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Abstract. This paper describes the Organization-based Multiagent System 
Engineering (O-MaSE) Process Framework, which helps process engineers 
define custom multiagent systems development processes. O-MaSE builds off 
the MaSE methodology and is adapted from the OPEN Process Framework 
(OPF). OPF implements a Method Engineering approach to process 
construction. The goal of O-MaSE is to allow designers to create customized 
agent-oriented software development processes. O-MaSE consists of three basic 
structures: (1) a metamodel, (2) a set of methods fragments, and (3) a set of 
guidelines. The O-MaSE metamodel defines the key concepts needed to design 
and implement multiagent systems. The method fragments are operations or 
tasks that are executed to produce a set of work products, which may include 
models, documents, or code. The guidelines define how the method fragments 
are related to one another. The paper also demonstrates two examples of 
creating custom O-MaSE processes.  

1.  Introduction 

The software industry is facing new challenges. Businesses today are demanding 
applications that can operate autonomously, can adapt in response to dynamic 
environments, and can interact with other applications in order to provide 
comprehensive solutions. Multiagent system (MAS) technology is a promising 
approach to these new requirements [13]. Its central notion – the intelligent agent – 
encapsulates all the characteristics (i.e., autonomy, proactive, reactivity, and 
interactivity) required to fulfill the requirements demanded by these new applications.     

In order to develop these autonomous and adaptive systems, novel approaches are 
needed. In the last several years, many new processes for developing MAS have been 
proposed [1]; unfortunately, none of these processes have gained widespread 
industrial acceptance. Reasons for this lack of acceptance include the variety of 
approaches upon which these processes are based (i.e., object-oriented, requirements 
engineering, and knowledge engineering) and the lack of Computer Aided Software 
Engineering (CASE) tools that support the process of software design. There have 
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been some approaches suggested for increasing the change of industry acceptance. 
For instance, Odell et al. suggest presenting new techniques as an incremental 
extension of known and trusted methods [14], while Bernon et al. suggest the 
integration of existing agent-oriented processes into one highly defined process [3]. 
Although these suggestions may be helpful in gaining industrial acceptance of agent-
oriented techniques, we believe that a more promising way is to provide more 
flexibility in the approaches offered. The main problem with these approaches is that 
they do not provide assistance to process engineers on how to extend or tailor these 
processes. In this vein, Henderson-Sellers suggests the use of method engineering 
using a well-defined and accepted metamodel in order to allow users to construct and 
to customize their own processes that fit their particular approaches to systems 
development [11]. Henderson-Sellers argues that by defining method fragments based 
on a common underlying metamodel, new custom processes can be created that 
support user defined goals and preferences.  

The goal of this paper is to present an overview of the Organization-based 
Multiagent System Engineering (O-MaSE) Process Framework. The goal of the O-
MaSE Process Framework is to allow process engineers to construct custom agent-
oriented processes using a set of method fragments, all of which are based on a 
common metamodel. To achieve this, we define O-MaSE in terms of a metamodel, a 
set of method fragments, and a set of guidelines. The O-MaSE metamodel defines a 
set of analysis, design, and implementation concepts and a set of constraints between 
them. The method fragments define how a set of analysis and design products may be 
created and used within O-MaSE. Finally, guidelines define how the method fragment 
may be combined to create valid O-MaSE processes, which we refer to as O-MaSE 
compliant processes. 

The rest of the paper is organized as follows. Section 2 discusses the background 
material on O-MaSE. Section 3 presents a brief overview of the O-MaSE Process 
Framework as defined by the proposed metamodel, method fragments, and guidelines. 
Section 4 presents examples of two O-MaSE-compliant processes that can be used for 
developing a simulated cooperative robotic system. Finally, Section 5 concludes and 
describes future work. 

2.  Background 

One of the major problems faced by agent-oriented software engineering is the failure 
to achieve a strong industry acceptance. One of the reasons hindering this acceptance 
is a lack of an accepted process-oriented methodology for developing agent-based 
systems. An interesting solution to this problem is the use of approaches that allow us 
to customize processes based on different types of applications and development 
environments. One technique that provides such a rational approach for the 
construction of tailored methods is Method Engineering [5]. 

