset by the reduction of context switches between kernel
and user modes.

63

implement Murdoch and Lewis’ system [79] for embedding steganographic information

into TCP initial sequence numbers (ISNs) and use the TCP timestamp option (enabled

by default in Linux 2.6) to embed an additional byte of information into the timestamp,

delaying packets when needed. For additional details on the adjustments necessary to

make random ISNs consistent with the Linux 2.6 network stack, see [79].

3.3.3 Protocol

The SilentKnock algorithm is outlined in Figure 3.1. A SilentKnock client initiates

a connection (composes a TCP SYN packet) to a SilentKnock-enabled server and

steganographically embeds an authentication token into the packet. When a server

receives a SYN packet, it extracts the authenticator from the ISN and timestamp and

attempts to verify it. If verification is successful, the server allows the connection to

continue, otherwise the packet is dropped. Connections are authenticated on a per-flow

instead of per-source basis, so every SYN packet to a SilentKnock-enabled server must

have an embedded authenticator token, even if it comes from a client that has previously

authenticated successfully.

Instead of a sequence of knocks, we use a keyed MAC for client authentication,

applying it to the source and destination (IP, port) tuples as well as a counter, so every

connection attempt is guaranteed to contain a unique MAC. The embedding algorithm

and resulting packet header structure are described in Figures 3.2 and 3.3, respectively.

The client and server share a key, as well as a counter which is incremented for every

client connection attempt (we discuss counter synchronization later). This counter

prevents replay attacks by ensuring that every SYN packet sent by the client is different

from any packet sent previously, and is also used as the nonce required by Poly1305-

AES, our MAC of choice. Assuming that AES is a pseudorandom permutation, an

adversary should not be able to compose a valid MAC (or even distinguish one from

random bits) for the next SYN packet without knowing the key, even if we assume that all

other factors are public information.8 The key, initial counter, and resynchronization

interval are exchanged out of band, since negotiation is impossible in case of one-way

8 For the kernel module, we are forced to use only those cryptographic functions already available
in the Linux kernel, so SHA1 HMAC is used, so the security of the kernel module is reduced to the
security of SHA1 HMAC as implemented in Linux 2.6.

64

Algorithm 3.1 The pseudocode for SilentKnock. A is the server, B is the client,
ctrP is a per-IP-address counter maintained by principal P , k is a value derived from B’s
IP address and a symmetric key shared between A and B, m is a TCP flow identifier,
and ft is a failure-tolerance parameter.

B → A:
SYN(MACk,ctrB (m)) {encoded in TCP/IP headers}

1:2: ctrB ← ctrB + 1 A:
3: for i = 0 to ft do
4: if MACk,ctrA−1+i(m) = MACk,ctrB (m) then
5: ctrA ← ctrA + i+ 1 {resynchronizes if client is ahead}
6: end if
7: end forA → B:
8: SYN-ACK
9: goto 16 B:
10: if SYN-ACK received then
11: goto 16 {connection was successful}
12: end ifB:
13: if SYN-ACK not received then
14: goto 1 {connection failed}
15: end ifA,B:
16: proceed with TCP connection

communication. The server must also know the operating system of the client, since

initial sequence numbers are composed differently by different implementations of the

TCP stack (more on this below).

Steganography and Indistinguishability

The authentication token is embedded in the initial sequence number and timestamp

fields of the TCP SYN packet [79]. Unfortunately, we cannot include the complete

MAC, as our current implementation only allows a total of 32 bits to be embedded

(24 bits in the sequence number and 8 bits — the least significant byte — in the

timestamp), assuming Linux sequence numbers(see Figure 3.3).9 Since we must not

allow distinguishability based on discrepancy between the observed packet dispatch time

and the packet timestamp, we delay packet transmission to coincide with the modified

timestamp (average delay of 128ms, a maximum of 255ms). Although 32 bits is a

relatively short MAC, an adversary would still have to compose 232 packets, on average,

9 OpenBSD has 30 bits of entropy available in the sequence number, while Linux 2.6 only has 24
bits. Therefore, OpenBSD could support 38-bit authenticators.

65

Algorithm 3.2 The steganographic encoding protocol. Decoding is performed by re-
versing the operations in this protocol.

P {TCP SYN packet}
Pseq ← {S1, S2, S3, S4} {Sequence number of packet (4 bytes)}
Pts ← {T1, T2, T3, T4} {Timestamp of packet P (4 bytes)}
m← (IPB , source port, IPA, destination port) {Authenticator}
MACK,ctr(m)← {M1,M2, . . . ,Mn} {n byte MAC}
S2 ←M1, S3 ←M2, S4 ←M3

T4 ← hM ({T2||T3}) {n-Universal hash function}

to break the authentication (requiring, for example, 6 weeks to transmit over a T1 link),

since the attack must be carried out online. Furthermore, a successful guess only leads

to a single valid packet, forcing adversary to start over if it wishes to compose another

valid packet. We remark that standard methods to deal with online guessing attacks

can also be applied, such as account freezing or processing delays.

Another issue in using the TCP timestamp field (rather than just the ISN) to encode

MAC data is the possibility of lost SYN packets. For instance, if a client generates a

SYN packet but a SYN-ACK from the server does not arrive, the client must re-transmit

the SYN packet. However, TCP requires that re-transmitted SYN packets have the same

sequence number but different timestamp [101], so we can no longer encode the same

stegotext in the timestamp: an adversary observing all SYN packets would detect that

the least significant byte of the timestamp in the original and re-transmitted SYN packets

are identical. The probability of this is only 1
256 , so the adversary could conclude that

SilentKnock was in use.

To solve this problem, we ensure that the last byte of the timestamp looks random

to our adversary, even when we are trying to re-transmit the same MAC. We can use

two existing properties of our system to help us, the first having originally caused this

problem: the higher order bytes of the new timestamp must be different from the ones

in the original SYN packet. Secondly, we do not transmit the entire MAC (only the

first 32 bits), so the adversary has no knowledge of the rest. We use these undisclosed

MAC bytes to key an n-universal hash function (e.g. ha⃗(x) = a1x
n−1 + a2x

n−2 + · · ·+
an−1x + an) [102], which is applied to the higher-order bytes of the new timestamp 10

to determine the last byte of the timestamp, ensuring that any n or fewer distinct

10 In reality, we only use the middle two bytes of the timestamp, since the upper byte is extremely
unlikely to change, and the bottom byte will be replaced by stegotext.

66

Figure 3.3: The TCP SYN packet after steganographic embedding. The “internal consis-
tency” adjustment in the sequence number is performed to keep the modified sequence
number consistent with what Linux is expected to produce.

timestamps have a last byte that is indistinguishable from random.11 Since the

server computes the same MAC, the server can reverse this process and extract the

stegotext. Therefore we preserve the integrity and indistinguishability of stegotext in

our timestamp even for re-transmitted packets. (Note that a packet will again need to

be delayed so transmission time is consistent with the new timestamp.)

Counter Management

To protect against replay attacks, we employ a per-user counter, incremented after every

connection attempt. If a given user has never before accessed a SilentKnock-protected

server, the counter is initialized to 0 by both the client and the server. The counter poses

additional challenges, such as what happens when client and server counters become

desynchronized. This can occur in two ways: either the client’s SYN packet never arrives

at the server, leading to the client having a counter higher than the server’s, or the

server’s SYN-ACK is lost (meaning the client and server are actually in sync, but the

client does not know this). A client would have a hard time attempting to resynchronize

after a failed connection, since it cannot differentiate between the two situations. To

mitigate this, we allow some counter drift, and ensure that the protocol automatically

11 By default, Linux 2.6 TCP only attempts to re-transmit a failed SYN packet five times, so 5-
universal hashes are sufficient. If this number were to change, both the client and the server would need
to modify their hash function (for n retransmissions, an m-universal hash function must be used, where
m ≥ n).

67

re-synchronizes after a certain time period.

We enforce the invariant ctrserver ≤ ctrclient by having the client always increment its

counter when sending a SYN packet. The server, however, will only increment its counter

upon successful MAC validation in order to prevent malicious desynchronization by an

adversary sending bogus packets to the server while spoofing the client’s IP address.

In the näıve scheme of insisting the counter be exactly right, the server and client

may never again get into sync once desynchronized, since the client will increment

its counter on each connection attempt, but the server’s counter remains the same.

Checking more than one consecutive value of the counter as part of MAC verification

would make desynchronization from non-malicious network events unlikely, but would

also degrade security linearly, since it would allow multiple MACs to be valid at any given

time. If multiple counters are checked, the server should saves counter that matches

the MAC that verified successfully, and increments that counter for use next time. This

way, the server and client should be in sync for the next connection attempt. (The

number of alternate CTR values checked by the server is specified by the ft parameter

in Figure 3.1.)

To counteract adversary-induced permanent desynchronization, we adopt a two-part

counter design. Using a 64-bit counter, the first 32 bits (called the RESYNC field) are

initialized to 0 at the time of first connection, and are incremented once for every

configured unit of time (such as every hour, day, month, leap-year, etc.). The time

period is a shared parameter and is agreed-upon during out-of-band setup. The latter

32 bits (called the CTR field) are always set to 0 when RESYNC is incremented. Using

this two-part design allows resynchronization to occur automatically once the RESYNC

increment time elapses. If there is substantial relative clock drift between the client and

server, it is possible that client connections will fail (or even become desynchronized)

when the client starts a connection at a time when one entity has incremented RESYNC

and reset CTR but the other has not. However, this is extremely unlikely and would

repair itself during the next RESYNC increment.

3.3.4 System Architecture

The SilentKnock system is composed of two separate programs - “sknockd” (running

on the server), and “sknockproxy” (running on the client). The server component

68

Figure 3.4: The architecture of SilentKnock. The client-side application initiates a
connection to a server in the usual manner. The kernel composes a SYN packet, but
sknockproxy intercepts the packet before it is sent, and embeds a MAC into the ISN
and timestamp fields. The server receives the packet, and sknockd examines it before
passing it to the kernel. If sknockd successfully extracts and verifies the MAC, the
packet is passed to the kernel; otherwise it is dropped. Once the SYN packet is accepted,
the user-space sknockd no longer examines other packets for that connection (except
for terminating packets FIN and RST), for the sake of efficiency. The sknockd kernel
module inspects every packet, but the overhead of fast-path processing for all but SYN
packets is minimal (a few dozen machine instructions). sknockproxy, however, is forced
to rewrite every incoming and outgoing packet for the connection to prevent the client
TCP stack from getting confused due to a sequence number mismatch.

69

comes in user-space and kernel-space variants. The design of each of these programs is

described below.

User-Space Knock Daemon

sknockd, the server side of the SilentKnock system, listens for connections on ports

defined in its configuration file (the ports offering services, e.g. SSH on port 22), and

examines incoming SYN packets on those ports before the TCP/IP stack sees them.

When a packet is received, sknockd checks the source IP address of the packet and

retrieves the secret key as well as the counter for that IP address from its configuration

file (per-user shared keys are also supported). Using the TCP steganographic algorithm,

sknockd extracts stegotext from the packet, and attempts to verify it as it would with

a MAC. If verification succeeds, the packet is accepted and passed on to the TCP/IP

stack; otherwise the packet is dropped. sknockd then increments the per-IP connection

counter (CTR). This is the extent of sknockd’s involvement with the connection —

all other packets are processed directly by the network stack in the kernel and are not

seen by sknockd. The exception is FIN and RST packet, required to detect connection

closing.12 This removes the client’s (IP, port) tuple from the list of active connections

and reclaims memory. We use the libIPQ API and netfilter connection tracking [100] to

register interest in packets with certain flags and (IP, port) tuples with the kernel, and

those packets are rerouted by the netfilter system to user-space. The process is very

efficient since our chosen MAC is very fast and only two or three packets per connection

are examined in user space, are copied only once (from kernel to user space), and do

not have to be copied back since they are not modified.

There is a small trick to preserving indistinguishability when we are intercepting

only a subset of packets: we must prevent the adversary from being able to set the SYN

flag on a packet that is part of a previously authenticated stream, because if sknockd

drops that packet (due to incorrect MAC) the adversary will be able to conclude that

SilentKnock is in use. Therefore, when sknockd tells netfilter to allow a certain

connection (after verifying the MAC), we insert the ALLOW rule into netfilter before

the rule that forwards SYN packets to sknockd. Thus, authenticated streams (having a

12 Detecting connections closed due to TCP timeouts will be supported in the future, in case con-
nection termination packets are lost.

70

known source (IP, port) tuple) are never again processed by sknockd (with the exception

of detecting connection closure, as mentioned above, which does not alter TCP stack

behavior), even if they incorrectly contain SYN packets, preserving default TCP stack

behavior. The number of initial static netfilter rules is linear in the number of Silent-

Knock-protected services, and future dynamic rules scale linearly with the number of

active connections to protected services. While the number of rules may become large

with many active connections, this cannot be avoided and we must rely on the efficiency

of the underlying packet filter implementation to scale gracefully under load. Memory

requirements for per-user keys are linear in the number of users configured, and per-IP

counter storage is linear in the number of client IP addresses.

Additionally, we must be careful to correctly process adversarial SYN floods (where

many SYN packets are sent in succession for the same connection). To do this, we are

careful to avoid a race condition where sknockd accepts the first packet to arrive, even

though many instances of the sknockd packet handler may be spawned on a multi-

processor machine. The overhead of this check rises linearly with the number of active

connections to a given SilentKnock-protected service, but using hash tables to store

active connections would allow this overhead to be reduced to a constant factor.13

Kernel Module Knock Daemon

Unlike user-space sknockd, the kernel module does not use a configuration file, but takes

command-line arguments at load-time to determine protected ports and authentication

keys. It intercepts all incoming connections and waits to see a SYN packet destined for

a protected port, while accepting all other packets. (This “fast” path for all packets

in which sknockd is not interested only requires a few dozen machine instructions.)

sknockd then checks to see if the SYN packet belongs to an active connection. If it

does, the packet is accepted in order to let the TCP stack correctly handle this case.

Otherwise, sknockd extracts the stegotext from the packet and verifies the MAC. If

verification succeeds, the packet is accepted, otherwise the packet is dropped before

processing by the TCP stack. Since the kernel-space sknockd works independently

from the firewall, no rule manipulation is required, and overhead is reduced to statistical

13 However, using hash tables would force us to re-think our process synchronization system, since
barriers do not make sense when using hash tables — see Section 3.3.5.

71

insignificance (as discussed in Section 3.3.6).

The kernel-space sknockd uses netfilter connection tracking [100] to determine the

status of connections, and cleans up stale connection descriptors during idle time (elim-

inating the need to examine FIN and RST packets). To this end, we implement a novel

low-contention process synchronization system that heavily prioritizes our packet han-

dling code over our cleanup code. This system is described in Section 3.3.5.

