

O-MaSE: A Customizable Approach to Developing
Multiagent Development Processes1

Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby,
Walamitien H. Oyenan and Jorge Valenzuela

Department of Computing and Information Sciences, Kansas State University,
234 Nichols Hall, Manhattan, Kansas, USA.

{jgarciao,sdeloach,robby,oyenan,jvalenzu}@ksu.edu

Abstract. This paper describes the Organization-based Multiagent System
Engineering (O-MaSE) Process Framework, which helps process engineers
define custom multiagent systems development processes. O-MaSE builds off
the MaSE methodology and is adapted from the OPEN Process Framework
(OPF). OPF implements a Method Engineering approach to process
construction. The goal of O-MaSE is to allow designers to create customized
agent-oriented software development processes. O-MaSE consists of three basic
structures: (1) a metamodel, (2) a set of methods fragments, and (3) a set of
guidelines. The O-MaSE metamodel defines the key concepts needed to design
and implement multiagent systems. The method fragments are operations or
tasks that are executed to produce a set of work products, which may include
models, documents, or code. The guidelines define how the method fragments
are related to one another. The paper also demonstrates two examples of
creating custom O-MaSE processes.

1. Introduction

The software industry is facing new challenges. Businesses today are demanding
applications that can operate autonomously, can adapt in response to dynamic
environments, and can interact with other applications in order to provide
comprehensive solutions. Multiagent system (MAS) technology is a promising
approach to these new requirements [13]. Its central notion – the intelligent agent –
encapsulates all the characteristics (i.e., autonomy, proactive, reactivity, and
interactivity) required to fulfill the requirements demanded by these new applications.

In order to develop these autonomous and adaptive systems, novel approaches are
needed. In the last several years, many new processes for developing MAS have been
proposed [1]; unfortunately, none of these processes have gained widespread
industrial acceptance. Reasons for this lack of acceptance include the variety of
approaches upon which these processes are based (i.e., object-oriented, requirements
engineering, and knowledge engineering) and the lack of Computer Aided Software
Engineering (CASE) tools that support the process of software design. There have

1 This work was supported by grants from the US National Science Foundation (0347545) and

the US Air Force Office of Scientific Research (FA9550-06-1-0058)

been some approaches suggested for increasing the change of industry acceptance.
For instance, Odell et al. suggest presenting new techniques as an incremental
extension of known and trusted methods [14], while Bernon et al. suggest the
integration of existing agent-oriented processes into one highly defined process [3].
Although these suggestions may be helpful in gaining industrial acceptance of agent-
oriented techniques, we believe that a more promising way is to provide more
flexibility in the approaches offered. The main problem with these approaches is that
they do not provide assistance to process engineers on how to extend or tailor these
processes. In this vein, Henderson-Sellers suggests the use of method engineering
using a well-defined and accepted metamodel in order to allow users to construct and
to customize their own processes that fit their particular approaches to systems
development [11]. Henderson-Sellers argues that by defining method fragments based
on a common underlying metamodel, new custom processes can be created that
support user defined goals and preferences.

The goal of this paper is to present an overview of the Organization-based
Multiagent System Engineering (O-MaSE) Process Framework. The goal of the O-
MaSE Process Framework is to allow process engineers to construct custom agent-
oriented processes using a set of method fragments, all of which are based on a
common metamodel. To achieve this, we define O-MaSE in terms of a metamodel, a
set of method fragments, and a set of guidelines. The O-MaSE metamodel defines a
set of analysis, design, and implementation concepts and a set of constraints between
them. The method fragments define how a set of analysis and design products may be
created and used within O-MaSE. Finally, guidelines define how the method fragment
may be combined to create valid O-MaSE processes, which we refer to as O-MaSE
compliant processes.

The rest of the paper is organized as follows. Section 2 discusses the background
material on O-MaSE. Section 3 presents a brief overview of the O-MaSE Process
Framework as defined by the proposed metamodel, method fragments, and guidelines.
Section 4 presents examples of two O-MaSE-compliant processes that can be used for
developing a simulated cooperative robotic system. Finally, Section 5 concludes and
describes future work.

2. Background

One of the major problems faced by agent-oriented software engineering is the failure
to achieve a strong industry acceptance. One of the reasons hindering this acceptance
is a lack of an accepted process-oriented methodology for developing agent-based
systems. An interesting solution to this problem is the use of approaches that allow us
to customize processes based on different types of applications and development
environments. One technique that provides such a rational approach for the
construction of tailored methods is Method Engineering [5].