Method Engineering is an approach by which process engineers construct 
processes (i.e., methodologies) from a set of method fragments instead of trying to 
modify a single monolithic, “one-size-fits-all” process. These fragments are generally 
identified by analyzing these “one-size-fits-all” processes and extracting useful tasks 
and techniques. The fragments are then redefined in terms of a common metamodel 



and are stored in a repository for later use. To create a new process, a process 
engineer selects appropriate method fragments from the repository and assembles 
them into a complete process based on project requirements [5].  

However, the application of Method Engineering in the development of agent-
oriented applications is non-trivial. Specifically, there is no consensus on the common 
elements of multiagent systems. Thus, it is has been suggested that prior to 
developing a set of method fragments, a well-defined metamodel of common agent-
oriented that are typical of most varieties of MAS (e.g., adaptive, competitive, self-
organizing, etc.) should be developed [4]. 

Fortunately, we can leverage the OPEN Process Framework (OPF), which provides 
an industry-standard approach for applying Method Engineering to the production of 
custom processes [9]. The OPF uses an integrated metamodel-based framework that 
allows designers to select method fragments from a repository and to construct a 
custom process using identified construction and tailoring guidelines. This 
metamodel-based framework is supported by a three-layer schema as shown in Fig. 1. 
The M2 layer includes the OPF metamodel, which is a generic process metamodel 
defining the types of method fragments that can be used in M1. Thus a process (such 
as OPEN) can be created in M1 by instantiating method fragments from the M2 
metamodel.  

 

Fig. 1. OPEN Process Framework (adapted from [12]) 

The OPF metamodel consists of Stages, Work Units (Activities, Tasks, and 
Techniques), Producers, Work Products, and Languages. A Stage is defined as a 
“formally identified and managed duration within the process or a point in time at 
which some achievement is recognized” [9, pp. 55]. Stages are used to organize Work 
Units, which are defined as operations that are carried out by a Producer. There are 
three kinds of Work Units in OPF: Activities, Tasks, and Techniques. Activities are a 
collection of Tasks. Tasks are small jobs performed by one or more Producers. 
Techniques are detailed approaches to carrying out various Tasks. Producers use 
Techniques to create, evaluate, iterate, and maintain Work Products. Work Products 
are pieces of information or physical entities produced (i.e., application, document, 
model, diagram, or code) and serve as the inputs to and the outputs of Work Units. 
Work Products are documented in appropriate Languages. 



The M1 layer serves as a repository of method fragments instantiated from the M2 
metamodel. A set of rules governing the relationship between these concepts (i.e., a 
process-specific metamodel and a set of reusable method fragments) is also defined in 
M1. Basically, the process engineer uses the guidelines to extend, to instantiate, and 
to tailor the predefined method fragments for creating a custom process in the M1 
layer. These custom processes are then instantiated at the M0 level on specific 
projects; the actual custom process as enacted on a specific project is termed a 
process instance. 

Alternatively, the FIPA (Foundation for Physical Agents) Technical Committee 
(TC) methodology group2 is working on defining reusable method fragments in order 
to allow designers to specify custom agent-oriented processes [17]. Although this 
approach is quite similar to OPF (they are both based on method engineering), its 
metamodel is derived from the Object Management Group (OMG) Software Process 
Engineering Metamodel3 (SPEM). SPEM is based on three basic process elements 
that encapsulate the main features of any development process: Activities, Process 
Roles, and Work Products. Development processes are assembled from a set of SPEM 
Activities, which represent tasks that must be done. An Activity is essentially 
equivalent to an OPF Work Unit and is performed by one or more Process Roles 
(which corresponds to OPF Producers). Process Roles carry out the Activities in order 
to produce Work Products (the same term is used here by SPEM and OPF). A detailed 
description of this metamodel and a comparison with other method fragment 
proposals can be found in [6]. The next section focuses on using Method Engineering 
and the OPF metamodel to specify O-MaSE. 

3.  O-MaSE Process Framework 

In this section, we define the O-MaSE Process Framework as shown in Fig. 2, which 
is analogous to the OPF from Fig. 1.  In fact, we use the OPF metamodel in level M2. 
Level M1 contains the definition of O-MaSE in the form of the O-MaSE metamodel, 
method fragments, and guidelines. In the remainder of the section, we present the 
three components of the O-MaSE contained in the M1. We first describe the O-MaSE 
metamodel followed by a description of the method fragments obtained. Finally, we 
discuss the guidelines that govern the construction of O-MaSE compliant processes.  