Knock Proxy

sknockproxy reads a configuration file to find out which servers support SilentKnock,

and for which services (listed by destination (IP, port) pairs). The configuration file

also includes the key shared with the server, and the last value of the connection

counter. If this is the first time connecting to that server, the counter is initialized

to 0. sknockproxy registers interest for all SYN packets going from localhost to those

(IP, port) pairs. When it receives such a SYN packet (generated by the local TCP/IP

stack), it computes a MAC using the server shared key and steganographically encodes

the information in the TCP initial sequence number and timestamp. It then registers

interest for all incoming and outgoing packets for that (IP, port) tuple, increments the

associated connection counter, and sends the packet over the wire.14 Since we have

modified the sequence number from what the local TCP stack expects it to be, we must

modify it again in the return packets before the TCP stack sees them, otherwise we

will confuse the stack and reset the connection. Likewise, we must continue to modify

all future outgoing packets for that connection, otherwise the remote host will reset the

connection when it detects a sequence number mismatch. Once the connection is closed,

sknockproxy de-registers interest in that tuple (connection closure is detected the same

way in the user-level implementation of sknockd). The number of initial netfilter rules

is linear in the number of SilentKnock-protected services that might be contacted;

future dynamic rules scale linearly in the number of active authenticated connections.

Note that the client produces entirely backward-compatible packets — sknockproxy can

be used when communicating with either an unprotected or a SilentKnock-enabled

server.

This system is completely transparent to all applications running on the client and

14 The packet may be delayed, depending on the modification made to the timestamp field.

72

server, and thus applications do not need to be modified to take advantage of it. Further-

more, since the configuration files for both sknockd and sknockproxy specify only the

(IP, port) pairs and not the specific applications that use the system, the SilentKnock

itself does not differentiate between applications. However, SilentKnock would need

to be modified to support different network protocols (only TCP is currently supported).

This modification would be a rather daunting task, as new steganographic embedding

and extraction routines would need to be individually written for each new protocol

and operating system. However, we may implement a plugin-like system in the future

such that steganographic functions would still need to be written, but the required

modification for sknockproxy to use those new functions would be minor.

3.3.5 Prioritized Synchronization With Minimal Contention

Our SilentKnock system must keep several lists of active, authenticated connections

in order to prevent an adversary from setting the SYN flag on a non-SYN packet and seeing

anomalous results: since the packet now has the SYN flag set, it would be processed by

our code and dropped due to the incorrect MAC, allowing an adversary to distinguish

connections using SilentKnock. These structures become stale after a connection has

been closed, and need to be cleaned up. During idle time, a cleanup subsystem iterates

over the list of connections, checks their status, and removes stale ones. However, since

the subsystem monitoring incoming packets must have low latency, it is imperative

that this background task not interfere with the near-real-time foreground task. This

situation is a special case of the producer-consumer problem, with variable numbers

of each thread (we use operating system-specific techniques to ensure that only one

consumer is active at any given time, and a lock to keep more than one producer from

concurrently modifying the data).

Synchronization is made easier by the specific behavior of our system: we only have

two threads: the high-priority packet handler which reads the list but only appends

entries to the end, and a second thread which removes entries from anywhere in the list

but does not add to it. The cleanup thread must have strictly lower priority than the

packet handler, since the latter must act in near-real-time. Priority-sensitive semaphores

at first seem like a good solution, but do not turn out to be applicable, since we would

like the consumer to work in an opportunistic fashion (no FIFO requirement), rather

73

than wait on blocked resources.

Our system is composed of mutex locks (one per connection list) and barriers. Each

mutex controls access to its list, while barriers (associated with each list entry) prevent

the consumer thread from reading past the “stable” end of the list, and into a par-

tially constructed list entry. Figure 3.5 provides a graphical representation of our data

structures, and Algorithm 3.3 shows pseudocode for the two threads. Note that neither

lock-free [103] nor wait-free algorithms [104] are appropriate, since we want a specific

thread to preferentially make progress, rather than any particular thread. We expound

upon the use of each primitive below.

Figure 3.5: The shared data structure. Each list has an associated mutex, and each
list entry has an associated barrier. A producer will not write to a list whose mutex is
locked, and a consumer will not read a list past an entry with a barrier that is “closed.”

Barriers

The last data structure in the list always has a barrier set to “closed.” When the

producer appends to the list, it does not lock the list, but instead constructs a new

connection entry object (which has a closed barrier) and appends it to the end of the

list. Only then will the producer open the barrier on the previous object.

74

Algorithm 3.3 Prioritized process synchronization
packet handler:

1: lock(list)
2: read(list)
3: unlock(list)
4: create(list object)
5: add to tail(list, list object)
6: unlock barrier(previous(list, list object))

end packet handler

cleaner:

1: for each list object in list do
2: if barrier closed(list object) then
3: break
4: end if
5: if stale(list object) then
6: interrupts disable()
7: if try lock(list) = success then
8: remove(list, list object)
9: unlock(list)
10: end if
11: interrupts enable()
12: end if
13: end for

end cleaner

Mutexes

While the producer task iterates over the list, it holds a lock on that list. Once it

finishes reading, it releases the lock. The consumer thread also iterates over that list,

but without holding the lock (this is safe, since the only objects the producer constructs

will be added after a barrier, beyond which the consumer never reads). New objects

are constructed by the producer without holding the lock, since they will be added only

after the barrier. If the consumer tests an object and discovers that it is stale, the

thread attempts to acquire a lock on the list holding the stale object. If the lock is

unavailable, the consumer continues scanning the list. If the lock is acquired, the stale

object is removed from the list, and the lock is released. This way, the only time the

consumer thread is holding the lock is when it is actually in the process of removing

an object (something that takes on the order of a few dozen machine instructions),

giving priority to the producer thread. Additionally, the consumer always disables

interrupts before cleaning an object, ensuring that it is never re-scheduled while holding

75

a lock, eliminating priority inversion. This is again safe since only a few dozen machine

instructions are needed to perform the removal.

Our system provides exceptionally attractive properties, such as concurrent reads

(since only the producer must hold a lock when reading the list, the consumer is free

to read at any time), prioritized operation of one thread over another during both read

and write operations, and resistance to priority inversion (since the consumer is never

pre-empted while holding a lock).

3.3.6 Timing Analysis

The indistinguishability of SilentKnock relies on the adversary gaining no information

through timing attacks — if sknockd takes an overly long time to process packets, a

smart attacker with knowledge of traffic timing before SilentKnock was installed on

a server would realize that additional processing is occurring (but not necessarily that

SilentKnock is in use). If the difference in timing is large enough, it makes for a

good distinguisher for SilentKnock in practice, even though timing information is

not included in our formal model. On the other hand, if the timing difference is small

(compared to timing noise between the adversary and the server — delays imposed by

slower or overloaded routers, etc.) or the adversary lacks precise knowledge of the timing

characteristics of the server, this “side channel” will not lead to a good distinguisher

in practice. Timing considerations were the primary motivation in implementing the

sknockd kernel module.

Results of our timings tests are shown in Table 3.1. We measure the time a server

running sknockd takes to process SYN, recording the time period between receiving a

SYN packet (containing a valid MAC) and emitting a response (SYN-ACK). Although

information leakage (thought timing information) occurs in practice in the user-level

implementation, the amount of information revealed is minor. Even using the user-

space sknockd, an adversary located a few hops away and having perfect knowledge

of the server timing distribution without sknockdwould need to witness several hun-

dred accepted sessions to gain a significant advantage in distinguishing sknockd from

76

Experiment Baseline nf conntrack sknockd

kernel-space user-space

Average response time (µs) 95.76 110.48 123.54 249.35

St. Dev. (µs) 3.69 8.99 8.02 20.87

Slowdown (over baseline) 1.00 1.15 1.29 2.60

Slowdown (over conntrack) N/A 1.00 1.12 2.02

Table 3.1: Average time difference between receiving a SYN packet and emitting
a SYN-ACK packet. The second experiment uses kernel modules (nf conntrack and
nf conntrack ipv4) to help clean stale connections. The third and fourth experiments
use only the user-level sknockd, and the sknockd plus netfilter connection tracking
modules, respectively. The time difference between the connection tracking modules
alone and the connection tracking modules with sknockd is not statistically significant.

a dynamic firewall.15 To further minimize this difference, we implemented AES pre-

computation for Poly1305-AES nonces [80]. Currently we only precompute the initial

counter value, but we can precompute and store values for the next several counters, al-

lowing for verification to be performed without any online cryptographic computation.

Unfortunately, this optimization is not possible with the kernel-level sknockd, which

uses SHA1 HMAC.

The timing channel in the kernel-level implementation of SilentKnock is signifi-

cantly less informative to a potential adversary. While there is a statistically significant

difference between a SilentKnock-enabled server and a non-SilentKnock-enabled

server, there is no statistical difference between the SilentKnock-enabled server and

one running the nf conntrack and nf conntrack ipv4 modules only. Therefore, an ad-

versary does not know if SilentKnock is being used, or if the server simply tracks

connection metadata for auditing.

While we do not test the client-side proxy for timing distinguishability, we conjecture

that the use of sknockproxy would be much more difficult to detect than sknockd.

Since the processing of SYN packets occurs before any observable event, and processing

subsequent packets in a flow requires no manipulation of kernel data structures and

no cryptographic computation, observable timing differences would be very small. If a

15 90% of Internet flows experience a standard deviation of 1ms or more in round-trip time [105],
while the magnitude of timing difference in the case of user-space sknockd is about 0.15 ms.

77

remote adversary were to test for the presence of sknockproxy, the largest observable

effect would be in the re-transmit timeout, which may be altered by the packet delay

imposed by timestamp modification. However, since retransmit clocks have granularity

measured in seconds [101] and our timestamp modification has millisecond granularity,

detection is highly unlikely.

3.4 Discussion

3.4.1 Limitations of SilentKnock

Here we would like to note a number of limitations of our system. First, we only attempt

to authenticate the start of a connection, but provide no guarantee that connections stay

authentic. In other words, our system does not protect against connection hijacking, a

well-known problem in TCP security [106]. We believe it is up to the application to pro-

vide connection hijacking protection and relevant user authentication (e.g., SSH [107]).

Furthermore, due to the limited bandwidth for authentication, SilentKnock can only

support symmetrically-keyed authentication with only 32 bits of a larger MAC. Since

different operating systems have different TCP initial sequence number properties, the

amount of data that can be embedded in the SYN packet is highly dependent on the OS

composing the packet. Thus it is necessary that the server know the OS of the client in

order to correctly extract the stegotext; alternatively, the server can attempt multiple

extractions, but this will increase overhead and degrade security linearly in the number

of OSes supported.

Finally, existing port knocking schemes which do not manipulate the TCP packet

directly have the advantage that of unprivileged user-space implementations on the

client side, allowing end-users to run such systems without the intervention of a system

administrator. Additionally, destination port numbers and other user-specified fields

are unlikely to be modified by other systems such as IPsec [94], that may mangle other

TCP fields such as sequence numbers and timestamps, making user-space solutions more

robust to in-transit tampering. However, this advantage comes at the price of indistin-

guishability model — while SilentKnock is indistinguishable from a TCP connection,

traditional port knocking would at best be indistinguishable from a limited port scan,

which is in itself a notable network event.

78

Identities, Addresses, and NAT

In any distributed authentication system it is necessary to decide what the identities

in a system mean. Three natural choices are to let identities correspond to network

addresses, to physical hosts, or to human users. Our current implementation supports

two options: identities (keys) may be associated either with IP addresses or users. Each

option has different consequences for usability and security. When identities are bound

to IP addresses, we must assume that only a single client machine will be accessing a

SilentKnock-protected server from a given IP address, since a single counter is used

for each identity. This assumption breaks down in the presence of network address

translation (NAT) or similar devices. Therefore, in this scenario, we must limit our

system to only one client per NAT. We stress, however, that unlike previous implemen-

tations where NATs presented a security problem [87], adversaries sharing a NAT with

a valid sknockproxy client gain no advantage.

We support per-user identities by issuing keys to each user and checking the MAC

on each SYN packet against each authorized user key. This can be done at essentially no

extra computational cost due to the design of the Poly1305 MAC [80], which is computed

by adding a keyed non-cryptographic hash of the message to the AES encryption of a

nonce mod 2128. Suppose we assign different AES keys (but a shared non-cryptographic

hash) to different users, and precompute the AES encryption of different users’ counters

for the next ft values. Then for any given packet p with embedded tag t we can check

whether t = MACK,r(p, n) = Poly1305r(p) + AESK(n) mod 232 for some user’s key

K and counter n as follows. We first compute t − H(p) mod 232, and then search for

the resulting value in our table of precomputed encrypted nonces; if the value is found,

we accept the packet and remove older encrypted counters for the same user. This

search can be implemented in constant time (with respect to the number of users) using

a number of approaches such as hash tables or tries. After accepting the packet, we

insert the next precomputed nonce for the same user into the table. While this solves

the NAT problem mentioned above, it causes security loss proportional to the number

of users (and thus the number of user keys) due to the requirement that we check the

MAC against all keys. Alternatively, once IPv6 is a viable alternative to IPv4, we may

be able to use unique target IP addresses as part of the key, such that a server running

sknockd has one IPv6 address per user.

79

Denial of Service

While we have implemented some measures to prevent distinguishing or denial of service

attacks due to packet dropping, our scheme is vulnerable to a selective denial of service

attack. An adversary who modifies all packets on a network by consistently rewriting

sequence numbers or timestamps can cause MAC verification to fail at sknockd, while

not affecting the status of most standard TCP traffic. We note that this attack is both

expensive, in that it requires the attacker to touch every packet in — and maintain

per-flow state for — all connections on a network, and may effect other protocols that

authenticate the TCP header, such as IPsec [94] or TCP-MD5 [95]. Additionally, such

selective denial of service is much easier for other port knocking or general IP service

authentication schemes, as in those cases it is easy to identify knock sequences or au-

thenticated packets and drop them, while maintaining no other state. Finally, if the

server logs failed connection attempts, it will be easy to notice such attacks since, for

instance, altering the timestamp will still give a 24-bit MAC match in the sequence

number, which is unlikely.

Distinguishability Attacks

SilentKnock is vulnerable to a distinguishability attack by a non-nonce-respecting

adversary. Recall our notion of a semi-passive adversary, who is not allowed to modify

packets in transit but only allowed to drop them or issue new packets. Now consider a

packet-modifying (fully active) adversary that can arbitrarily modify packets. Such an

adversary may alter the ISN of a SYN packet in transit to a SilentKnock-protected

server and observe the result. There is no reason that a server should not accept a

TCP packet with an arbitrary ISN unless it is either not offering a service on the target

port or is protected by SilentKnock. If previous connections from a given source are

observed to succeed, but a connection using a packet with a modified ISN fails, our

active adversary can conclude that SilentKnock is in use. Note that this adversary

is particularly powerful, since it must be able to block a TCP packet before this attack

can be carried out.

