A Seed Segmentation Contour Generator and Counter

Chaney Courtney, Mitchell Neilsen
Department of Computer Science
Kansas State University
Manhattan, KS, USA

Abstract

Living in a data-driven world with rapidly growing
machine learning techniques, it is apparent that utilizing
these methods is necessary to achieve state-of-the-art per-
formance in object detection. Recent novel approaches
in the deep-learning field have boasted real-time object
segmentation methods given the algorithm is connected
to a large validation dataset. Knowing that these algo-
rithms are restricted to a given dataset, it is apparent that
the need for data generating algorithms is on a rise. As
some object detection problems may suffice with a stat-
ically trained deep-learning model, it is true that others
will not. Given the no free lunch theorem, we know that
no machine learning algorithm can truly generalize to data
it has not been trained on; therefore, deep learning mod-
els trained on images of cats will not necessarily clas-
sify dogs correctly. With modern deep learning libraries
being ported for mobile devices, a wide range of utility
has been made apparent for plant researchers around the
world. One such usage of these real-time approaches is
to count and classify seed kernels, replacing monotonous-
human-error-beridden tasks. Plant scientists around the
world have daily jobs of counting seeds by hand, or using
multi-thousand dollar devices to automate the task. It is
apparent that many third world countries, where such con-
sumer devices do not exist or require too many resources,
could benefit from such an automated task. PhenoApps,
an organization started within Kansas State University,
has been supplying a subset of these countries with mod-
ern phones for such uses. With the following seed seg-
mentation algorithm, and the usage of modern mobile de-
vices, scientists can count seeds with the click of a but-
ton and produce results in split-seconds. The algorithms
proposed in this paper achieve multiple novel implemen-
tations. Mainly, Rice’s Theorem was used to show that
object detection in clusters is an undecidable task for Tur-
ing Machines. Along with this, the novel implementa-
tions include an Android application which can segment
seed kernels, and a machine learning algorithm which can
accurately generate contour data sets. The data genera-

tor provided in this paper is an effective start for the later
usage of deep learning models and is the first step for a
real-time dynamic and static seed counter.

Keywords: no free lunch theorem, semi-clustered,
Rice’s Theorem, Chomsky Hierarchy, Watershed

1 Introduction

One of this paper’s main contributions is to answer
if there exists an accurate and robust algorithm for im-
age segmentation of various types of semi-clustered seeds
which can be efficiently executed on mobile devices. We
propose a novel approach that is an optimization and vari-
ation of the Extended Watershed algorithm. Previous
work on the Watershed algorithm effectively used cross
product calculations to estimate clusters of seeds during
counting[1]; however these techniques execute poorly in
consideration to time complexity on mobile devices due
to the limited clock frequency and number of cores on
the system. Modern smart phones have brought appeal-
ing improvements to these calculations as most phones
wield multi-core processors and some even have dedi-
cated GPUs. Yet with these modern improvements to
phones, the time complexity of the Extended Watershed
algorithm is lacking the qualifications for a quick and
snappy application. The gains of such an algorithm is
two-fold for future developments. The first and obvious
gain is the ability to segment and count various seeds
quickly. Secondly, the algorithm can be used as a vali-
dation and training data set generator for machine learn-
ing algorithms. For example, state-of-the-art deep neural
networks provide real-time image segmentation given the
network has available contour point training data[2][4][3].
Again, these DNNs can effectively learn the above algo-
rithm and test on a disjoint dataset, giving developers and
users the power of a generalized seed detector[5]. An-
other novel contribution to seed counting is the ability to
train this algorithm for various seeds. The given algorithm
proposes two specific parameters relating to the area and
perimeter of a given seed’s contour. Formally, we suggest
a property, P, where L(P) is the set of Turing Machines

which accept a predictable semi-clustered seed contour,
the languages in P. As shown in 3 set P is a non-trivial
property; therefore, by Rice’s Theorem the languages de-
scribing the algorithms to count these matrices are unde-
cidable in Chomsky’s Hierarchy[6]. This paper will prove
the non-trivial nature of said property P. The implementa-
tion approximating this undecidable language is an itera-
tive simulation of the suggested algorithm using a random
parameter search.