Method Engineering is an approach by which process engineers construct
processes (i.e., methodologies) from a set of method fragments instead of trying to
modify a single monolithic, “one-size-fits-all” process. These fragments are generally
identified by analyzing these “one-size-fits-all” processes and extracting useful tasks
and techniques. The fragments are then redefined in terms of a common metamodel

and are stored in a repository for later use. To create a new process, a process
engineer selects appropriate method fragments from the repository and assembles
them into a complete process based on project requirements [5].

However, the application of Method Engineering in the development of agent-
oriented applications is non-trivial. Specifically, there is no consensus on the common
elements of multiagent systems. Thus, it is has been suggested that prior to
developing a set of method fragments, a well-defined metamodel of common agent-
oriented that are typical of most varieties of MAS (e.g., adaptive, competitive, self-
organizing, etc.) should be developed [4].

Fortunately, we can leverage the OPEN Process Framework (OPF), which provides
an industry-standard approach for applying Method Engineering to the production of
custom processes [9]. The OPF uses an integrated metamodel-based framework that
allows designers to select method fragments from a repository and to construct a
custom process using identified construction and tailoring guidelines. This
metamodel-based framework is supported by a three-layer schema as shown in Fig. 1.
The M2 layer includes the OPF metamodel, which is a generic process metamodel
defining the types of method fragments that can be used in M1. Thus a process (such
as OPEN) can be created in M1 by instantiating method fragments from the M2
metamodel.

Fig. 1. OPEN Process Framework (adapted from [12])

The OPF metamodel consists of Stages, Work Units (Activities, Tasks, and
Techniques), Producers, Work Products, and Languages. A Stage is defined as a
“formally identified and managed duration within the process or a point in time at
which some achievement is recognized” [9, pp. 55]. Stages are used to organize Work
Units, which are defined as operations that are carried out by a Producer. There are
three kinds of Work Units in OPF: Activities, Tasks, and Techniques. Activities are a
collection of Tasks. Tasks are small jobs performed by one or more Producers.
Techniques are detailed approaches to carrying out various Tasks. Producers use
Techniques to create, evaluate, iterate, and maintain Work Products. Work Products
are pieces of information or physical entities produced (i.e., application, document,
model, diagram, or code) and serve as the inputs to and the outputs of Work Units.
Work Products are documented in appropriate Languages.

The M1 layer serves as a repository of method fragments instantiated from the M2
metamodel. A set of rules governing the relationship between these concepts (i.e., a
process-specific metamodel and a set of reusable method fragments) is also defined in
M1. Basically, the process engineer uses the guidelines to extend, to instantiate, and
to tailor the predefined method fragments for creating a custom process in the M1
layer. These custom processes are then instantiated at the M0 level on specific
projects; the actual custom process as enacted on a specific project is termed a
process instance.

Alternatively, the FIPA (Foundation for Physical Agents) Technical Committee
(TC) methodology group2 is working on defining reusable method fragments in order
to allow designers to specify custom agent-oriented processes [17]. Although this
approach is quite similar to OPF (they are both based on method engineering), its
metamodel is derived from the Object Management Group (OMG) Software Process
Engineering Metamodel3 (SPEM). SPEM is based on three basic process elements
that encapsulate the main features of any development process: Activities, Process
Roles, and Work Products. Development processes are assembled from a set of SPEM
Activities, which represent tasks that must be done. An Activity is essentially
equivalent to an OPF Work Unit and is performed by one or more Process Roles
(which corresponds to OPF Producers). Process Roles carry out the Activities in order
to produce Work Products (the same term is used here by SPEM and OPF). A detailed
description of this metamodel and a comparison with other method fragment
proposals can be found in [6]. The next section focuses on using Method Engineering
and the OPF metamodel to specify O-MaSE.

3. O-MaSE Process Framework

In this section, we define the O-MaSE Process Framework as shown in Fig. 2, which
is analogous to the OPF from Fig. 1. In fact, we use the OPF metamodel in level M2.
Level M1 contains the definition of O-MaSE in the form of the O-MaSE metamodel,
method fragments, and guidelines. In the remainder of the section, we present the
three components of the O-MaSE contained in the M1. We first describe the O-MaSE
metamodel followed by a description of the method fragments obtained. Finally, we
discuss the guidelines that govern the construction of O-MaSE compliant processes.