3.1 Metamodel 

The O-MaSE metamodel defines the main concepts we use to define multiagent 
systems. It encapsulates the rules (grammar) of the notation and depicts those 
graphically using object-oriented concepts such as classes and relationships [9]. The 
O-MaSE metamodel is based on an organizational approach [7, 8]. As shown in Fig. 
3, the Organization is composed of five entities: Goals, Roles, Agents, Domain 
Model, and Policies. A Goal defines the overall function of the organization and a 
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Role defines a position within an organization whose behavior is expected to achieve 
a particular goal or set of goals. 

 

Fig. 2. O-MaSE Process Framework (adapted from [12]) 

 
 

 

Fig. 3. O-MaSE metamodel (adapted from [8]) 



Agents are human or artificial (hardware or software) entities that perceive their 
environment and can perform actions upon it. In order to perceive and to act in an 
environment, agents possess Capabilities, which define the percepts/actions the 
agents have at their disposal. Capabilities can be soft (i.e., algorithms or plans) or 
hard (i.e., hardware related actions). Plans capture algorithms that agents use to carry 
out specific tasks, while Actions allows agents to perceive or sense objects in the 
environment. This environment is modeled using the Domain Model, which defines 
the types of objects in the environment and the relations between them. Each 
organization is governed by rules, which are formally captured as Policies. A Policy 
describes how an organization may or not may behave in a particular situation.  

Table 1. O-MaSE Method Fragments 

Work Units  

Activity Task Technique Work 
Products 

Producer Language 

Model Goals 
AND/OR 
Decomposition 

AND/OR 
Goal Tree Requirement 

Engineering  Goal 
Refinement 

Attribute-
Precede-Trigger 
Analysis 

Refined 
GMoDS 

Goal Modeler 

Model 
Organizational 
Interfaces 

Organizational 
Modeling 

Organization 
Model 

 

Organizational 
Modeler  

Model Roles Role Modeling Role Model 

Define Roles Role Description 
Role 
Description 
Document 

Role Modeler Analysis 

Model 
Domain 

Traditional 
UML notation 

Domain 
Model 

Domain Expert 

Model Agent 
Classes 

Agent Modeling 
Agent Class 
Model 

Agent Class 
Modeler 

Model 
Protocol 

Protocol 
Modeling 

Protocol 
Model 

Protocol 
Modeler 

Model Plan  
Plan 
Specification 

Agent Plan 
Model 

Plan Modeler 

Model 
Policies 

Policy 
Specification 

Policy Model Policy Modeler 

Model 
Capabilities 

Capability 
Modeling 

Capabilities 
Model 

Capabilities 
Modeler 

Model Actions Action Modeling Action Model Action Modeler 

Design 

Model Service 
Service 
Modeling 

Service 
Model 

Service 
Modeler 

 
Natural 
languages, for 
textual 
documents 

 
UML, for 
specific models 

 
Agent-UML 

 
O-MaSE specific 
notation 
 
Formal 
Language, for 
formal 
specification of 
properties of the 
system. 

 

3.2   Method Fragments   

As mentioned above, the OPF metamodel defines Stages, Work Units, Work 
Products, Producers, and Languages, which are used to construct tailorable processes. 
In our work, the initial set of method fragments are derived from an extended version 
of the MaSE methodology [5]. O-MaSE assumes an iterative cycle across all phases 
with the intent that successive iterations will add detail to the models until a complete 
design is produced. This nicely fits the OPF’s Iterative, Incremental, Parallel Life 



Cycle model). Our current work focuses on analysis and design. In O-MaSE, we have 
identified three main activities: (1) requirements engineering, (2) analysis, and (3) 
design. As shown in Table 1, we decompose each Activity into a set of Tasks and 
identify a set of Techniques that can be used to accomplish each Task. We also show 
the different Work Products, Producers, and Languages related to the associated Work 
Units. Due to the page limitations, we cannot discuss each of these separately4. 
However, to illustrate our basic approach, we describe the details of the requirements 
engineering activity.  