80

Network Performance Considerations

Finally, there may be unexpected drawbacks of delaying packets in order to use the low-

order byte of the timestamp option field to embed stegotext, such as decreased network

timeout times (since packets are delayed after being processed by the TCP/IP stack),

which may adversely impact TCP congestion control.

Chapter 4

Censorship-resistant overlay

publishing system

81

82

Having previously constructed a membership-concealing communication layer in

Chapter 2, and a covert authentication channel for MCON members in Chapter 3,

we now extend our work to create a robust censorship-resistant storage system which

we call CROPS (censorship-resistant overlay publishing system). This allows individ-

uals to not only communicate with each other, but exploit the one-to-many nature of

file sharing systems to distribute information to anyone who wants it. We define the

requirements for such a system in Section 4.1, discuss related work in Section 4.2, and

present our design in Section 4.3. Finally, we offer a theoretical evaluation in Section 4.4.

4.1 CROPS Requirements

Censorship-resistant systems must provide transport, storage, or both, such that these

services are not subject to targeted censorship by insider and/or outsider attackers.

They must also be useful, supporting efficient file storage and retrieval, scaling to a large

number of participants and data objects, and surviving non-malicious member churn,

such that nodes in the system may go offline without disrupting system functionality.

4.1.1 Security Requirements

All security requirements of a censorship-resistant system derive from two primary goals:

availability of content, and identity privacy for clients accessing that content. Availabil-

ity implies resistance to a broad spectrum of DoS attacks at all levels of the protocol

stack, from the lower-level communication protocols (e.g. SSL/TLS) to upper-level ap-

plication protocols (e.g. file sharing). The adversary must not be able to deny service

to most system users individually, nor broadly block the protocol based on its network-

level properties. Identity privacy implies that clients should not be observed as accessing

specific content, and publishers should not expose their own real-world identities when

posting content to the system. Both clients and publishers require identity privacy to

resist coersion and self-censorship; publishers also need identity privacy to protect them-

selves from rubber-hose cryptanalysis. However, we require the additional protection —

even authors should not have the ability to remove or modify content once published to

the system, since removing content constitutes censorship, and authors can be coerced

or have their cryptographic keys compromised. This allows us to derive the following

83

top-level requirements:

• Identity privacy. When censorship is primarily enforced through social deterrence

(by applying post-facto punishment to those who attempt to circumvent it), it can

be defeated by technology that prevents the identification of the individuals who

supply or access censored materials. Membership concealment prevents linking

online identities to real-world counterparts (e.g. IP addresses) or identifying par-

ticipants, concealing the connection between online pseudonyms and real-world

identities.

• System availability (existential blocking resistance). If a censor can locate all the

participants of a censorship-resistant network, it can block access to the individual

nodes at the network level. This necessitates the use of membership concealment

in order to ensure service availability. However, when considering such a sophis-

ticated censor, membership concealment is not sufficient to ensure availability;

the censor may also attempt to disrupt service at higher levels as well, such as

by examining a packet stream to identify the application being used. To defend

against application blocking, censorship-resistant schemes must use either protocol

obfuscation (e.g. [34]) or encryption and padding.

• Content availability (targeted blocking resistance). An adversary that is either

unwilling or unable to prevent individuals from accessing a system may nonethe-

less attempt to remove specific content from the system, denying access to that

content only. This can be achieved through multiple means: technological coun-

termeasures against access to content with specific keywords have been deployed

by multiple nations [44, 4]; social means such as legal action (or threats of legal

action) are used in a number of Western democracies as well [5, 6, 4].

4.1.2 Targeted Blocking

Censorship-resistant systems must provide transport, storage, or both, such that these

services are not subject to targeted censorship by insider and/or outsider attackers.

An adversary should be prevented from selectively removing content from the system

or blocking particular users from publishing or consuming content. Potential outsider

84

attacks include deep packet inspection to block content, as in the case of China’s “Great

Firewall” [44]. A robust censorship-resistant system requires protocol-level encryption

or obfuscation to prevent such keyword-based attacks. Encryption alone, however, is

vulnerable to encryption-oblivious fingerprinting [108, 109], so a robust system will

require protocol-level padding.

Membership concealment prevents targeted blocking of individual users. However,

even if a publisher of a given piece of content can be located, the act of publishing

should be irreversible, since authors are vulnerable to rubber-hose cryptanalysis and

can be rather forcefully persuaded “un-publish.”. Furthermore, if content is modifiable,

the system should at the very least support versioning, such that both the modified

and previous versions of the data would persist and be easily retrievable [110]. In other

words, the system must be resistant to both blocking specific content at the network

level, as well as blocking content by locating the content publisher or server.

4.1.3 Existential Blocking

Censorship-resistant systems must also resist existential blocking, i.e. attempts to block

the system outright. Some designs that were created to be censorship resistant, such as

Tangler [11], are only robust against targeted censorship: the Tangler protocol crypto-

graphically links all stored content, such that if some stored data is deliberately made

unavailable, most content would be rendered irretrievable. Ironically, this makes it triv-

ial for any adversary of even low power to deny access to the entire system, and thus

all data. Systems that aim to resist an adversary which is willing to engage in complete

blocking must be membership-concealing — it should be difficult for either an insider or

an outsider to learn the real-world identities of a non-trivial fraction of system partic-

ipants in bulk (compare to targeted censorship where adversaries attempt to learn the

identities of parties publishing, consuming, or storing a given piece of content). This

implies that no centralized or semi-centralized system can be censorship-resistant since

by definition the number of storage servers to block would be low. Therefore, the system

must be peer-to-peer, where all clients contribute to routing messages and potentially

storing content. These systems must resist concurrent failure of a large fraction of

participants, and gracefully recover using robust routing and/or content replication.

85

4.1.4 Functional Requirements

The basic requirement for any data storage system is support for replicated storage

and robust retrieval. Assuming an existing routing infrastructure (such that arbitrary

nodes can communicate with each other), storage can be implemented using only two

basic operations — put and get [45]. Thus the primary functional requirements for robust

censorship-resistant storage are the security requirements above, combined with scalable

support for the put(key,value) and get(key) operations. Since CROPS is constructed

as an overlay above an MCON, it is a simple matter to extend MCON’s underlying

distributed hash table (DHT) to provide storage capabilities and efficient lookup like

PAST [111] or OceanStore [112]. In order to be useful in practice, a censorship-resistant

storage system should satisfy the following additional requirements:

• Fully-distributed architecture. No centralized or semi-centralized system can serve

as a robust censorship-resistant system since by definition the number of failed

(or blocked) servers the system can tolerate is low. Therefore, we must use a dis-

tributed peer-to-peer (P2P) design. P2P architectures use collaborating members

with similar responsibilities and rights, and generally no member node is more

important than another to the continued correct functionality of the system.1

• Plausible deniability for storers. To prevent prosecution of storers on the basis

of hosted content, node-local content must be opaque to real-time or post-hoc

examination by an adversary and even the storer itself. It is sufficient to ensure

that while stored content can be examined, the process is too resource-intensive

to apply to a large fraction of content. The storer should also be prevented from

determining the content of a specific query to which it is responding, i.e. the

storer knows that the query matches data stored locally (which the storer returns

in response), but cannot determine the clear-text content of the query or the data.

• Scalability and efficiency. We want the system to be scalable both in terms of

the number of supported users (searchers and storers) and in terms of the amount

of storage the network is able to provide. However, the network must replicate

1 However, to support as large a user base as possible, the network should not require clients to
store significant quantities of data in return for using the network, supporting a heterogeneous node set.

86

content across enough storers to guarantee, with high probability, that it will be

retrievable even with high storer churn and attempted blocking. Furthermore, we

should distribute storage and traffic loads equitably across peers for the purposes

of fault tolerance as well as to avoid unduly taxing any particular peer. Robust

replication and storage/bandwidth efficiency is a fundamental trade-off in such a

system [113].

• Resistance to contamination and storage exhaustion attack. In a network that

does not support content removal and only offers a fixed amount of storage, an

adversary could pollute the results of any given search (by keyword) by repeatedly

publishing faulty data marked the keyword in question. The adversary also could

publish large volumes of content to exhaust storage space in the entire network,

independent of keywords. Unfortunately, this problem is exceedingly challenging.

Although there are verifiable fair storage schemes such as tit-for-tat [114] and

storage accounting [115], the way to punish offending nodes in such systems is

generally the removal of their data from the network. This is not only not an

impediment to a censor, it is beneficial: if an adversary can “persuade” a given

publisher to stop storing data in a tit-for-tat scheme, the publisher’s data would be

dropped from the network, censoring it. Since it is difficult to determine whether

published data is relevant to a given keyword, and whether that data is accurate,

the network will need to employ a variant of voting and/or editing scheme, while

paradoxically not allowing an editor to explicitly censor content.

4.1.5 Adversary Models

Different censorship-resistant designs assume various adversary models, some far more

powerful that others. We assume a strong adversary model e.g. of the level of a nation-

state, with the associated monetary resources. The attacker may choose to be completely

passive (monitoring only), affecting censorship through post-facto punishment (e.g. ar-

rests, fines, or rubber-hose cryptanalysis). This type of attack may remove content, but

can also induce self-censorship if widely publicized [116], causing selected material to

never be posted in the first place. Alternatively, an active attacker can block access to

87

targeted content through a number of technological means such as deep packet inspec-

tion [44] or encryption-oblivious protocol fingerprints [108, 109]. The attacker may also

opt for wholesale blocking of a given service, website, or protocol [13, 12, 14].

Before defining our adversaries, it is important to be clear on the nature of the client

of our censorship-resistant system. The client is the party interested in gaining access

to content, attempting to defeat or bypass the adversary’s blocking methodologies. An

adversary will attempt to prevent the client’s access to data, using several real-time

methods briefly outlined below. From this point forward we will not consider post-hoc

punishment or forensic analysis of user equipment, especially considering the properties

provided by the MCON underlay — even if the MCON identity of a client or data

provider is known, as well as the nature of accessed/provided information, an adversary

would first have to break the underlying membership concealment properties in order

to locate specific participants.

• Computer-local attacker.

– Unprivileged access. The attacker controls an unprivileged user account on

the same physical computer as the client. The adversary may or may not

be aware that the censorship-resistant software is being used. He may have

permissions to read and write various files on the computer, possibly those

related to the censorship-resistant software.

– Privileged access (full control). The attacker controls all aspects of the client’s

computer, including being able to actively or passively examine all memory

and intercept instructions dispatched to the CPU. This attacker may be

a hardware manufacturer (Intel, AMD, Nvidia) or computer manufacturer

(Dell, Lenovo, Apple) [117]. The attack vector may also be software running

as a privileged user, such as Green Dam [118].

• LAN-local attacker. The attacker controls one or more computers on the client’s

local LAN (or cable Internet segment). He can observe all local traffic and send

traffic to the client. Depending on the nature of the LAN, he may be able to launch

interception/man-in-the-middle (MitM) attacks, or DoS the client by consuming

local bandwidth or jamming the physical channel.

88

• Service-specific attacker.

– General Internet services. This attacker controls one or more services which

the client uses as a sideeffect of using the censorship-resistant system specif-

ically, or the Internet in general. These attackers include DNS providers and

immediate upstream Internet service providers (ISPs). Notice that such an

attacker can trivially carry out a DoS attack by simply blocking all Internet

access.

– Censorship-resistance service. This attacker controls one or more members of

the censorship-resistant network, such as a malicious storage server. It may

control all members of a semi-centralized service, or be the only member of a

centralized service (e.g. Anonymizer.com [9]), the latter allowing it to mon-

itor and/or block all client communication through the service, potentially

causing the client to make the request in the clear [119].

• Global attacker. This attacker controls Internet access for a large number of clients.

It can use BGP maliciously to observe aggregated traffic from any/all other ASes.

It can trivially locate and block all traffic to a given centralized or semi-centralized

system either passively or by making malicious BGP announcements, causing

other ASes’ traffic to flow through the attacker [13].

4.1.6 System Types and Parties of Interest

Other than the client, our censorship-resistant system can have several types of partic-

ipants, any one or more of which may be controlled by the attacker. Their roles are

briefly sketched below (we re-define the client for completeness) and individual designs

will be discussed in depth in the next section.

• Client. This is the party that would like to gain access to content. Depending on

the system design, the client may be a peer, participating in the system by routing

messages and/or storing data.

• Publisher. This is a subset of client, who publishes (stores) data to the network.

• Intermediate service provider. These are potentially multiple parties providing

services not directly related to anonymity or censorship-resistance, but rather

Anonymizer.com

89

support the underlying Internet communication infrastructure. These entities

include ISPs and ASes, as well as DNS providers, fitting the definition of general

Internet services, above.

• Censorship-resistance service provider. These entities are included in the above

taxonomy as censorship-resistance services. We go into greater detail here.

– Storage-only systems. These designs provide robust storage infrastructure

only, leaving it up to the client to determine how to safely access the con-

tent. Content location services (indexing, search) may or may not be pro-

vided. Such designs are either centralized or semi-centralized, meaning that

data is stored on multiple servers controlled by the same logical entity (e.g.