3.1 Metamodel

The O-MaSE metamodel defines the main concepts we use to define multiagent
systems. It encapsulates the rules (grammar) of the notation and depicts those
graphically using object-oriented concepts such as classes and relationships [9]. The
O-MaSE metamodel is based on an organizational approach [7, 8]. As shown in Fig.
3, the Organization is composed of five entities: Goals, Roles, Agents, Domain
Model, and Policies. A Goal defines the overall function of the organization and a

2 See http://www.fipa.org/activities/methodology.html
3 See http://www.omg.org/cgi-bin/doc?formal/2005-01-06

Role defines a position within an organization whose behavior is expected to achieve
a particular goal or set of goals.

Fig. 2. O-MaSE Process Framework (adapted from [12])

Fig. 3. O-MaSE metamodel (adapted from [8])

Agents are human or artificial (hardware or software) entities that perceive their
environment and can perform actions upon it. In order to perceive and to act in an
environment, agents possess Capabilities, which define the percepts/actions the
agents have at their disposal. Capabilities can be soft (i.e., algorithms or plans) or
hard (i.e., hardware related actions). Plans capture algorithms that agents use to carry
out specific tasks, while Actions allows agents to perceive or sense objects in the
environment. This environment is modeled using the Domain Model, which defines
the types of objects in the environment and the relations between them. Each
organization is governed by rules, which are formally captured as Policies. A Policy
describes how an organization may or not may behave in a particular situation.

Table 1. O-MaSE Method Fragments

Work Units

Activity Task Technique Work
Products

Producer Language

Model Goals
AND/OR
Decomposition

AND/OR
Goal Tree Requirement

Engineering Goal
Refinement

Attribute-
Precede-Trigger
Analysis

Refined
GMoDS

Goal Modeler

Model
Organizational
Interfaces

Organizational
Modeling

Organization
Model

Organizational
Modeler

Model Roles Role Modeling Role Model

Define Roles Role Description
Role
Description
Document

Role Modeler Analysis

Model
Domain

Traditional
UML notation

Domain
Model

Domain Expert

Model Agent
Classes

Agent Modeling
Agent Class
Model

Agent Class
Modeler

Model
Protocol

Protocol
Modeling

Protocol
Model

Protocol
Modeler

Model Plan
Plan
Specification

Agent Plan
Model

Plan Modeler

Model
Policies

Policy
Specification

Policy Model Policy Modeler

Model
Capabilities

Capability
Modeling

Capabilities
Model

Capabilities
Modeler

Model Actions Action Modeling Action Model Action Modeler

Design

Model Service
Service
Modeling

Service
Model

Service
Modeler

Natural
languages, for
textual
documents

UML, for
specific models

Agent-UML

O-MaSE specific
notation

Formal
Language, for
formal
specification of
properties of the
system.

3.2 Method Fragments

As mentioned above, the OPF metamodel defines Stages, Work Units, Work
Products, Producers, and Languages, which are used to construct tailorable processes.
In our work, the initial set of method fragments are derived from an extended version
of the MaSE methodology [5]. O-MaSE assumes an iterative cycle across all phases
with the intent that successive iterations will add detail to the models until a complete
design is produced. This nicely fits the OPF’s Iterative, Incremental, Parallel Life

Cycle model). Our current work focuses on analysis and design. In O-MaSE, we have
identified three main activities: (1) requirements engineering, (2) analysis, and (3)
design. As shown in Table 1, we decompose each Activity into a set of Tasks and
identify a set of Techniques that can be used to accomplish each Task. We also show
the different Work Products, Producers, and Languages related to the associated Work
Units. Due to the page limitations, we cannot discuss each of these separately4.
However, to illustrate our basic approach, we describe the details of the requirements
engineering activity.

In the Requirement Engineering activity, we seek to translate systems requirement
into system level goals by defining two tasks: Model Goals and Goal Refinement. The
first focuses on transforming system requirements into a system level goal tree while
the second refines the relationships and attributes for the goals. The goal tree is
captured as a Goal Model for Dynamic Systems (GMoDS) [7]. The Goal Modeler
must be able to: (1) use AND/OR Decomposition and Attribute-Precede-Trigger
Analysis (APT) techniques, (2) understand the System Description (SD) or Systems
Requirement Specification (SRS), and (3) interact with domain experts and
customers. The result of these two tasks are an AND/OR Goal Tree and GMoDS tree.