In the Requirement Engineering activity, we seek to translate systems requirement 
into system level goals by defining two tasks: Model Goals and Goal Refinement. The 
first focuses on transforming system requirements into a system level goal tree while 
the second refines the relationships and attributes for the goals. The goal tree is 
captured as a Goal Model for Dynamic Systems (GMoDS) [7]. The Goal Modeler 
must be able to: (1) use AND/OR Decomposition and Attribute-Precede-Trigger 
Analysis (APT) techniques, (2) understand the System Description (SD) or Systems 
Requirement Specification (SRS), and (3) interact with domain experts and 
customers. The result of these two tasks are an AND/OR Goal Tree and GMoDS tree.  

3.3 Guidelines 

Guidelines are used to describe how the method fragments can be combined in order 
to obtain O-MaSE compliant processes. These guidelines are specified in terms of a 
set of constraints related to Work Units and Work Products, which are specified as 
Work Unit preconditions and postconditions. We formally specify these guidelines as 
a tuple 〈Input, Output, Precondition, Postcondition〉 where Input is a set of Work 
Products that may be used in performing a work unit, Output is a set of Work 
Products that may be produced from the Work Unit, Precondition specifies valid 
Work Product/Producer states, and Postcondition specifies the Work Product State 
(see Table 1) that is guaranteed to be true after successfully performing a work unit (if 
the precondition was true). To formally specify pre and postconditions, we use first 
order predicate logic statements defined over the Work Products (WP) and Producers 
(P), the Work Products states, and the iteration (n) and version (m) of the Work 
Products.  

Table 2. Work Product States 

No. State Definition 
1 inProcess() True if the work product is in process. 
2 completed() True if the work product has been finished. 
3 exists() exists() = inProcess() ∨ completed() 
4 previousIteration() True if the work product’s iteration is any previous one. 
5 available() This state applies to producers and not to work products.  

Figs. 4 – 8 illustrate a set of guidelines for a few of the Tasks defined in Table 1. Fig. 
4 defines the Model Goals task. Inputs to the task may include the Systems 
Description (SD), the Systems Requirement Specification (SRS), the Role Description 
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Document (RD), or a previous version of the Goal Model (GM). Actually, only one of 
these inputs is required, although as many as are available may be used. The inputs 
are used by the Goal Model Producer (GMP) to identify organization goals. As a 
result of this task, the Work Product GM is obtained.  

TASK NAME: Model Goals  
Input  Output Precondition Postcondition 

SD,SRS, 
RD,GM 

GM ((exists(<SD,n,m>) ∨ exists(<SRS,n,m>) 
   ∨ exists(<RD,n,m>) ∨ previousIteration(<GM>))  
   ∧ available(GMP) 

completed(<GM,n,m>) 

Fig. 4. Model Goal Task Constrains 

Fig. 5 depicts the task Goal Refinement. Generally, this task only requires as input a 
GM from the Model Goals task and produces a refined GMoDS model.    

TASK NAME: Goal Refinement 
Input Output Precondition Postcondition 

GM RG Completed(<GM,n,m>) ∧ available(GMP) exists(<RG,n,m>) 

Fig. 5. Goal Refinement Task Constrains 

Fig. 6 shows the task Model Agent Classes, which requires as input a Refined Goal 
Model (RG), an Organization Model (OM), or a Role Model (RM). As output an 
Agent Class Model (AC) is obtained. In the task, the Agent Class Modeler (ACM) 
identifies the types of agents in the system. A Capability Model (CM) may also be 
used as input because agents may be defined in terms of capabilities. However, the 
CM is never sufficient or mandatory and thus is termed as an optional input (it is not 
part of the Precondition). The Protocol Model (PrM) may be useful in identifying 
relationships between agents and thus, it is also optional.  

TASK NAME: Model Agents Classes 
Input Output Precondition Postcondition 

RG,RM, 
OM,AC, 
CM,PrM 

AC (exists(<RG,n,m>) ∨ exists(<RM,n,m>)   
  ∨ exists(<OM,n,m>) ∨ exists(<SM,n,m>) 
  ∨ previousIteration(<AC>)) ∧ available(ACM) 

completed(<AC,n,m>) 

Fig. 6. Model Agent Classes Task Constrains 

The Model Plan task is defined in Fig. 7. The inputs can include a RG, RM, or an AC, 
which allow the Plan Modeler (PlM) to define plans used by agents to satisfy 
organization goals. In addition, a PrM, Action Model (AM), and CM are required as 
input because such plans may require the interaction with other entities using some 
defined protocol.  