WikiLeaks [10]), or on a relatively small number of servers controlled by in-

dependent individuals (e.g. Eternity [120]). Other examples include Free

Haven [121], Publius [122], Tangler [11], and Serjantov’s design [123]. The

primary drawbacks of these designs are:

∗ Limited to no resistance to legal and technological blocking of a limited

server set

∗ Limited publisher and/or client anonymity in the presence of compro-

mised servers

∗ Threats to content integrity/longevity in the presence of compromised

servers

∗ Questionable incentives for continued server operation

– Transport-only systems (anonymity provider). These designs provide trans-

port services which clients use to request content, leaving it up to the client

to determine where to obtain the content (which content provider to choose,

how to locate the content of interest, etc.). Such systems may be entirely

centralized (e.g. Anonymizer.com [9]), semi-centralized (e.g. Tor bridges [7])

or completely decentralized (e.g. Infranet [124, 34]2). These systems are

essentially proxies, providing a layer of indirection between the client and

the content provider. Fully decentralized systems rely on P2P designs, where

2 This system requires limited cooperation from content providers and so is not entirely transport-
only.

Anonymizer.com

90

clients not only request content but also act as proxies for others. The pri-

mary issues with this type of design are:

∗ Limited to no resistance to legal and technological blocking of a limited

relay set

∗ Limited client anonymity in the presence of compromised relays

∗ Lack of scalability and/or inefficient routing

∗ Questionable incentives for continued server operation

– Storage and transport (censorship resistance provider). These designs com-

bine storage and transport into a single system. They are typically fully

distributed, i.e. clients serve as both relays and content providers. Content

location services (indexing, search) are generally not provided. Examples in-

clude: Freenet [8], GNUnet [125], and a design by Fiat and Saia [126]. The

primary issues with this type of design are:

∗ Limited to no resistance to legal and technological blocking of an enu-

merable peer set

∗ Limited publisher and/or client anonymity in the presence of compro-

mised servers

∗ Lack of scalability and/or inefficient routing

∗ Difficulties in locating rare content within the system (popular content

is generally given preference)

4.1.7 Formal Definition of Censorship Resistance

There are several partially conflicting definitions of censorship-resistant systems. Danezis

and Anderson define censorship as an external entity’s attempt to impose on a set of

nodes a particular distribution of files [127]. Perng et al. define censorship susceptibil-

ity as the likelihood a third-party can restrict a targeted document while allowing at

least one other document to be retrieved [128]. Fiat and Saia uses the term “censor-

ship resistant” in the sense that even after adversarial removal of an arbitrarily large

constant fraction of the nodes in the network, all but an arbitrarily small fraction of

the remaining nodes can obtain all but an arbitrarily small fraction of the original data

91

items [129]. We subscribe to the third definition since it incorporates Danezis and An-

derson’s definition and does not limit the adversary from removing access to a system

entirely.

Formally, we say that a network is (Λ,Γ, f ′, ρ)-censorship-resistant if no (ℓ, γ)-

adversary monitoring or disrupting ℓ ≤ Λ links and corrupting or otherwise controlling

γ ≤ Γ members can block more than f ′(ℓ, γ,N) nodes from accessing more than a con-

stant fraction ρ of content where N is the total number of network members. When

f ′(ℓ, γ,N) = Θ(ℓ+ γ) we call the network (Λ,Γ, f ′, ρ)-censorship-resistant. (ρ must be

defined as sufficiently close to 1 for the network to be useful.) Note that any formal

definition for a censorship-resistant network is closely tied to the definition of mem-

bership concealment. We refer the reader to our formal characterization of MCONs

in Section 2.2, where we define a (ℓ, γ)-membership-revealing adversary, and observe

that since the goal of an MCON is to prevent identification and subsequent blocking of

nodes, f ′(ℓ, γ,N) ≤ f(ℓ, γ,N) ≤ Θ(ℓ+ γ) for some ρ.

4.2 Related Work

A number of näıve and state-of-the art censorship-resistant systems are briefly described

below, and a high-level comparison may be found in Table 4.1.

4.2.1 Limitations of Näıve Approaches

Unfortunately, many näıve schemes have been deployed in repeated attempts to create

censorship-resistance systems. Such approaches tend to focus on thwarting specific cen-

sorship techniques, and can be easily defeated if deployed widely-enough to be noticed

by the adversary (such as ignoring TCP RST packets [130]). These systems include:

• Fast flux and domain flux. Phishing sites have been known to use DNS fast

flux [131] (returning different IP addresses for repeated DNS queries to the same

domain) or domain flux to contact different domain names used as control centers,

which change over time. These strategies are easily overcome by either shutting

down the DNS server [132, 133], taking over current or future domains [132, 133],

or blocking all the domain queries or URLs at the ISP level.

92

• Steganography. There is extensive literature on TCP/IP steganography and covert

channels, including HTTP-embedded messages and tunneling information through

DNS queries [20, 79, 88, 89, 90, 91], which can be used when accessing censored

content. However, Murdoch and Lewis [79] show that many of these proposals are

easily detected. Even when using provably secure steganography [78], the location

of censored documents has to be somehow disseminated, giving the adversary an

easier target. Improperly using keyed steganography falls victim to the same

insider attack as a password-protected website.

• Using file-sharing networks. Likewise, using general-purpose file-sharing networks

(e.g. Kad [134] or BitTorrent [135]) or public document storage sites (e.g. Google

Docs) for censorship resistance is not secure against malicious insiders who can

either block access to content [44] or disrupt the entire file sharing network [136].

A common issue with all these schemes is that in order to work they would require

sophisticated key management to prevent insiders from learning most or all possible keys

and subsequently removing content. It is currently unclear whether this key manage-

ment problem can be solved in a manner allowing the use of public file-sharing systems,

domain flux, or keyed steganography.

4.2.2 The State of the Art

Many of the current censorship-resistant publishing systems have tried to implement the

Eternity service proposed by Anderson [120]. Such designs can be mostly partitioned

into two sets: those that provide the communication infrastructure, and those that

provide storage. Storage providers can be further subdivided into semi-centralized and

decentralized systems. We will focus on low-latency approaches since they are far more

likely to be accepted by the user community. Moreover, high-latency systems such as

mixes are still vulnerable to malicious insiders and blocking by enumeration. All such

systems can be broken down into the following rough taxonomy:

• Anonymizing proxies. These systems provide a layer of indirection between the

client and the content provider: the client will communicate with a proxy, who will

then forward the request on behalf of the client, hiding the identity of the client

93

from the provider. Likewise, if communication with the proxy is encrypted, the

identity of the provider will be hard to determine for anyone monitoring the client’s

network communication. These systems include Anonymizer.com [9], Crowds [40],

Nonesuch [33], Tarzan [41], Salsa [43], a large number of mix systems [137, 138,

139, 140, 38], and any open proxies that may still be available on the Internet. A

major drawback is that proxy identities must be distributed in a secure manner

that does not fall victim to the same attacks that allow centralized systems to be

blocked.

• Censorship-resistant systems. These designs provide a robust permanent storage

infrastructure. Some attempt to shield the client’s identity from the data provider,

or even the exact nature of the content the client accesses. These systems are either

(semi-)centralized, comprised of one to a few thousand servers, or are completely

decentralized, requiring clients to both store data and proxy connection requests.

– Centralized and semi-centralized systems. Data access is provided either by

multiple servers controlled by the same logical entity (e.g. WikiLeaks [10]),

or a small to moderate number of servers controlled by individuals (e.g. Eter-

nity [120], Tor bridges [7]). Other examples include Free Haven [121], Pub-

lius [122], Tangler [11], and Serjantov’s design [123]. These systems can be

easily blocked at the network border since every client must know the IP

addresses of the servers.

– Decentralized systems. A fully-distributed system spreads the information

distribution role over far more entities, and is thus potentially more resistant

to DoS attacks. Examples include Fiat-Saia [126], LOCKSS [141], Turtle [54],

Kaleidescope [55], Freenet [8], and GNUnet [125]. Another scheme by Feam-

ster et al. adds a decentralized component to Infranet [34]. These systems are

also more robust to insider attack, since malicious nodes will affect clients

with only a small probability. Unfortunately, these services can still fall

victim to member enumeration by either an insider or outsider adversary

(depending on the specific design), and so can be blocked at the network

layer (see Chapter 2).

Anonymizer.com

94

Attack resistance

Design Protocol-generic Protocol-specific Efficient

Ad-hoc systems

Domain flux no: passive outsider no: active outsider yes
DNS fast flux [131] no: passive outsider no: passive outsider yes
Open proxies no: passive outsider no: passive outsider yes
File sharing no: passive outsider no: passive outsider yes
Steganography no: passive outsider no: active outsider yes

Centralized storage systems

Eternity [120] no: passive outsider no: active insider yes
Free Haven [121] no: passive outsider no: active insider yes
Infranet [124] no: passive outsider no: active insider yes
Publius [122] no: passive outsider no: active insider yes
WikiLeaks [10] no: passive outsider no: active insider yes

Anonymizing systems

Anonymizer.com [9] no: passive outsider no: passive insider yes
Crowds [40] yes no: active outsider yes
Nonesuch [33] no: passive outsider no: active insider no
Salsa [43] yes no: active insider yes
Tarzan [41] yes no: active insider yes
Tor [39] no: passive outsider no: active insider yes

Censorship-resistant systems

Fiat-Saia [126] no: passive outsider no: active insider yes
Freenet [8] no: passive outsider no: active insider no
GNUnet [125] no: passive outsider no: active insider no
Improved Infranet [34] yes no: active outsider yes
Kaleidescope [55] yes no: passive insider yes
LOCKSS [141] no: passive outsider no: active insider yes
MCONs (Chapter 2) yes yes yes
OneSwarm [49] no: passive outsider no: passive insider no
Serjantov [123] no: passive outsider no: active insider yes
Tangler [11] no: passive outsider no: active insider yes
Tor bridges [7] yes no: passive insider yes
Turtle [54] yes no: passive insider yes

Table 4.1: Summary of attack resistance of current censorship-resistant systems.

Anonymizer.com

95

Infranet [124] partially addresses the enumeration-and-blocking problem by using

steganographic techniques to hide content requests and responses. However, it requires

active participation of a number of web servers and falls victim to the same attacks

as other steganographic schemes mentioned above. In [34], Feamster et al. extend

Infranet by adding an extra layer of indirection in the form of untrusted messengers,

who pass requests to a forwarder, who then fetches the actual censored content. The

latter is an excellent example of using transport providers to connect clients to storage-

only systems. Another example is Tor bridges [7], which add limited membership-

concealment functionality to the Tor anonymous overlay [39], allowing it to be used for

censorship resistance.

Tor employs a client-server overlay design, where a publicly known list of nodes who

relay traffic for a larger set of users who are neither explicitly revealed nor explicitly

protected. The public nature of the relay set, which is required for anonymity against

various attacks, implies that Tor itself can be blocked by enumerating participating

nodes. In response, Tor designers introduced bridges [7], which are Tor clients (not

relays) serving as gateways into the Tor network. Bridges allow other clients access

to the Tor network even when the clients are using an adversarial ISP that blocks all

known Tor relays. Tor then utilizes a centralized agent — the Bridge Authority —

to hand out references to available bridges in a way that limits the number of nodes

that an adversary can obtain. Since bridges are client nodes, they are more numerous

and experience higher churn, so blocking them is a more difficult task. We note that

this is actually a membership concealing feature — one cannot block what one cannot

enumerate. However, both Tor bridges [7] and Infranet [124] with untrusted interme-

diaries [34] are still vulnerable to attack. Section 2.4 details a successful enumeration

attack on Tor bridges. Infranet is additionally vulnerable to blocking at the network

border using a load-balancing protocol proxy. The messenger groups are assigned based

on the client’s IP address, and will only service requests from the same source address.

A load-balancing HTTP proxy may request a messenger descriptor using one IP ad-

dress, but route subsequent communication through a different address, ensuring that

messengers will not respond to the fetched using one IP address, but route subsequent

communication through a different address, ensuring that messengers will not respond

to the fetched descriptor.

96

4.2.3 Robust Distributed Storage

There is much literature on the subject of robust distributed storage resistant to ma-

licious tampering. Storer, Greenan, and Miller provide a good taxonomy of long-term

archival systems and potential security issues in [142]. These systems are a subset of dis-

tributed storage since they must provide robustness and security properties for extended

periods of time, unlike distributed filesystems optimized for short- to medium-term stor-

age. Furthermore, these systems are generally meant for archival storage, meaning data

access is likely infrequent. The authors discuss a number of core threats including loss

of secrecy, loss of file integrity, unauthorized access, slow prolonged attacks, and data

migration issues.

Secrecy concerns are relevant to systems which attempt to only allow access to given

pieces of content to authors and/or authorized parties only. While key management

may be considered out of scope by some designs, it is nonetheless a relevant issue

since long-term storage exposes systems to data which is encrypted with outdated,

compromised, or lost keys. Some systems use secret sharing, splitting the file between

multiple storage servers [143, 144, 145] such that none learn anything about the file

unless enough servers cooperate to obtain greater than a threshold number of shares.

User authentication is a related issue, encompassing challenges such as key revocation

for old users of compromised keys, and re-encryption of files with keys that have been

revoked.

Integrity is a concern in any storage system, either against benign corruption or

malicious tampering. This is particularly crucial in archival systems, as one must be

sure that a file being accessed is identical to the one that was stored an arbitrarily-long

time ago. Opportunistic scrubbing, or periodically checking integrity of stored files and

repairing if needed, has been shown to be a good middle ground between over-zealous

integrity checks, which waste resources, and late verification, which may occur when

file recovery has already become impossible [146]. However, opportunistic scrubbing

is generally performed at file access time, making it a bad fit for read-maybe systems.

Therefore, proactive scrubbing and replication are required to maintain integrity [144,

147].

Systems providing protection against Byzantine failure [148, 149, 150, 147, 151,

152, 153] guarantee that any file can be recovered as long as the maximum number

97

of failed hosts is lower than a threshold fraction. However, the number of hosts that

must be contacted to store a file becomes prohibitive as the number of storage servers

increases [149], making these systems a bad fit for P2P designs. Additionally, due

to the long lifetime of these archives, there is no bound on how long their security

properties must be retained. Such systems have to be concerned about slow attacks

in which long-lived adversaries slowly acquire key shares such that eventually they

may decrypt certain files: the failure threshold must only be exceeded briefly to break

Byzantine guarantees even if the number of malicious hosts is lower than maximum

failure threshold throughout most of the system lifetime [142].3

4.3 System Design

CROPS is designed to be a write-once, read-maybe long-term archival system, imple-

mented as a storage layer on top of an MCON 2, thus providing both storage and

transport. Since we build on prior research into distributed membership-concealing

systems, we are protected from adversarial blocking (unlike previous systems). CROPS

implements robust storage while preserving the membership-concealing properties of the

routing layer. However, availability guarantees are far more difficult given that nodes

in the system may be malicious and will undergo churn — since system members are

not dedicated high-uptime servers, they will oscillate between online and offline states,

possibly in an unpredictable manner. Since we cannot assume that nodes will behave

correctly, we must use proactive replication and reactive repair to ensure availability, as

opposed to relying on cooperative behavior such as load-balancing and data handoff.

Since we do not aim to keep files confidential, we avoid most of the issues mentioned

in [142]. In fact, the only problems we face are file integrity and key management.

The former is greatly simplified by the requirement that stored data be immutable —

it allows us to use simple encryption and signature schemes to ensure authenticity

and publisher-continuity (if a publisher’s pseudonym is a hash of her public key, files

encrypted and signed by the author are self-authenticating). We can thus forego the

expense of generalized Byzantine fault-tolerant designs, which are prohibitively costly

3 [153] is a notable exception, where all versions of data whose consistency cannot be guaranteed
are maintained by the system as separate entries.