3.3 Guidelines

Guidelines are used to describe how the method fragments can be combined in order
to obtain O-MaSE compliant processes. These guidelines are specified in terms of a
set of constraints related to Work Units and Work Products, which are specified as
Work Unit preconditions and postconditions. We formally specify these guidelines as
a tuple 〈Input, Output, Precondition, Postcondition〉 where Input is a set of Work
Products that may be used in performing a work unit, Output is a set of Work
Products that may be produced from the Work Unit, Precondition specifies valid
Work Product/Producer states, and Postcondition specifies the Work Product State
(see Table 1) that is guaranteed to be true after successfully performing a work unit (if
the precondition was true). To formally specify pre and postconditions, we use first
order predicate logic statements defined over the Work Products (WP) and Producers
(P), the Work Products states, and the iteration (n) and version (m) of the Work
Products.

Table 2. Work Product States

No. State Definition
1 inProcess() True if the work product is in process.
2 completed() True if the work product has been finished.
3 exists() exists() = inProcess() ∨ completed()
4 previousIteration() True if the work product’s iteration is any previous one.
5 available() This state applies to producers and not to work products.

Figs. 4 – 8 illustrate a set of guidelines for a few of the Tasks defined in Table 1. Fig.
4 defines the Model Goals task. Inputs to the task may include the Systems
Description (SD), the Systems Requirement Specification (SRS), the Role Description

4 A detailed description of the current set of O-MaSE Tasks, Techniques, Work Products, and

Producers can be found at http://macr.cis.ksu.edu/O-MaSE/

Document (RD), or a previous version of the Goal Model (GM). Actually, only one of
these inputs is required, although as many as are available may be used. The inputs
are used by the Goal Model Producer (GMP) to identify organization goals. As a
result of this task, the Work Product GM is obtained.

TASK NAME: Model Goals
Input Output Precondition Postcondition

SD,SRS,
RD,GM

GM ((exists(<SD,n,m>) ∨ exists(<SRS,n,m>)
 ∨ exists(<RD,n,m>) ∨ previousIteration(<GM>))
 ∧ available(GMP)

completed(<GM,n,m>)

Fig. 4. Model Goal Task Constrains

Fig. 5 depicts the task Goal Refinement. Generally, this task only requires as input a
GM from the Model Goals task and produces a refined GMoDS model.

TASK NAME: Goal Refinement
Input Output Precondition Postcondition

GM RG Completed(<GM,n,m>) ∧ available(GMP) exists(<RG,n,m>)

Fig. 5. Goal Refinement Task Constrains

Fig. 6 shows the task Model Agent Classes, which requires as input a Refined Goal
Model (RG), an Organization Model (OM), or a Role Model (RM). As output an
Agent Class Model (AC) is obtained. In the task, the Agent Class Modeler (ACM)
identifies the types of agents in the system. A Capability Model (CM) may also be
used as input because agents may be defined in terms of capabilities. However, the
CM is never sufficient or mandatory and thus is termed as an optional input (it is not
part of the Precondition). The Protocol Model (PrM) may be useful in identifying
relationships between agents and thus, it is also optional.

TASK NAME: Model Agents Classes
Input Output Precondition Postcondition

RG,RM,
OM,AC,
CM,PrM

AC (exists(<RG,n,m>) ∨ exists(<RM,n,m>)
 ∨ exists(<OM,n,m>) ∨ exists(<SM,n,m>)
 ∨ previousIteration(<AC>)) ∧ available(ACM)

completed(<AC,n,m>)

Fig. 6. Model Agent Classes Task Constrains

The Model Plan task is defined in Fig. 7. The inputs can include a RG, RM, or an AC,
which allow the Plan Modeler (PlM) to define plans used by agents to satisfy
organization goals. In addition, a PrM, Action Model (AM), and CM are required as
input because such plans may require the interaction with other entities using some
defined protocol.

TASK NAME: Model Plan
Input Output Precondition Postcondition

RG,RM,
AC,PrM,
AM,CM

PlM ((exists(<RG,n,m>) ∧ exists(<AC,n,m>))
 ∨ exists(<PrM,n,m>) ∨ exists(<AM,n,m>)
 ∨ previousIteration(<PlM>)) ∧ available(PlP)

completed(<PlM,n,m>)

Fig. 7. Model Plans Task Constrains

Finally, the Model Protocol task is defined in Fig. 8. To document a PrM, the
Protocol Modeler (PrP) requires the RM and the AC or a previous iteration of the

PrM. The Domain Model (DM), OM, and AM are optional inputs to this task; they
define actions that the agent may perform on environment objects, which can also be
modeled as interactions.