TASK NAME: Model Plan  
Input Output Precondition Postcondition 

RG,RM, 
AC,PrM, 
AM,CM 

PlM ((exists(<RG,n,m>) ∧ exists(<AC,n,m>))  
  ∨ exists(<PrM,n,m>) ∨ exists(<AM,n,m>)  
  ∨ previousIteration(<PlM>)) ∧ available(PlP) 

completed(<PlM,n,m>) 

Fig. 7. Model Plans Task Constrains 

Finally, the Model Protocol task is defined in Fig. 8. To document a PrM, the 
Protocol Modeler (PrP) requires the RM and the AC or a previous iteration of the 



PrM. The Domain Model (DM), OM, and AM are optional inputs to this task; they 
define actions that the agent may perform on environment objects, which can also be 
modeled as interactions. 

TASK NAME: Model Protocol 
Input Output Precondition Postcondition 

RM,AC, 
DM,OM 
AM 

PrM ((exists(<RM,n,m>) ∧ exists(<AC,n,m>)) 
 ∨ previousIteration(<PrM>)) 
 ∧ available(PrP) 

completed(<PrM,n,m>) 

Fig. 8. Model Protocol Task Constrains 

4.  WMD Search Example 

Next, we present two examples of applying the O-MaSE to derive custom processes. 
We combine O-MaSE method fragments to create a custom process for a Weapon of 
Mass Destruction (WMD) system in which agents detect and identify WMD in a 
given area. There are three types of WMD that can be identified: radioactive, 
chemical, and biological. Once a suspicious object is found, it must be tested to 
determine the concentration of radioactivity and nerve agents (chemical and 
biological). If the object is indeed a WMD, it is removed. The mission is successful 
when the area has been entirely searched and all the WMD have been removed. In the 
subsequent subsections, we present two custom processes for the WMD Search 
application. 

4.1 Basic O-MaSE Process  

The first process we derive is appropriate for a small agent-oriented project in which 
reactive agents achieve goals that have been assigned at design time. Essentially, the 
only products required for this type of system are the system goals, agent classes, 
agent plans, and inter-agent protocols. This type of process leads to a rigid MAS but 
is very easy and fast to develop. This process may also be suitable for prototyping, 
where a simple and rapid process is needed. 

Fig. 9 shows the result of applying O-MaSE guidelines to the creation of our 
custom process. (Tasks are represented by rounded rectangles while Work Products 
are represented by rectangles.) The Work Products associated with the products 
identified above are included, along with the Tasks required to produce them. (We do 
not show the Producers to simplify the figure, but we assume the appropriate 
Producers are available.) Connections between Tasks and Work Products are drawn 
and the preconditions and postconditions of each Task are verified. Each Task will be 
discussed below: 

Model Goals/Goal Refinement. From the System Description, the Goal Modeler 
defines a set of system level goals in the form of an AND/OR goal tree. The AND/OR 
tree is refined into a GMoDS goal tree as shown in Fig. 10. The syntax uses standard 
UML class notation with the keyword «Goal». The aggregation notation is used to 
denote AND refined goals (conjunction), whereas the generalization notation is used 
to denote OR refined goals (disjunction). GMoDS models include the notion of goal 



precedence and goal triggering [7]. A precedes determines which goals must be 
achieved while a trigger relation signifies that a new goal may be instantiated when a 
specific event occurs during the pursuit of the another goal. Fig. 10 captures a goal-
based view of the system operation. 

 

Fig. 9. Basic O-MaSE Process 
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Fig. 10. AND/OR Goal Model 

Model Agent Classes. The purpose of this task is to identify the type of agents in the 
organization and to document them in an Agent Class Model (Fig. 11). In our 



example, agents are defined based on the goals they can achieve and the capabilities 
they possess as specified by the «achieves» and «possesses» keywords in each agent 
class (denoted by the «Agent» keyword). Protocols between agent classes are 
identified by arrows from the initiating agent class to the receiving agent class.  The 
details of these protocols are specified later in the Model Protocols task. 
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Fig. 11. Agent Class Model 

Model Protocol. The Model Protocol task defines the interactions between agents. 
For example, Fig. 12 captures the WMD_detected protocol where WMD_Agent_1, 
(who is pursuing the Check for Radioactive Weapon goal) detects a WMD and 
notifies WMD_Agent_3 (who is pursuing the Remove WMD goal). The notification is 
done by sending a detected message with the location as parameter. Upon reception 
of this message, an acknowledgment is returned. 