98

in terms of computation and communication in large systems [149]. Furthermore, since

“modified” data represents a completely new document, we can avoid the complexities

of a versioning filesystem [110]. Note that since we use only self-certified pseudonyms

we cannot ensure file integrity — there is no way to determine if a given file has been

modified since publication because the publishing party is a priori unknown. However,

we do ensure that files signed by a given publisher were indeed produced by that person

or a collaborator with access to the publisher’s private key.

Combining key management and plausible deniability is a difficult task: if an archival

file system is self-contained (meaning no external resource is required to access stored

plaintext), keys as well as content must reside within the archive. Both must be retriev-

able, but to preserve plausible deniability we must ensure that if a peer has access to

a key, she should not automatically be able to find the file, and vice versa. A number

of systems [143, 144, 145] avoid encryption completely by using secret sharing — the

file is split across multiple servers such that no single server holds enough secrets to

reconstruct the file, learning nothing about its contents. Other designs rely on storing

encrypted data, leaving key management to the clients [112, 122], specialized hard-

ware [111], or directory servers [154]. None of these approaches can be used with our

system since client-based key management would make search and retrieval difficult,

and neither specialized hardware nor directory servers are secure against a powerful

adversary. Fortunately, we do not aim to maintain persistent secrecy of file contents4

or keywords, rather only separate them to ensure storer plausible deniability. In fact,

we would like files to be accessible (searchable, downloadable, and decryptable) by as

large a population of users as possible. We describe a way to achieve both plausible

deniability and easy file lookup later in this section.

4.3.1 Robust DHT-based Storage

Since MCONs already incorporate DHTs, searching for content becomes trivial. How-

ever, DHTs are quite vulnerable to both targeted and existential censorship — adver-

saries can overwhelm clusters of nodes with requests and cause them to cease func-

tioning, and thus stop serving hosted content. If the attack targets are all (or most)

4 However, any two parties choosing to communicate over MCON/CROPS can use out-of-band key
management to maintain secrecy.

99

nodes who host a particular piece of content, the attack can be called “targeted.” Tar-

geted censorship is a particular problem if all replicas of a given file are in the same

DHT “neighborhood,” as in systems like Kademlia [53]. While adversaries cannot eas-

ily attack nodes from outside the network (recall that MCONs make determining the

IP address of a given node prohibitive), a number of colluding insiders can launch a

denial of service attack within the network. A flood of adversaries requesting content

hosted by a relatively small number of nodes in a given neighborhood will overwhelm

those nodes, disrupting availability of all the data they host. Adversaries who control

network gateways can also disable access to large sections of the Internet with the inten-

tion of censoring data that may be hosted at a physically-isolated location. Therefore,

a more robust strategy is needed.

4.3.2 Resisting Massive Correlated Failures

Much like prior systems such as [152] and [113], we use erasure codes and a very

high replication factor to defeat both targeted and existential attacks, providing bet-

ter robustness than replication alone can. Our approach is most similar to that of

Glacier [113], a DHT-based filesystem designed to be robust against massive correlated

failures. However, we must adjust the design somewhat, since Glacier is not an archival

storage system but is geared for content-aware collaborative filesystems. While DHT

queries are churn-resistant by design, traditional DHTs such as Kademlia [53] are un-

likely to maintain data availability in case entire “neighborhoods” fail — clusters of

nodes with similar logical identities. Glacier adds additional resistance against network

failure in case of large-scale failure events (such as the loss of a majority of all net-

work participants) by using aggressive replication and storage at pseudorandom DHT

locations (as opposed to any given object being stored in only one DHT neighborhood).

We expect the operating environment of CROPS to be significantly different from

that of Glacier in terms of network latencies and member node churn. As we expect

to operate in significantly higher-churn environments than Glacier, and cannot rely on

long-term cooperation from any node, we must take a different approach. Furthermore,

CROPS peers are explicitly content-oblivious, eliminating some optimizations that are

possible with Glacier. Finally, we must protect against DoS attacks which are out of

scope of the Glacier design, such as the storage exhaustion attack.

100

4.3.3 The CROPS Protocol

We use erasure codes to ensure file availability: we apply an m-of-n code such that out

of n post-encoding blocks, only m need to be retrieved to reconstruct the original file.

These blocks are stored in the network based on the hash of the block content [155],

meaning that blocks are all self-verifying — fetching a block allows a client to verify that

the block was fetched correctly because the hash of the block is the block identity [156].

The parameters of the erasure code specify the replication and storage overhead —

an m-of-n code imposes a factor of n
m increase on the amount of data stored in the

system. Due to the nature of our publishing protocol (discussed below), it is possible to

support publisher-specified erasure code algorithms and parameters. However, we will

not discuss this at length and will instead focus on selecting m and n values that are

“good-enough” to store some particular amount of data indefinitely.

Publishing

Figure 4.1: A publisher encrypts a file and applies an m-of-n erasure coding scheme.

We assume that publisher P has a persistent MCON pseudonym based on the result

101

of hashing the public key of an asymmetric key pair with a pre-image- and collision-

resistant hash function h. Therefore, let the public and secret keys be PK and SK,

respectively, and the pseudonym be h(PK). Before publishing a file F , P compiles a list

of keywords K that describe the file contents. The publisher selects a random integer K

of arbitrary bit-length and encrypts the file F using a symmetric cipher keyed with K,

producing EK(F). Let the length of EK(F) be a multiple of x blocks of bit-length b.

We apply an m-of-n erasure code to each block, yielding a total of xn
m encoded blocks,

producing ECn
m(EK(F)). Note that erasure coding is performed on already-encrypted

file blocks. Each of the n encoded blocks can now be inserted into the DHT under the

key h(n). The process is diagrammed in Figure 4.1.

File manifest. Each file has an associated manifest, or metadata file containing

various identifying and authenticating information. A publisher must compose and

publish two manifests: one for the key, and one for the file content. One can think of

them as “rich content pointers,” similar to simple content pointers used in Kad [134],

that contain information about the network nodes storing the erasure-coded chunks of

the desired file. Note that the manifest could hold publisher-selected values for m, n,

and the erasure code algorithm.

A content manifest has the following format (see Figure 4.2:

• h(EK(F)), a hash of the encrypted file content to verify that a file was successfully

reconstructed from multiple chunks

• a list of hashed keywords chosen by the publisher for searching

• h(F), a hash of the file content before erasure coding to verify that someone

decoded and decrypted a file successfully

• C1, C2, · · · , Cn : ∀C ∈ ECn
m(EK(F)), the list of chunk storage locations

• h(PK), a hash of the publisher’s pseudonym and public key for authentication

and publisher linkability

• SigSK(M), a signature over the entire manifest by the publisher for manifest

integrity protection

102

A key manifest is essentially identical, except that the list of chunk storage locations

is replaced with a single plaintext copy of K, and h(F) is replaced with h(K). These

manifests are not erasure-coded, but rather stored whole and aggressively replicated.

Each manifest is indexed by the contained keywords as well as replica numbers, such that

if a given manifest contained 3 keywords and the replication factor was 3, the storage

locations would be: h(1, h(keyword1)), h(2, h(keyword1)), · · · , h(3, h(keyword1)),
h(1, h(keyword2)), h(2, h(keyword2)), · · · , h(3, h(keyword2)),
h(1, h(keyword3)), h(2, h(keyword3)), · · · , h(3, h(keyword3)).
Note that in order to deny access to a file it is sufficient to deny access to all copies of

either its key manifest or content manifest, therefore a particularly aggressive replication

strategy is needed to ensure manifest availability.

Figure 4.2: A publisher composes a file manifest containing the identities of all erasure-
coded file chunks, and a key manifest containing the key itself.

Manifest “guarantors.” Each peer in the network who had a copy of a manifest

is referred to as a manifest guarantor, and is responsible for maintaining the replication

factor of both the manifest and the content to which the manifest refers. Although

manifest-holder knows the location of every file chunk and manifest, it cannot determine

the content of the file since it only has access to hashes of keywords. Furthermore,

fetching and reconstructing the file does not expose its contents to the manifest-holder,

103

since the file has been encrypted and the manifest-holder does not know the key. The

converse is true for the holder of a key manifest — while it knows the key, it does not

know which file the key decrypts. The properties of the manifest-holder are:

• Can re-assemble an entire erasure-coded encrypted file

• Cannot obtain the file plaintext

• Cannot obtain the file keywords

• Cannot alter the manifest without breaking the signature scheme used to sign it

• Cannot remove file chunks or manifests from the network other than dropping its

own

File Searching and Retrieval

To retrieve a file from the DHT, a searcher first obtains the file manifest by hashing

meaningful search terms and fetching manifest replicas stored at those hash keys. (Note

that since search terms are hashed, everyone forwarding the search request or storing the

results has plausible deniability as to the target of the query.) Since each keyword query

will return a number of manifests, the searcher takes the intersection of all returned

manifest to find the one that matches all the keywords in the query. The searcher repeats

the process with the key manifest. Key manifests can be matched with file manifests

because they will each contain an identical h(EK(F)), and can be distinguished from

file manifests since they do not include a list of chunks. Once both manifests have been

retrieved, the searching node can determine the location of all the content chunks in

the network and fetch m of them to reconstruct the encrypted file. She can verify that

the file has been correctly reconstructed by checking that the results match h(EK(F)).

She then uses the key K (contained in the key manifest) to decrypt the content and

verify that it matches h(F). Note that the key manifest and content manifests only

come together at the searcher, and the only required piece of knowledge to initiate a

search is the list of keywords related to the desired content.

104

Content Storage, Maintenance, and Retirement

Plausible Deniability Like in GNUnet [125], files in the CROPS network are not

stored whole, but are divided into blocks, which are then distributed throughout the

network based on the cryptographic hash of the block itself. Even if a peer is storing

multiple blocks from the same file, he has no way to determine if that is the case, nor

can he learn the file content since the files were encrypted before storage. Manifest

holders are likewise protected even if they are also storing chunks of the file, because

reconstruction of the file would yield encrypted data and not the file cleartext. However,

if a peer stores both the key manifest and the content manifest, he can link those

manifests together, reconstruct and decrypt the file, learning the cleartext. We note that

it is not in the best interest of an honest storer to be in possession of both manifests, since

she would lose plausible deniability if her computer were to be confiscated. Storing both

manifests does not benefit malicious nodes, since they could simply search for keywords

of interest. Therefore, peers should refuse to store key manifests if they already hold a

content manifest, and vice versa. Peers can determine whether the manifests correspond

to the same file by checking that their file hash h(EK(F)) matches, and refuse storage

of the second manifest. Forward-secure encryption must be used by the publisher when

making the storage request, since otherwise an adversary may record the transaction

and destroy the storer’s deniability. If the publisher itself is malicious, the storer can

claim to simply be following the protocol. Furthermore, even if an adversary knows

the network pseudonym of a particular storer, locating that storer in the real world is

difficult due to the properties provided by the underlying MCON layer.

We provide storer protection even stronger than plausible deniability, which we call

probable ignorance: while plausible deniability implies that a party may or may not

have known something, probable ignorance implies that a party had little chance of

having that knowledge. In our case, determining the nature of stored files is essentially

impossible,5 and content manifest-holders would have to either crack the file encryption

key K or invert the keyword hashes in order to infer file content. Key manifest-holders

would also have to invert the keyword hashes in order to determine the file to which

their stored key corresponds.

5 Timing attacks may be used to identify correlated chunks, but the content of the decrypted file
cannot be determined.

105

Garbage collection. Content storers keep a timestamp associated with every

locally stored block (initialized with the original publication time of that block), and

update the timestamp every time that block is accessed by another user in the network.

During idle times, storers lazily examine their stored blocks and probabilistically discard

blocks that have timestamps older than τ ′, clearing storage space for new blocks. Recall

the problem of pollution attacks (discussed in Section 4.3.2), where adversaries can to

overwhelm the storage capacity of the entire network by inserting garbage. A number

of archival schemes use periodic refresh to maintain content in a network and purge old

or unpopular files [8, 115]. This garbage collection scheme ensures that un-refreshed

data does not remain in the network for a long time, requiring adversaries to continue

inserting or accessing their data in order to prolong the pollution attack.

Content-oblivious robust replication. Our replication assurance strategy relies

on mutual cooperation of honest nodes to achieve resilience. While files are broken up

into chunks, manifests are kept whole. Each node storing a manifest is “responsible”

for the file to which the manifest points. Note, however, that the manifest holder does

not know the content of the file since he cannot decrypt it without key K. To ensure

availability in cases of failure of a large number of nodes, manifest holders constantly

monitor the replication factor of the manifest target. Every time period τ , every node

examines all stored manifests and downloads and reconstructs every encrypted file from

chunks stored in the network. Applying the erasure code, the node can obtain copies

of all chunks that should be stored. By searching for a sample of those chunks, the

manifest holder can probabilistically determine the current replication factor of a file

and compare it to the desired replication factor. If the difference is significant, the

node inserts all missing blocks back into the DHT. The node does the same thing

with the manifest itself, checking to see if enough replicas are available, and creating

new replicas if not. Manifest-holders, through checking replication factor and accessing

content chunks, implicitly serve to refresh timestamps of files in the network without

requiring action on the part of the publisher.

Like the garbage collection scheme described above, manifests that are not being ac-

tively accessed or are over-replicated can be probabilistically discarded. (We do not dis-

card deterministically since we may encounter the extremely unlikely situation wherein

106

all manifest holders simultaneously check the replication factor, discover that a man-

ifest is over-replicated, and drop it.) As manifests are dropped, references to content

chunks are lost with them, and content will no longer be accessed, eventually also be-

ing discarded. Note that a single honest manifest-holder is sufficient to maintain the

replication factor of any piece of content with overwhelming probability, as long as the

he can successfully retrieve the minimum number of blocks required to reconstruct the

file at least once.

Although malicious manifest holders are a concern, the worst attack they can carry

out is corrupting or dropping their own copy of the manifest. As long as they cannot

differentiate between a manifest query for reconstruction purposes and a query for re-

trieval purposes they could not preferentially deny service to one rather than the other.

This is equivalent to simply dropping the manifest — an honest guarantor will increase

the replication factor to compensate.

Emulating WikiLeaks

CROPS is similar in concept to a massively distributed version of the WikiLeaks ser-

vice [10]. MCONs are an especially attractive building block for CROPS considering

the nature of WikiLeaks: the high latencies in the MCON makes real-time communica-

tion difficult, but since WikiLeaks is mostly used as a storehouse for large documents,

latencies between 30 and 90 seconds should be quite acceptable, much like in file sharing

systems.