TASK NAME: Model Protocol
Input Output Precondition Postcondition

RM,AC,
DM,OM
AM

PrM ((exists(<RM,n,m>) ∧ exists(<AC,n,m>))
 ∨ previousIteration(<PrM>))
 ∧ available(PrP)

completed(<PrM,n,m>)

Fig. 8. Model Protocol Task Constrains

4. WMD Search Example

Next, we present two examples of applying the O-MaSE to derive custom processes.
We combine O-MaSE method fragments to create a custom process for a Weapon of
Mass Destruction (WMD) system in which agents detect and identify WMD in a
given area. There are three types of WMD that can be identified: radioactive,
chemical, and biological. Once a suspicious object is found, it must be tested to
determine the concentration of radioactivity and nerve agents (chemical and
biological). If the object is indeed a WMD, it is removed. The mission is successful
when the area has been entirely searched and all the WMD have been removed. In the
subsequent subsections, we present two custom processes for the WMD Search
application.

4.1 Basic O-MaSE Process

The first process we derive is appropriate for a small agent-oriented project in which
reactive agents achieve goals that have been assigned at design time. Essentially, the
only products required for this type of system are the system goals, agent classes,
agent plans, and inter-agent protocols. This type of process leads to a rigid MAS but
is very easy and fast to develop. This process may also be suitable for prototyping,
where a simple and rapid process is needed.

Fig. 9 shows the result of applying O-MaSE guidelines to the creation of our
custom process. (Tasks are represented by rounded rectangles while Work Products
are represented by rectangles.) The Work Products associated with the products
identified above are included, along with the Tasks required to produce them. (We do
not show the Producers to simplify the figure, but we assume the appropriate
Producers are available.) Connections between Tasks and Work Products are drawn
and the preconditions and postconditions of each Task are verified. Each Task will be
discussed below:

Model Goals/Goal Refinement. From the System Description, the Goal Modeler
defines a set of system level goals in the form of an AND/OR goal tree. The AND/OR
tree is refined into a GMoDS goal tree as shown in Fig. 10. The syntax uses standard
UML class notation with the keyword «Goal». The aggregation notation is used to
denote AND refined goals (conjunction), whereas the generalization notation is used
to denote OR refined goals (disjunction). GMoDS models include the notion of goal

precedence and goal triggering [7]. A precedes determines which goals must be
achieved while a trigger relation signifies that a new goal may be instantiated when a
specific event occurs during the pursuit of the another goal. Fig. 10 captures a goal-
based view of the system operation.

Fig. 9. Basic O-MaSE Process

<<Goal>>
0. WMD
Search

WMD_detected(location)

found(location)

clear(location) clear(location)

search(area)

<<Goal>>
1.1 Divide Area

<<Goal>>
2. Remove

WMD
location

<<Goal>>
1. Find WMD

<<Goal>>
1.2 Search

Area
area

<<Goal>>
1.3 Identify

Suspicious Object
location

<<Goal>>
1.3.1 Check for

Radioactive weapon
location

<<Goal>>
1.3.2 Check for

chemical weapon
location location

<<Goal>>
1.3.3 Check for

biological weapon

Fig. 10. AND/OR Goal Model

Model Agent Classes. The purpose of this task is to identify the type of agents in the
organization and to document them in an Agent Class Model (Fig. 11). In our

example, agents are defined based on the goals they can achieve and the capabilities
they possess as specified by the «achieves» and «possesses» keywords in each agent
class (denoted by the «Agent» keyword). Protocols between agent classes are
identified by arrows from the initiating agent class to the receiving agent class. The
details of these protocols are specified later in the Model Protocols task.