WMD_Agent_1 : Initiator WMD_Agent_3 : Participant

detected(location)

ack

WMD_detected

 

Fig. 12. Protocol Model 

Model Plan. The Model Plan task defines plans that agents can follow to satisfy the 
organization’s goals. To model this, we use finite state automata to capture both 
internal behavior and message passing between agents. Fig. 13 shows the 
Radioactive_Detect_Plan possessed by WMD_Agent_2 to achieve the Check For 



Radioactive Weapon goal.  The plan uses the goal parameter, location, as input.  
Notice that, a plan produced in this task should correspond to all related protocols. 

 

Fig. 13. Plan Model 

4.2 Extended O-MaSE Process 

To produce a more robust system that adapts to changes and internal failures, it is 
necessary to have a process that can produce additional information such as roles and 
policies. Roles define behavior that can be assigned to various agents while policies 
guide and constrain overall system behavior. To accommodate such a system, 
additional Tasks must be introduced into the process to produce a Role Model and a 
Policy Model. This type of process will allow designer to produce a flexible, adaptive, 
and autonomous system.  Fig. 14 shows the custom process for this example. Below, 
we briefly discuss the added tasks.  

Model Roles. The Model Roles task identifies the roles in the organization and their 
interactions. Role Modelers focus on defining roles that accomplish one or more goals 
For example, each role in the Role Model shown in Fig. 15 achieves specific goals 
from Fig. 10; to do this, each role also requires specific capabilities.  

Model Policy. The Model Policy task defines a set of formally specified rules that 
describe how an organization may or may not behave in particular situations [10]. For 
example, a policy “An agent may only play one role at a time” can be translated as 

∀ a1,a2:agent, r:role | a1.plays(r1) ∧ a1.plays(r2) → r1=r2 

5.  Conclusions and Future Work 

In this paper we have presented the O-MaSE Process Framework, which allows users 
to construct custom agent-oriented processes from a set of standard methods 
fragments. The main advantages of our approach is that: (1) all O-MaSE fragments 
are based on a common metamodel that ensures the method fragments can be 
combined in a coherent fashion, (2) each method fragment uses only concepts defined 
in the metamodel to produce work products that can be used as input to other method 
fragments; and, (3) the associated guidelines constrain how method fragments may be 



combined in order to assemble custom O-MaSE compliant processes that produce an 
appropriate set of products without producing unnecessary products. 

Protocol Model

Role Model

Policy Model
Agent Class Model

Agent Plan Model

Model Roles

Model Policies

Model Protocol

Model Agent Classes

Model Plan

Requirements

Design

Analysis

SRS

Refined GMoDS

Model Goals

Goal Refinement

AND/OR Goal Tree

 

Fig. 14. Extended O-MaSE Process 

Although we believe the O-MaSE is headed in the right direction with this 
approach [11], there is a considerable additional work that must be done in order to 
create a process amenable to industrial application. First, although the O-MaSE 
metamodel covers the most basic MAS concepts (i.e., agents, interaction, 
organization, and interactions), there are other agent-oriented methods and 
metamodels that deserve further study in order to capture all the main concepts 
associated with other MAS approaches [2]. We are currently studying several 
metamodels to determine how to integrate their novel concepts into the O-MaSE 
metamodel. Second, we are currently working on how to include software metrics 
into O-MaSE. The aim of these metrics is to predict MAS performance at the analysis 
and design level [15]. Third, we are continuing to formalize our process guidelines in 
order to avoid ambiguities between the metamodel and the method fragments used to 
assembly the agent-oriented applications.  

Finally, we are integrating our working into agentTool III (aT3)5, which is an 
analysis and design tool that supports the use of O-MaSE and exists as a plugin for 
the Eclipse platform6. Eventually, we envision adding a module to aT3 that allows 
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process designers to create and to use custom O-MaSE compliant processes. Future 
plans for aT3 also include code generation for various platforms and integration with 
the Bogor model checking framework for verification and providing predictive 
metrics [16]. 

 

Fig. 15. Role Model 
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