In keeping with the spirit of WikiLeaks, we chose to use an editor-facilitated pub-

lishing model. While a free-for-all model is attractive (where all published content is

maintained indefinitely), it suffers from a number of drawbacks such as unregulated

content quality, pollution and collision attacks, and storage space concerns. We also

reject automatic data filtering by popularity, such as that used by [125], since this can

lead to vulnerabilities [157]. Moreover, unpopular content may be just as important,

if not more important, than popular content. CROPS will be bootstrapped with a set

of hard-coded editor public keys, the private counterparts to which are held by a select

group of pseudo-administrators. Editor keys can be used to sign manifests to add a

“stamp of approval.”6 Of course, an editor-assisted model introduces its own set

6 Both the content and key manifests must be signed.

107

of problems, such as attacks on editor time. To address this issue, we use a hybrid

model such that both editor-approved and editor-unapproved data (whether explicitly

or simply for lack of examination) can still be stored and retrieved, but editor-approved

data has special protection in that it will not be dropped from the network. Honest

manifest-holders do not apply pruning to editor-signed manifests, but rather keep them

forever, independent of the last time they were accessed. Since manifest-holders refresh

content blocks in the network, the content is safe as well. Manifests not carrying editor

signatures will be garbage-collected as descried above. Note that we are not particularly

concerned with malicious editors — an editor cannot explicitly remove content from the

system, so even a single honest editor is sufficient to ensure that important content

makes it past the editorial process.

In order to bring newly-published documents to editors’ attention,7 notifications of

document publication should be inserted to a number of designated network locations,

for instance DHT IDs that correspond to the hash of editor public keys combined with

the current date. The details of this scheme are still unclear and will require future

work in order to determine the correct way to resist attack on those dedicated network

IDs.

4.4 Theoretical Analysis

The authors of Glacier [113] derive the following equation for the durability of a block

when using an m-of-n erasure-coding scheme:

D = P (s ≥ m) =
n∑

k=m

(
n

k

)
(1− fmax)

k · fn−k
max .

Note that this assumes that each block n is stored at a different network node. Therefore,

if b blocks are stored in the network then the probability that every file is recoverable,

or the robustness of the censorship-resistant system is ρ(b) = 1−Db. In other words, a

1-robust censorship-resistant storage system always allows for the retrieval of every file,

assuming a node can successfully connect to the system. In CROPS, clients must first

retrieve key and content manifests before fetching content blocks. To simplify analysis

7 A publisher who wants to see her work widely disseminated has a strong incentive to get it signed
by an editor.

108

n

100
200

300

400m

5
10

15
20

25
30

35
40

R
o
b

u
s
tn

e
s
s 0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Determining the optimum erasure-coding variables to support up to 100
petabytes of network storage. n and m are erasure code parameters, while the “y” axis
is the robustness ρ of a censorship-resistant system, showing the fraction of nodes that
must be offline or malicious before data loss begins to occur.

we assume that the manifest replication factor is the same as that of the erasure code

used.

Figures 4.3 and 4.4 show that nearly a factor of 10 storage overhead (in terms of

erasure code parameters) is required for a robust censorship-resistant system that can

support 1 exabyte of total storage, which provides 100 petabytes of useful storage when

accounting for erasure coding overhead. The figures also show that we do not gain much

advantage by moving to a lower overhead, since robustness drops quite sharply at about

factor of 8 overhead. The measurements were obtained from uniformly sampling m and

n values from 1–50 and 5–500, respectively. Tables 4.2, 4.3, and 4.2 (found at the end

109

0.0 0.2 0.4 0.6 0.8 1.0

Node failure probability
0.0

0.2

0.4

0.6

0.8

1.0

R
o
b

u
s
tn

e
s
s

1-of-10 (replication)
10-of-100
50-of-250
50-of-500
75-of-750
50-of-750

Figure 4.4: The robustness ρ of the censorship-resistant system using a given erasure
code configuration or simple replication. The 50-of-500 configuration is a good tradeoff
between overhead and robustness, as is 75-of-750. Both impose a factor of 10 storage
overhead.

of this chapter) support this observation, showing the network robustness for several

values of m and n for a given amount of total storage in the network. We observe

that nothing less than an erasure code requiring a 10-fold increase in storage gives us a

reasonable robustness value. Fortunately, that storage overhead allows us a practically

unlimited storage: between 1 exabyte and 1 zettabyte.

4.4.1 Formal Statement of Censorship Resistance

Recall our theoretical analysis of a censorship-resistant network from Section 4.1.7. Since

CROPS must necessarily be at least f(ℓ, γ,N)-membership-concealing, the instantiation

110

of our scheme with robust MCON routing (see Section 2.6.2), 50-of-500 erasure coding,

and zettabyte capacity is (N
2k2

, N
2k2

, f ′, 1.33 · 10−6)-censorship-resistant for f ′(ℓ, γ,N) =

k2(ℓ+γ) without protocol obfuscation, and is (N, N
k2
, f ′, 1.33 ·10−6)-censorship-resistant

for f ′(ℓ, γ,N) = k2ℓ with perfect obfuscation.

111

Petabyte of storage

25-of-100 erasure coding 30-of-200 erasure coding 50-of-500 erasure coding

E[f] D ρ D ρ D ρ

0.00 1.0 0.0 1.0 0.0 1.0 0.0
0.05 1.0 0.0 1.0 0.0 1.0 0.0
0.10 1.0 0.0 1.0 0.0 1.0 0.0
0.15 1.0 0.0 1.0 0.0 1.0 0.0
0.20 1.0 3.48 · 10−18 1.0 0.0 1.0 0.0
0.25 1.0 1.76 · 10−11 1.0 0.0 1.0 0.0
0.30 1.0 3.62 · 10−6 1.0 0.0 1.0 0.0
0.35 0.999 0.075 1.0 0.0 1.0 0.0
0.40 0.999 1.0 1.0 0.0 1.0 0.0
0.45 0.999 1.0 1.0 1.37 · 10−17 1.0 0.0
0.50 0.999 1.0 1.0 6.05 · 10−11 1.0 0.0
0.55 0.999 1.0 0.999 0.000036 1.0 0.0
0.60 0.9994 1.0 0.999 0.97 1.0 0.0
0.65 0.99 1.0 0.999 1.0 1.0 0.0
0.70 0.89 1.0 0.999 1.0 1.0 1.27 · 10−12

0.75 0.54 1.0 0.9998 1.0 0.999 0.0060
0.80 0.13 1.0 0.97 1.0 0.999 1.0
0.85 0.0061 1.0 0.53 1.0 0.9996 1.0
0.90 0.000013 1.0 0.016 1.0 0.52 1.0
0.95 1.82 · 10−11 1.0 8.71 · 10−8 1.0 3.58 · 10−6 1.0
1.00 0.0 1.0 0.0 1.0 0.0 1.0

Table 4.2: Expected fraction of failed, malicious, or blocked nodes (left); the durability
of a given erasure-coded block in the network (D); and the network robustness in terms
of censorship resistance (ρ).

112

Exabyte of storage

25-of-100 erasure coding 30-of-200 erasure coding 50-of-500 erasure coding

E[f] D ρ D ρ D ρ

0.00 1.0 0.0 1.0 0.0 1.0 0.0
0.05 1.0 0.0 1.0 0.0 1.0 0.0
0.10 1.0 0.0 1.0 0.0 1.0 0.0
0.15 1.0 0.0 1.0 0.0 1.0 0.0
0.20 1.0 3.56 · 10−15 1.0 0.0 1.0 0.0
0.25 1.0 1.80 · 10−8 1.0 0.0 1.0 0.0
0.30 1.0 0.0037 1.0 0.0 1.0 0.0
0.35 0.999 1.0 1.0 0.0 1.0 0.0
0.40 0.999 1.0 1.0 0.0 1.0 0.0
0.45 0.999 1.0 1.0 1.42 · 10−14 1.0 0.0
0.50 0.999 1.0 1.0 6.193 · 10−8 1.0 0.0
0.55 0.999 1.0 0.999 0.036 1.0 0.0
0.60 0.9994 1.0 0.999 1.0 1.0 0.0
0.65 0.988 1.0 0.999 1.0 1.0 6.78 · 10−21

0.70 0.89 1.0 0.999 1.0 1.0 1.30 · 10−9

0.75 0.54 1.0 0.9998 1.0 0.999 0.998
0.80 0.13 1.0 0.97 1.0 0.999 1.0
0.85 0.0061 1.0 0.53 1.0 0.9996 1.0
0.90 0.000013 1.0 0.016 1.0 0.52 1.0
0.95 1.82 · 10−11 1.0 8.71 · 10−8 1.0 3.58 · 10−6 1.0
1.00 0.0 1.0 0.0 1.0 0.0 1.0

Table 4.3: Expected fraction of failed, malicious, or blocked nodes (left); the durability
of a given erasure-coded block in the network (D); and the network robustness in terms
of censorship resistance (ρ).

113

Zettabyte of storage

25-of-100 erasure coding 30-of-200 erasure coding 50-of-500 erasure coding

E[f] D ρ D ρ D ρ

0.00 1.0 0.0 1.0 0.0 1.0 0.0
0.05 1.0 0.0 1.0 0.0 1.0 0.0
0.10 1.0 0.0 1.0 0.0 1.0 0.0
0.15 1.0 5.08 · 10−21 1.0 0.0 1.0 0.0
0.20 1.0 3.64 · 10−12 1.0 0.0 1.0 0.0
0.25 1.0 0.000019 1.0 0.0 1.0 0.0
0.30 1.0 0.98 1.0 0.0 1.0 0.0
0.35 0.999 1.0 1.0 0.0 1.0 0.0
0.40 0.999 1.0 1.0 3.15 · 10−19 1.0 0.0
0.45 0.999 1.0 1.0 1.45 · 10−11 1.0 0.0
0.50 0.999 1.0 1.0 0.000063 1.0 0.0
0.55 0.999 1.0 0.999 0.999 1.0 0.0
0.60 0.9994 1.0 0.999 1.0 1.0 0.0
0.65 0.988 1.0 0.999 1.0 1.0 7.27 · 10−18

0.70 0.89 1.0 0.999 1.0 1.0 1.33 · 10−6

0.75 0.54 1.0 0.9998 1.0 0.999 1.0
0.80 0.13 1.0 0.97 1.0 0.999 1.0
0.85 0.0061 1.0 0.53 1.0 0.9996 1.0
0.90 0.000013 1.0 0.016 1.0 0.52 1.0
0.95 1.82 · 10−11 1.0 8.71 · 10−8 1.0 3.58 · 10−6 1.0
1.00 0.0 1.0 0.0 1.0 0.0 1.0

Table 4.4: Expected fraction of failed, malicious, or blocked nodes (left); the durability
of a given erasure-coded block in the network (D); and the network robustness in terms
of censorship resistance (ρ).

Chapter 5

Future work

114

115

While we have been able to show that extremely robust censorship resistant systems

are possible even when taking very powerful adversaries into account, many interesting

areas remain under-explored. This chapter highlights some notable examples, and hints

at potential approaches.

5.1 Efficient MCON Formation and Routing

Our bootstrapping design for MCONs need to be streamlined both in terms of efficiency

and usability. Our current “infection” approach to constructing MCONs, adopted to

mitigate bootstrap attacks, is fairly cumbersome. Indeed, an ideal design would not

make use of a social network at all, either as a connectivity graph of for Sybil attack

resistance. A better approach would be one that allows individuals to ask for member-

ship in the MCON, without the use of a social network, while preserving security. It is

currently unclear how to achieve this goal.

Although our Membership and Invitation Authority can remain offline and hidden,

it still represents a central point of failure1 — if it were compromised then the complete

membership of the network would be discovered. In principle, all functionality of the

MIA can be carried out using secure multi-party computation, but the relevant efficient

algorithms remain to be developed.

5.2 Implementing a Usable CROPS

We are working on improving the editing mechanisms of CROPS. While we will always

need human editors, we can take steps to make their jobs as easy and efficient as possible.

First, we require a mechanism for interested publishers to notify editors that a document

has been submitted for their approval. Since the volume of content is likely to overwhelm

a small community of dedicated volunteers, we need a secure way to extend the editor

pool as well as revoke editing credentials of individuals who are no longer active. This

needs to be done in a way that does not fall victim to the tyranny of the majority, so

that even unpopular editors may have their say. A likely next step in the direction of

lightening editor load is to have editors vet the relevance of documents to a particular

1 with the exception of availability attacks

116

keyword, as opposed to evaluating the entire document. Thus editor signatures may

bind documents to keywords, but would not vet documents entirely. Content dropping

policies for these manifests are an additional unsolved problem.

We are continuing work on this project by developing a CROPS implementation

that can use an overlay other than an MCON for communication. This implementation

should be as user-friendly as possible, making censorship-resistant communication avail-

able to those that wish to use it, regardless of their technical abilities. Unfortunately,

our current implementations, where available, are lacking in even basic usability fea-

tures. For instance, our implementation of SilentKnockmust be manually configured,

and requires knowledge of the other party’s operating system. We do not expect non-

experts to easily use such a system. In order to see wide deployment, CROPS will need

to be easily configurable and present a friendly and intuitive user interface. It is unclear

what method of user interactions CROPS should employ. The “browser” paradigm is

clearly a bad fit due to high latencies in the system, but an interface that mimics file

sharing applications may be easy for non-technical users to understand. Latencies still

pose a significant challenge, as users may be required to wait for long periods of time

for search and/or download results. While current file-sharing networks do not pro-

vide instantaneous results, users nonetheless expect faster response that CROPS will be

able to provide. We are looking into potential user interface designs, and at developing

content-oblivious caching (at intermediate nodes) as a potential mitigation mechanism.

Bibliography

[1] Philip Elmer-Dewitt. First nation in cyberspace. TIME magazine, 49,

1993. Archived at http://web.archive.org/web/20080526061939/http://

www.chemie.fu-berlin.de/outerspace/Internet-article.html.

[2] Ronald J. Deibert, John Palfrey, Rafal Rohozinski, and Jonathan Zittrain. ONI

Home Page — OpenNet Initiative. http://opennet.net/, 2009.

[3] Ronald J. Deibert, John G. Palfrey, Rafal Rohozinski, and Jonathan Zittrain.

Access Denied: The Practice and Policy of Global Internet Filtering (Information

Revolution and Global Politics). MIT Press, 2006.

[4] Ronald J. Deibert and Nart Villeneuve. Firewalls and Power: An Overview of

Global State Censorship of the Internet. Cavendish Publishing London, 2004.

[5] Cinnamon Stillwell. Libel tourism: Where terrorism and censorship meet. San

Francisco Chronicle. August 29, 2007.

[6] Doreen Carvajal. Britain, a destination for “libel tourism”. The New York Times.

January 20, 2008.

[7] Roger Dingledine and Nick Mathewson. Design of a blocking-resistant anonymity

system. https://www.torproject.org/svn/trunk/doc/design-paper/

blocking.html, 2007.