S
ea

rc
h(

ar
ea

)

S
ea

rc
h(

ar
ea

)

1 <<Agent>>
WMD_Agent_1

<<achieves>> Search Area
<<achieves>> Check for Radioactive Weapon
<<possesses>> Search_Plan
<<possesses>> Radioactive_Detect_Plan

<<Agent>>
WMD_Agent_2

<<achieves>> Search Area
<<achieves>> Check for Chemical Weapon
<<possesses>> Search_Plan
<<possesses>> Chemical_Detect_Plan

<<Agent>>
WMD_Agent_3

<<achieves>> Divide Area
<<achieves>> Check for Biological Weapon
<<achieves>> Remove WMD
<<possesses>> Divide_Area_Plan
<<possesses>> Biological_Detect_Plan
<<possesses>> Remove_WMD_Plan

Object_found(location)

no_detection(location)
W

M
D

_d
et

ec
te

d(
lo

ca
tio

n)

W
M

D
_d

et
ec

te
d(

lo
ca

tio
n)

no
_d

et
ec

tio
n(

lo
ca

tio
n)

Fig. 11. Agent Class Model

Model Protocol. The Model Protocol task defines the interactions between agents.
For example, Fig. 12 captures the WMD_detected protocol where WMD_Agent_1,
(who is pursuing the Check for Radioactive Weapon goal) detects a WMD and
notifies WMD_Agent_3 (who is pursuing the Remove WMD goal). The notification is
done by sending a detected message with the location as parameter. Upon reception
of this message, an acknowledgment is returned.

WMD_Agent_1 : Initiator WMD_Agent_3 : Participant

detected(location)

ack

WMD_detected

Fig. 12. Protocol Model

Model Plan. The Model Plan task defines plans that agents can follow to satisfy the
organization’s goals. To model this, we use finite state automata to capture both
internal behavior and message passing between agents. Fig. 13 shows the
Radioactive_Detect_Plan possessed by WMD_Agent_2 to achieve the Check For

Radioactive Weapon goal. The plan uses the goal parameter, location, as input.
Notice that, a plan produced in this task should correspond to all related protocols.

Fig. 13. Plan Model

4.2 Extended O-MaSE Process

To produce a more robust system that adapts to changes and internal failures, it is
necessary to have a process that can produce additional information such as roles and
policies. Roles define behavior that can be assigned to various agents while policies
guide and constrain overall system behavior. To accommodate such a system,
additional Tasks must be introduced into the process to produce a Role Model and a
Policy Model. This type of process will allow designer to produce a flexible, adaptive,
and autonomous system. Fig. 14 shows the custom process for this example. Below,
we briefly discuss the added tasks.

Model Roles. The Model Roles task identifies the roles in the organization and their
interactions. Role Modelers focus on defining roles that accomplish one or more goals
For example, each role in the Role Model shown in Fig. 15 achieves specific goals
from Fig. 10; to do this, each role also requires specific capabilities.

Model Policy. The Model Policy task defines a set of formally specified rules that
describe how an organization may or may not behave in particular situations [10]. For
example, a policy “An agent may only play one role at a time” can be translated as

∀ a1,a2:agent, r:role | a1.plays(r1) ∧ a1.plays(r2) → r1=r2

5. Conclusions and Future Work

In this paper we have presented the O-MaSE Process Framework, which allows users
to construct custom agent-oriented processes from a set of standard methods
fragments. The main advantages of our approach is that: (1) all O-MaSE fragments
are based on a common metamodel that ensures the method fragments can be
combined in a coherent fashion, (2) each method fragment uses only concepts defined
in the metamodel to produce work products that can be used as input to other method
fragments; and, (3) the associated guidelines constrain how method fragments may be

combined in order to assemble custom O-MaSE compliant processes that produce an
appropriate set of products without producing unnecessary products.

Protocol Model

Role Model

Policy Model
Agent Class Model

Agent Plan Model

Model Roles

Model Policies

Model Protocol

Model Agent Classes

Model Plan

Requirements

Design

Analysis

SRS

Refined GMoDS

Model Goals

Goal Refinement

AND/OR Goal Tree

Fig. 14. Extended O-MaSE Process

Although we believe the O-MaSE is headed in the right direction with this
approach [11], there is a considerable additional work that must be done in order to
create a process amenable to industrial application. First, although the O-MaSE
metamodel covers the most basic MAS concepts (i.e., agents, interaction,
organization, and interactions), there are other agent-oriented methods and
metamodels that deserve further study in order to capture all the main concepts
associated with other MAS approaches [2]. We are currently studying several
metamodels to determine how to integrate their novel concepts into the O-MaSE
metamodel. Second, we are currently working on how to include software metrics
into O-MaSE. The aim of these metrics is to predict MAS performance at the analysis
and design level [15]. Third, we are continuing to formalize our process guidelines in
order to avoid ambiguities between the metamodel and the method fragments used to
assembly the agent-oriented applications.

Finally, we are integrating our working into agentTool III (aT3)5, which is an
analysis and design tool that supports the use of O-MaSE and exists as a plugin for
the Eclipse platform6. Eventually, we envision adding a module to aT3 that allows

5 See http://agenttool.projects.cis.ksu.edu/
6 See http://www.eclipse.org/

process designers to create and to use custom O-MaSE compliant processes. Future
plans for aT3 also include code generation for various platforms and integration with
the Bogor model checking framework for verification and providing predictive
metrics [16].

Fig. 15. Role Model

References

1. Bergenti F., Gleizes M.-P., and Zambonelli F. (eds.): Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers (2004).

2. Bernon C., Cossentino M., and Pavón J.: Agent Oriented Software Engineering. The
Knowledge Engineering Review. 20(2005) 99–116.

3. Bernon C., Cossentino M., Gleizes M., Turci P., and Zambonelli F.: A study of some
multi-agent meta-models. In: Odell, J., Giorgini, P., and Müller, J. (eds.): Agent Oriented
Software Engineering V. Lectures Notes in Computer Science. Vol. 3382. Springer-
Verlag, Berlin Heidelberg New York (2004) 62–77.

4. Beydoun G., Gonzalez-Perez C., Henderson-Sellers B., Low G.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., Choren, R.,
Lucena, C. Giorgini, P., Holvoet, T., and Romanosky, A. (eds.): Software Engineering for
Multi-Agent Systems IV. Lecture Notes in Computer Science, Vol. 3194. Springer-Verlag,
Berlin Heideberg New York (2005) 126–142.

5. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Jnl of Information and Software Technology. 38(4) (1996) 275–280.

6. Cossentino M., Gaglio S., Henderson-Sellers B., and Seidita V.: A metamodelling-based
approach for method fragment comparison. In: Proceedings of the 11th International
Workshop on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD
06). Luxembourg, June 2006.

7. DeLoach S.A., and Oyenan W. H.: An Organizational Model and Dynamic Goal Model
for Autonomous, Adaptive Systems. Multiagent & Cooperative Robotics Laboratory
Technical Report No. MACR-TR-2006-01. Kansas State University. March, 2006.

8. DeLoach S.A., and Valenzuela Jorge. L.: An Agent-Environment Interaction Model. In:
Padgham, L., and Zambonelli, F. (eds): Agent Oriented Software Engineering VII. Lecture
Notes in Computer Science, Vol. 4405. Springer-Verlag, (2007) to appear.

9. Firesmith, D.G., and Henderson-Sellers, B.: The OPEN Process Framework: An
Introduction. Addison-Wesley, Harlow–England (2002).

10. Harmon, S.J., DeLoach S.A., and Robby. Guidance and Law Policies in Multiagent
Systems. Multiagent & Cooperative Robotics Laboratory Technical Report No. MACR-
TR-2007-02. Kansas State University. March, 2007.

11. Henderson-Sellers, B., and Giorgini P. (eds.): Agent-Oriented Methodologies, Idea Group
Inc., 2005.

12. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering. 14, 1-4
(2002) 341–362.

13. Luck, M., McBurney, P., Shehory, O., and Willmott, S.: Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing), AgentLink (2005).

14. Odell J., Parunak V. D., and Bauer B.: Representing Agent Interactions Protocols in UML.
In: Ciancarini, P., and Wooldridge, M. (eds.): Agent Oriented Software Engineering.
Lecture Notes in Computer Science, Vol. 1957. Springer-Verlag, Berlin Heidelberg New
York (2001) 121–140.

15. Robby, DeLoach, S.A., and Kolesnikov, V.A.: Using Design Metrics for Predicting
System Flexibility. In: Baresi, L, and Heckel, R (eds.): Fundamental Approaches to
Software Engineering. Lectures Notes in Computer Science, Vol. 3922. Springer-Verlag,
Berlin Heidelberg New York (2006) 184–198.

16. Robby, Dwyer, M.B., & Hatcliff J.: Bogor: A Flexible Framework for Creating
Software Model Checkers. In: Proceedings of the Testing: Academic & industrial
Conference on Practice and Research Techniques. IEEE Comp Society, Washington,
DC, 3–22.

17. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proceedings of the 7th Workshop from Objects to Agents (WOA06). Catania,
Italy (2006) 130–137.