[8] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

distributed anonymous information storage and retrieval system. In Proceedings

of Designing Privacy Enhancing Technologies: Workshop on Design Issues in

Anonymity and Unobservability, 2000.

117

http://web.archive.org/web/20080526061939/http://www.chemie.fu-berlin.de/outerspace/Internet-article.html
http://web.archive.org/web/20080526061939/http://www.chemie.fu-berlin.de/outerspace/Internet-article.html
http://opennet.net/
https://www.torproject.org/svn/trunk/doc/design-paper/blocking.html
https://www.torproject.org/svn/trunk/doc/design-paper/blocking.html

118

[9] Anonymous web surfing by Anonymizer. http://anonymizer.com/, 2010.

[10] WikiLeaks. http://wikileaks.org/, 2008.

[11] Marc Waldman and David Mazières. Tangler: a censorship-resistant publishing

system based on document entanglements. In Proceedings of the ACM Conference

on Computer and Communications Security (CCS), 2001.

[12] China ’blocks’ iTunes music store. BBC News. August 22, 2008.

[13] Pakistan blocks YouTube website. BBC News. February 24, 2008.

[14] phobos. Tor partially blocked in China. https://blog.torproject.org/blog/

tor-partially-blocked-china, 2009.

[15] John Douceur. The Sybil Attack. In Proceedings of the International Peer To

Peer Systems Workshop (IPTPS), 2002.

[16] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao. SybilLimit:

A near-optimal social network defense against Sybil attacks. In Proceedings of the

IEEE Symposium on Security and Privacy, 2008.

[17] George Danezis and Prateek Mittal. SybilInfer: Detecting Sybil nodes using so-

cial networks. In Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2009.

[18] Martin Krzywinski. Port knocking: Network authentication across closed ports.

SysAdmin Magazine, 12(6), 2003.

[19] P. Barham, S. Hand, R. Isaacs, P. Jardetzky, R. Mortier, and T. Roscoe. Tech-

niques for lightweight concealment and authentication in IP networks. Technical

Report IRB-TR-02-009, Intel Research Berkeley, 2002.

[20] D. Worth. CÖK: Cryptographic one-time knocking. In Black Hat USA, 2004.

[21] Rennie deGraaf, John Aycock, and Michael Jr. Jacobson. Improved port knocking

with strong authentication. In Proceedings of the Computer Security Applications

Conference (ACSAC). IEEE Computer Society, 2005.

http://anonymizer.com/
http://wikileaks.org/
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/tor-partially-blocked-china

119

[22] Elli Androulaki, Mariana Raykova, Shreyas Srivatsan, Angelos Stavrou, and

Steven M. Bellovin. PAR: Payment for anonymous routing. In Nikita Borisov

and Ian Goldberg, editors, Proceedings of the International Symposium on Pri-

vacy Enhancing Technologies (PETS). Springer, 2008.

[23] Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan S. Wallach. Building

incentives into Tor. In Radu Sion, editor, Proceedings of Financial Cryptography

(FC), 2010.

[24] Mark Achbar and Peter Wintonick. Manufacturing consent: Noam Chomsky and

the media, 1992.

[25] Constitutional Convention. United States Constitution, 1787. Available

at http://memory.loc.gov/cgi-bin/query/r?ammem/bdsbib:@field(NUMBER+

@od1(bdsdcc+c0801)).

[26] First Federal Congress of the United States. Amendments to the Consti-

tution, 1798. Available at http://www.loc.gov/rr/program/bib/ourdocs/

billofrights.html.

[27] United Nations General Assembly. The Universal Declaration of Human Rights.

December 10, 1948.

[28] The whistleblower protection program. http://www.osha.gov/dep/oia/

whistleblower/index.html, 2010.

[29] Whistleblower disclosures. http://www.osc.gov/wbdisc.htm, 2010.

[30] Society of professional journalists: SPJ code of ethics. Society of Professional

Journalists, 2010.

[31] P. Biddle, P. England, M. Peinado, and B. Willman. The darknet and the future

of content distribution. Technical report, Microsoft Corporation, 2002.

[32] Andreas Pfitzmann and Marit Hansen. Anonymity, unobservability, and

pseudonymity: A consolidated proposal for terminology. Draft, 2000.

http://memory.loc.gov/cgi-bin/query/r?ammem/bdsbib:@field(NUMBER+@od1(bdsdcc+c0801))
http://memory.loc.gov/cgi-bin/query/r?ammem/bdsbib:@field(NUMBER+@od1(bdsdcc+c0801))
http://www.loc.gov/rr/program/bib/ourdocs/billofrights.html
http://www.loc.gov/rr/program/bib/ourdocs/billofrights.html
http://www.osha.gov/dep/oia/whistleblower/index.html
http://www.osha.gov/dep/oia/whistleblower/index.html
http://www.osc.gov/wbdisc.htm

120

[33] Thomas S. Heydt-Benjamin, Andrei Serjantov, and Benessa Defend. Nonesuch:

a mix network with sender unobservability. In Proceedings of the Workshop on

Privacy in the Electronic Society (WPES), 2006.

[34] Nick Feamster, Magdalena Balazinska, Winston Wang, Hari Balakrishnan, and

David Karger. Thwarting web censorship with untrusted messenger delivery. In

Roger Dingledine, editor, Proceedings of Privacy Enhancing Technologies work-

shop (PET). Springer-Verlag, LNCS 2760, 2003.

[35] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2), 1981.

[36] David Mazières and M. Frans Kaashoek. The Design, Implementation and Oper-

ation of an Email Pseudonym Server. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS). ACM Press, 1998.

[37] Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really guarantee privacy?

In Proceedings of the USENIX Security Symposium. USENIX, 2000.

[38] Matthias Bauer. New covert channels in HTTP: Adding unwitting web browsers

to anonymity sets. In Proceedings of the Workshop on Privacy in the Electronic

Society (WPES), 2003.

[39] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proceedings of the USENIX Security Symposium,

2004.

[40] Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transactions. ACM

Transactions on Information and System Security, 1(1), 1998.

[41] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing

network layer. In Proceedings of the ACM Conference on Computer and Commu-

nications Security (CCS), 2002.

[42] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis

of the degradation of anonymous protocols. In Proceedings of the Network and

Distributed Security Symposium (NDSS). IEEE, 2002.

121

[43] Arjun Nambiar and Matthew Wright. Salsa: A structured approach to large-scale

anonymity. In Proceedings of the ACM Conference on Computer and Communi-

cations Security (CCS), 2006.

[44] Jonathan Zittrain and Benjamin Edelman. Internet filtering in China. IEEE

Internet Computing, 7(2), 2003.

[45] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,

Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: a public DHT service and

its uses. SIGCOMM Computer Communication Review, 35(4), 2005.

[46] Justin Frankel. waste, 2003. Archived at: http://slackerbitch.free.fr/

waste/.

[47] Eliot Van Buskirk. LimeWire adds private file sharing. http://blog.wired.com/

business/2008/12/lime-wire-adds.html, 2008.

[48] Oskar Sandberg. Distributed routing in small-world networks. In Proceedings of

the Workshop on Algorithm Engineering and Experiments (ALENEX), 2006.

[49] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson.

Friend-to-friend data sharing with OneSwarm. Technical report, University of

Washington, 2009. http://oneswarm.cs.washington.edu/f2f_tr.pdf.

[50] George Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and Ross Anderson. Sybil-

resistant DHT routing. In Proceedings of the European Symposium on Research

in Computer Security (ESORICS), 2005.

[51] Ian Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer

lookup service for Internet applications. In Proceedings of the Conference on Ap-

plications, technologies, architectures, and protocols for computer communications

(SIGCOMM). ACM Press, 2001.

[52] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Proceedings of

http://slackerbitch.free.fr/waste/
http://slackerbitch.free.fr/waste/
http://blog.wired.com/business/2008/12/lime-wire-adds.html
http://blog.wired.com/business/2008/12/lime-wire-adds.html
http://oneswarm.cs.washington.edu/f2f_tr.pdf

122

IFIP/ACM International Conference on Distributed Systems Platforms (Middle-

ware). Springer, 2001.

[53] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information

system based on the XOR metric. In Proceedings of the International Workshop

on Peer-to-Peer Systems (IPTPS), volume 258. Springer, 2002.

[54] Bogdan C. Popescu. Safe and private data sharing with Turtle: Friends team-up

and beat the system. In Proceedings of the Cambridge International Workshop on

Security Protocols, 2004.

[55] Yair Sovran, Alana Libonati, and Jinyang Li. Pass it on: Social networks stymie

censors. In International Workshop on Peer-to-Peer Systems (IPTPS), 2008.

[56] A. Mislove, M. Marcon, K.P. Gummadi, Peter Druschel, and B. Bhattacharjee.

Measurement and analysis of online social networks. In Proceedings of the ACM

SIGCOMM conference on Internet Measurement (IMC). ACM Press, 2007.

[57] George Danezis and Bettina Wittneben. The economics of mass surveillance and

the questionable value of anonymous communications. In Proceedings of the Work-

shop on The Economics of Information Security (WEIS), 2006.

[58] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In

Proceedings of the IEEE Symposium on Security and Privacy, 2009.

[59] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-

abhan, and Lili Qiu. Statistical identification of encrypted web browsing traffic.

In Proceedings of the IEEE Symposium on Security and Privacy, 2002.

[60] Roger Dingledine and Nick Mathewson. Tor directory server specification. http:

//www.torproject.org/svn/trunk/doc/spec/dir-spec.txt, 2009.

[61] Roger Dingledine and Nick Mathewson. Tor protocol specification. http://www.

torproject.org/svn/trunk/doc/spec/tor-spec.txt, 2008.

[62] Roger Dingledine and Nick Mathewson. Tor bridges specification. http://www.

torproject.org/svn/trunk/doc/spec/bridges-spec.txt, 2008.

http://www.torproject.org/svn/trunk/doc/spec/dir-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/dir-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/tor-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/tor-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/bridges-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/bridges-spec.txt

123

[63] M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, and A. Rowstron. Virtual

ring routing: network routing inspired by DHTs. In Proceedings of the conference

on Applications, technologies, architectures, and protocols for computer commu-

nications (SIGCOMM). ACM Press, 2006.

[64] Prateek Mittal and Nikita Borisov. Information leaks in structured peer-to-peer

anonymous communication systems. In Paul Syverson, Somesh Jha, and Xiaolan

Zhang, editors, Proceedings of the ACM Conference on Computer and Communi-

cations Security (CCS). ACM Press, 2008.

[65] Brent ByungHoon Kang, Eric Chan-Tin, Christopher P. Lee, James Tyra,

Hun Jeong Kang, Chris Nunnery, Zachariah Wadler, Greg Sinclair, Nicholas Hop-

per, David Dagon, and Yongdae Kim. Towards complete node enumeration in a

peer-to-peer botnet. In Proceedings of the International Symposium on Informa-

tion, Computer, and Communications Security (ASIACCS). ACM Press, 2009.

[66] Anant Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceedings

of the International Conference on the Theory and Application of Cryptographic

Techniques (EUROCRYPT). Springer, 2005.

[67] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pair-

ing. SIAM Journal on Computing, 32(3), 2003.

[68] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing

information. In Ross Anderson, editor, Proceedings of the International Workshop

on Information Hiding. Springer-Verlag, LNCS 1174, 1996.

[69] Yin-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes: a defense

against wormhole attacks in wireless networks. In Proceedings of the Joint Con-

ference of the IEEE Computer and Communications Societies (INFOCOM), vol-

ume 3, 2003.

[70] Y. Kim, Adrian Perrig, and Gene Tsudik. Communication-efficient group key

agreement. In Proceedings of the IFIP TC11 Working Conference on Information

Security: Trusted Information: The New Decade Challenge. Kluwer Academic

Pub, 2001.

124

[71] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against

chosen ciphertext attack. Journal of Cryptology, 15(2), 2002.

[72] Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based

anonymity systems. In Proceedings of the European Symposium on Research in

Computer Security (ESORICS), 2003.

[73] Jared Saia and Moti Young. Reducing communication costs in robust peer-to-peer

networks. Information Processing Letters, 106(4), 2008.

[74] X. Fu, B. Graham, R. Bettati, and W. Zhao. On countermeasures to traffic

analysis attacks. In Proceedings of the Information Assurance Workshop, 2003.

[75] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling.

The “King” data set. http://pdos.csail.mit.edu/p2psim/kingdata/, 2005.

[76] Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In

Proceedings of the ACM Symposium on Theory of Computing, 2000.

[77] Eugene Vasserman, Nicholas Hopper, John Laxton, and James Tyra. Silent-

Knock: Practical, provably undetectable authentication. International Journal

of Information Security, 8(2), 2009.

[78] Luis von Ahn Nicholas J. Hopper, John Langford. Provably secure steganogra-

phy. In Proceedings of the International Cryptology Conference on Advances in

Cryptology (CRYPTO), 2002.

[79] Steven J. Murdoch and Stephen Lewis. Embedding covert channels into TCP/IP.

In Mauro Barni, Jordi Herrera-Joancomart́ı, Stefan Katzenbeisser, and Fernando

Pérez-González, editors, Information Hiding. Springer, LNCS 3727, 2005.

[80] D. J. Bernstein. The Poly1305-AES message authentication code. In Fast Software

Encryption, 2005.

[81] Matt Mackall and Theodore Ts’o. random.c – A strong random number generator.

Linux 2.6.17.13 kernel source, drivers/char/random.c.

http://pdos.csail.mit.edu/p2psim/kingdata/

125

[82] Eugene Vasserman, Nicholas Hopper, John Laxson, and James Tyra. Silentknock,

2007. http://www.cs.umn.edu/~eyv/knock/.

[83] Jake Kouns, Chris Sullo, Brian Martin, David Shettler, Steve Tornio, and Kelly

Todd. OSVDB: The Open Source Vulnerability Database. http://osvdb.org/,

2008.

[84] Christian Borss. DROP/DENY vs. REJECT. http://web.archive.org/web/

20060901114422/http://www.lk.etc.tu-bs.de/lists/archiv/lug-bs/2001/

msg05734.html, 2001.

[85] Martin Krzywinski. Port knocking. http://www.portknocking.org/, 2008.

[86] John Graham-Cumming. Practical secure port knocking. Dr. Dobb’s Journal,

2004.

[87] Antonio Izquierdo Manzanares, Joaquin Torres Marquez, Juan M. Estevez-

Tapiador, and Julio Cesar Hernandez Castro. Attacks on port knocking authen-

tication mechanism. In International Conference on Computational Science and

Its Applications (ICCSA), volume 3483. Springer, LNCS 3483, 2005.

[88] D. Kundu PK. Ahsan. Practical data hiding in TCP/IP. In Proc. Workshop on

Multimedia Security at ACM Multimedia, 2002.

[89] Craig H. Rowland. Covert channels in the TCP/IP protocol suite. First Monday,

2(5), 1997.

[90] Conehead. Stego hasho. Phrack, 9(55), 1999.

[91] Todd MacDermid. Stegtunnel. http://www.synacklabs.net/OOB/stegtunnel.

html, 2008.

[92] Luis von Ahn, Nicholas Hopper, and John Langford. Covert two-party compu-

tation. In Proceedings of the ACM symposium on Theory of computing (STOC).

ACM Press, 2005.

[93] Mike Bond and George Danezis. The dining freemasons: Security protocols for

secret societies. In Thirteenth International Workshop on Security Protocols, 2005.

http://www.cs.umn.edu/~eyv/knock/
http://osvdb.org/
http://web.archive.org/web/20060901114422/http://www.lk.etc.tu-bs.de/lists/archiv/lug-bs/2001/msg05734.html
http://web.archive.org/web/20060901114422/http://www.lk.etc.tu-bs.de/lists/archiv/lug-bs/2001/msg05734.html
http://web.archive.org/web/20060901114422/http://www.lk.etc.tu-bs.de/lists/archiv/lug-bs/2001/msg05734.html
http://www.portknocking.org/
http://www.synacklabs.net/OOB/stegtunnel.html
http://www.synacklabs.net/OOB/stegtunnel.html

126

[94] S. Kent and R. Atkinson. IP authentication header. IETF Internet Draft, 1998.

[95] A. Heffernan. Protection of BGP sessions via the TCP MD5 signature option.

IETF Internet Draft, 1998.

[96] Greg Hoglund and Jamie Butler. Rootkits: Subverting the Windows Kernel.

Addison-Wesley Professional, 2005.

[97] Sandra Ring and Eric Cole. Taking a lesson from stealthy rootkits. IEEE Security

and Privacy, 2(4), 2004.

[98] Victor Shoup. On fast and provably secure message authentication based on

universal hashing. In Proceedings of the International Cryptology Conference on

Advances in Cryptology (CRYPTO). Springer-Verlag, 1996.

[99] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-

sage authentication. In Proceedings of the International Cryptology Conference on

Advances in Cryptology (CRYPTO), 1996.

[100] Harald Welte, Jozsef Kadlecsik, Martin Josefsson, Patrick McHardy, Yasuyuki

Kozakai, James Morris, Marc Boucher, and Rusty Russell. The netfilter.org

project. http://www.netfilter.org/, 2008.

[101] Jon Postel, ed. Transmission control protocol. IETF Internet Draft, 1981.

[102] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (ex-

tended abstract). In Proceedings of the ACM symposium on Theory of computing

(STOC). ACM Press, 1977.

[103] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings

of the ACM symposium on Principles of Distributed Computing (PODC). ACM

Press, 1995.

[104] Maurice P. Herlihy. Impossibility and universality results for wait-free synchro-

nization. In Proceedings of the ACM Symposium on Principles of Distributed

Computing (PODC), 1988.

http://www.netfilter.org/

127

[105] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in TCP

round-trip times. In Proceedings of the ACM SIGCOMM conference on Internet

measurement (IMC). ACM Press, 2003.

[106] S. M. Bellovin. Security problems in the TCP/IP protocol suite. SIGCOMM

Computer Communication Review, 19(2), 1989.

[107] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated

encryption in SSH: provably fixing the SSH binary packet protocol. In Proceedings

of the ACM conference on Computer and communications security (CCS). ACM

Press, 2002.

[108] Andrew Hintz. Fingerprinting websites using traffic analysis. In Roger Dingle-

dine and Paul Syverson, editors, Proceedings of Privacy Enhancing Technologies

workshop (PET). Springer-Verlag, LNCS 2482, 2002.

[109] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprint-

ing: attacking popular privacy enhancing technologies with the multinomial näıve-

Bayes classifier. In Proceedings of the ACM workshop on Cloud computing security

(CCSW). ACM Press, 2009.

[110] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A.N. Soules,

and Gregory R. Ganger. Self-securing storage: Protecting data in compromised

systems. Foundations of Intrusion Tolerant Systems, 0, 2003.

[111] Peter Druschel and Aantony Rowstron. PAST: A large-scale, persistent peer-

to-peer storage utility. In Proceedings of Workshop on Hot Topics in Operating

Systems, volume 0. IEEE Computer Society, 2001.

[112] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, HakimWeatherspoon, Westley

Weimer, Chris Wells, and Ben Zhao. OceanStore: An architecture for global-scale

persistent storage. ACM SIGPLAN Notices, 35(11), 2000.

[113] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly durable,

decentralized storage despite massive correlated failures. In Proceedings of the

128

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

volume 5, 2005.

[114] L.P. Cox and B.D. Noble. Samsara: Honor among thieves in peer-to-peer storage.

ACM SIGOPS Operating Systems Review, 37(5), 2003.

[115] Ivan Osipkov, Peng Wang, and Nicholas Hopper. Robust accounting in decen-

tralized P2P storage systems. In Mustaque Ahamad and Lúıs Rodrigues, editors,

Proceedings of the IEEE International Conference on Distributed Computing Sys-

tems (ICDCS). IEEE Computer Society, 2006.

[116] Google censors itself for China. BBC News. January 25, 2006.

[117] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing and

implementing malicious hardware. In Proceedings of the USENIX Workshop on

Large-Scale Exploits and Emergent Threats (LEET), 2008.

[118] Scott Wolchok, Randy Yao, and J. Alex Halderman. Analysis of the Green Dam

censorware system. http://www.cse.umich.edu/~jhalderm/pub/gd/, 2009.

[119] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of ser-

vice or denial of security? How attacks on reliability can compromise anonymity.

In Proceedings of the ACM Conference on Computer and Communications Secu-

rity (CCS), 2007.

[120] Ross Anderson. The Eternity service. In Proceedings of Pragocrypt, 1996.

[121] Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven

project: Distributed anonymous storage service. In H. Federrath, editor, Proceed-

ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues

in Anonymity and Unobservability. Springer-Verlag, LNCS 2009, 2000.

[122] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-

evident, censorship-resistant and source-anonymous web publishing system. In

Proceedings of the USENIX Security Symposium, 2000.

[123] Andrei Serjantov. Anonymizing censorship resistant systems. In Proceedings of

the International Peer To Peer Systems Workshop (IPTPS), 2002.

http://www.cse.umich.edu/~jhalderm/pub/gd/

129

[124] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David

Karger. Infranet: Circumventing web censorship and surveillance. In Proceedings

of the USENIX Security Symposium, 2002.

[125] Krista Bennett, Christian Grothoff Tzvetan Horozov, and Ioana Patrascu. Effi-

cient sharing of encrypted data. In Proceedings of the Australian Conference on

Information Security and Privacy (ACISP). Springer-Verlag, 2002.

[126] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable

networks. In Proceedings of the ACM-SIAM symposium on Discrete algorithms

(SODA). Society for Industrial and Applied Mathematics, 2002.

[127] George Danezis and Ross Anderson. The economics of censorship resistance. In

Proceedings of Workshop on Economics and Information Security (WEIS), 2004.

[128] Ginger Perng, Michael K. Reiter, and Chenxi Wang. Censorship resistance revis-

ited. In Proceedings of Information Hiding Workshop (IH), 2005.

[129] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable

networks. In Proceedings of the ACM-SIAM symposium on Discrete algorithms

(SODA). Society for Industrial and Applied Mathematics, 2002.

[130] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring the

great firewall of china. In George Danezis and Philippe Golle, editors, Proceedings

of the Workshop on Privacy Enhancing Technologies (PET). Springer, 2006.

[131] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Measur-

ing and detecting fast-flux service networks. In Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2008.

[132] Tim Cranton. Cracking down on botnets. http://blogs.technet.com/

microsoft_blog/archive/2010/02/25/cracking-down-on-botnets.aspx.

February 25, 2010.

[133] Atif Mushtaq. Smashing the Mega-d/Ozdok botnet in 24 hours. http://

blog.fireeye.com/research/2009/11/smashing-the-ozdok.html. November

11, 2009.

http://blogs.technet.com/microsoft_blog/archive/2010/02/25/cracking-down-on-botnets.aspx
http://blogs.technet.com/microsoft_blog/archive/2010/02/25/cracking-down-on-botnets.aspx
http://blog.fireeye.com/research/2009/11/smashing-the-ozdok.html
http://blog.fireeye.com/research/2009/11/smashing-the-ozdok.html

130

[134] eMule Team. eMule project. http://www.emule-project.net/, 2009.

[135] BitTorrent, Inc. BitTorrent. http://www.bittorrent.com/, 2009.

[136] Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune,

Nicholas Hopper, and Yongdae Kim. Attacking the Kad network — real-world

evaluation and high-fidelity simulation using DVN. Security and Communication

Networks, 2009.

[137] Ceki Gülcü and Gene Tsudik. Mixing E-mail with Babel. In Proceedings of the

Network and Distributed Security Symposium (NDSS). IEEE, 1996.

[138] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go MIXes: Pro-

viding probabilistic anonymity in an open system. In Proceedings of Information

Hiding Workshop (IH). Springer-Verlag, LNCS 1525, 1998.

[139] Anja Jerichow, Jan Müller, Andreas Pfitzmann, Birgit Pfitzmann, and Michael

Waidner. Real-Time MIXes: A Bandwidth-Efficient Anonymity Protocol. IEEE

Journal on Selected Areas in Communications, 16(4), 1998.

[140] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of

a type III anonymous remailer protocol. In Proceedings of the IEEE Symposium

on Security and Privacy, 2003.

[141] Petros Maniatis, Mema Roussopoulos, TJ Giuli, David S. H. Rosenthal, and Mary

Baker. The lockss peer-to-peer digital preservation system. ACM Transactions

on Computer Systems, 23(1), 2005.

[142] Mark W. Storer, Kevin Greenan, and Ethan L. Miller. Long-term threats to

secure archives. In Proceedings of the ACM workshop on Storage security and

survivability (StorageSS). ACM Press, 2006.

[143] Arun Subbiah and Douglas M. Blough. An approach for fault tolerant and secure

data storage in collaborative work environments. In Proceedings of the ACM

workshop on Storage security and survivability (StorageSS). ACM Press, 2005.

http://www.emule-project.net/
http://www.bittorrent.com/

131

[144] Jay J. Wylie, Michael W. Bigrigg, John D. Strunk, Gregory R. Ganger, Han

Kili̧çcöte, and Pradeep K. Khosla. Survivable information storage systems. Com-

puter, 33, 2000.

[145] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voruganti.

POTSHARDS: secure long-term storage without encryption. In Proceedings of

the USENIX Technical Conference (ATC). USENIX Association, 2007.

[146] Qin Xin, J. E. Thomas, S. J. Schwarz, and Ethan L. Miller. Disk infant mortality

in large storage systems. In Proceedings of the 13th IEEE International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS). IEEE Computer Society, 2005.

[147] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proac-

tive recovery. ACM Trans. Comput. Syst., 20(4), 2002.

[148] Dahlia Malkhi and Michael K. Reiter. An architecture for survivable coordina-

tion in large distributed systems. IEEE Transactions on Knowledge and Data

Engineering, 12(2), 2000.

[149] D. Dolev, M.J. Fischer, R. Fowler, N.A. Lynch, and H. Raymond Strong. An

efficient algorithm for Byzantine agreement without authentication. Information

and Control, 52(3), 1982.

[150] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. In Proceed-

ings of the International Conference on Dependable Systems and Networks (DSN),

2005.

[151] Barbara Liskov and Rodrigo Rodrigues. Tolerating Byzantine faulty clients in a

quorum system. In Mustaque Ahamad and Lúıs Rodrigues, editors, Proceedings of

the IEEE International Conference on Distributed Computing Systems (ICDCS).

IEEE Computer Society, 2006.

[152] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead

byzantine fault-tolerant storage. In Proceedings of 21st ACM SIGOPS sympo-

sium on Operating systems principles (SIGOPTS). ACM Press, 2007.

132

[153] Jinyuan Li and David Mazières. Beyond one-third faulty replicas in Byzantine

fault tolerant systems. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI). USENIX Association, 2007.

[154] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P.

Wattenhofer. Farsite: federated, available, and reliable storage for an incompletely

trusted environment. In Proceedings of the symposium on Operating systems de-

sign and implementation (OSDI). ACM Press, 2002.

[155] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scal-

able content-addressable network. In Proceedings of the Conference on Appli-

cations, technologies, architectures, and protocols for computer communications

(SIGCOMM), volume 31. ACM Press, 2001.

[156] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In

Proceedings of the Conference on File and Storage Technologies (FAST), volume 4,

2002.

[157] Dennis Kügler. An Analysis of GNUnet and the Implications for Anonymous,

Censorship-Resistant Networks. In Roger Dingledine, editor, Proceedings of Pri-

vacy Enhancing Technologies workshop (PET). Springer-Verlag, LNCS 2760, 2003.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Contribution of This Work
	Membership-concealing Overlay Networks
	SilentKnock: Provably Covert Authentication
	Censorship-resistant Overlay Publishing System

	Justification

	Membership-concealing overlay networks
	Relationships Between Concepts
	MCON Requirements
	Formal Definition of MCONs
	``Open'' vs. ``Closed'' Networks

	Related Work
	Freenet
	Tor Bridges
	Other Systems
	Using Social Networks to Bootstrap Trust and Mitigate Sybil Attacks

	Attacks on Existing Systems
	Attacking Freenet Opennet
	Attacking Tor Bridges

	Design
	Efficient Design
	Robust Design
	Hybrid Design

	Theoretical Analysis
	Search Time
	Membership Concealment Intuition
	Churn

	Simulation Results
	MCON Construction
	Routing and Search

	SilentKnock: practical, provably undetectable authentication
	Related Work
	Formal Definition of Port Knocking
	Security Condition
	Related Notions
	Generic Provably Secure Port Knocking

	System Design
	Universal Compatibility
	Design Choices
	Protocol
	System Architecture
	Prioritized Synchronization With Minimal Contention
	Timing Analysis

	Discussion
	Limitations of SilentKnock

	Censorship-resistant overlay publishing system
	CROPS Requirements
	Security Requirements
	Targeted Blocking
	Existential Blocking
	Functional Requirements
	Adversary Models
	System Types and Parties of Interest
	Formal Definition of Censorship Resistance

	Related Work
	Limitations of Naïve Approaches
	The State of the Art
	Robust Distributed Storage

	System Design
	Robust DHT-based Storage
	Resisting Massive Correlated Failures
	The CROPS Protocol

	Theoretical Analysis
	Formal Statement of Censorship Resistance

	Future work
	Efficient MCON Formation and Routing
	Implementing a Usable CROPS

	Bibliography