2 Methodology

The proposed methods within the following sections
describes an effective replacement of the Extended Wa-
tershed code. The classical preprocessing for Watershed
and subsequent label search simply takes too long to cal-
culate on modern phones[7]. Even sub-4K images passed
to this algorithm take up to one minute, refer to Section
3. The purpose of this methodology is two-fold for this
paper. Firstly, the implementation of a fast and accurate
object segmentation algorithm. Secondly, it is known that
the detection of clustered objects is a non-trivial property
of images; therefore, this paper aims to support this belief
with empirical data. Formally, there exists two languages
L1 and L2 which can be represented by two Turing Ma-
chines M1 and M2. These two machines have similar al-
gorithms and will always halt on any input, therefore they
are decidable and represent a recursive language. If fed
the same dataset of seed contour images, M1 will pre-
dictably count the contours; however M2 will not. We
define predictability by specifically having an accuracy
score of greater than or equal to 99, where the total count-
able objects are given as a test and the count is given as
output from the machine. In the property P we specifi-
cally say semi-clustered contours as we do not expect or
aim to count seeds which are overlaid, similarly we need
some contours to be disjointly connected from other con-
tours to obtain ground truth knowledge on the object being
counted.

2.1 Definition of Contour

Images are simply matrices of pixels, when these pix-
els are connected to create an enclosed space we call this
a contour. Specifically, the pixels which bound these con-
tours have equal intensity (given an RGB scale). The
problem described in this paper is when a user needs to
count the number of objects represented by these con-
tours, there may be the case that two or more of these
objects contours are one contour. For modern image
processing libraries, the representation of these objects’
contours are one; therefore the reason for such formal-
izations are apparent in order to maintain an accurate
experiment[8]. Again, we cannot expect to effectively

Perimeter (px)
g 8 ¥ 8 & 8

=
1=}
S

g

o

1000 1500

(px™2)

2000

500
Area

Figure 1: Contour perimeter versus area graph

count a clustered image without some ground truth knowl-
edge of the object being counted. The algorithm proposed
will produce an undecidable Turing Machine which from
our experiments can effectively count seed contours.

2.2 Hypothesis

The following sections will delve into the mathemati-
cal model which the proposed algorithm uses to segment
objects and count seeds. The aim for this methodology
is not to replace the classical Watershed algorithm, but
to provide a separate, similar, implementation for mobile
devices. We expect the count to vary depending on the
configuration of clusters in the image. We assume that the
number of cluster contours is less than the number of sin-
gular seed contours. We will use this assumption to create
a dataset of ground truths for the seeds’ area, perimeter
and inflection points.

Acknowledging Figure 1, which is a plot of an image’s
contour’s areas and perimeters, it is apparent that there
is a positively correlated relation between these two vari-
ables. This specific data was taken from the Poppy 3960
image (which contains 3960 poppy seeds). There are a
few possible clusters visualized. There is one obvious
large cluster which is our expected ground truth data (at
the lower left hand side). Next, there is a smaller clus-
ter which seems to have larger areas and perimeters. This
is effectively showing us that our assumption for this im-
age is true, in that we have a large cluster of ground truth
seeds which have small areas (thus most likely just a sin-
gle seed); however, we also have a cluster of points which
represent contour clusters which have a higher combined
area and perimeter. As we follow the curve in the data we
can see that the sparsity increases therefore there are less

Figure 2: Preprocessing steps

contour clusters than single seed data.

2.3 Preprocessing

In Figure 2 we see four steps total. Before these
steps, an image is fed to the algorithm. Once the im-
age is loaded, a histogram is created to represent the
different pixel intensities across the image. An aver-
age of the lowest and highest found intensities is used
as a threshold to the inputted image. This step helps
smooth the input image and eliminate any reflective noise.
Next, OpenCV’s following functions are used sequen-
tially: morphologyEx, dilate, distanceTransform, and
threshold[7][8]. Similar to the Extended Watershed al-
gorithm, these steps all together help separate seeds[7].
Before we call OpenCV’s find contour function we want
to ensure that they are relatively separated; otherwise, we
will obtain a higher number of clusters than single seed
contours. With these preprocessing steps complete, we
are ready to begin counting contours.

2.4 Image Processing

In the previous Extended Watershed algorithm the
subsequent step to preprocessing would be to call
the OpenCV connectedComponentsWithStats[8] function
which returns an array of contours with other statistics
like area. We replaced this function by calling findCon-
tours and calling a separate function to calculate area and
perimeter; we found that this way is much faster than the
former. Following this processing the Extended Water-
shed algorithm would call the watershed function and start
counting labels generated[1]. The code in Figure 3 shows

Labels = Watershed(gray)
Frame = MaskBorder (Labels)
Unique = Set()

for i in O to Labels.rows - 8
for j in O to Labels.cols - 8
Unique += Labels[i,]]
j+=8
i+=38

Figure 3: Code segment that shows the use of the water-
shed function, and the subsequent pixel search using the
aforementioned optimization.

an optimized version of the original Extended Watershed
algorithm designed for Android devices. Originally, the
post watershed process is to find all unique labels gen-
erated. Given a mobile device, this process is extremely
slow for high resolution images. The following optimiza-
tion shows the use of a static integer that essentially skips
the checking of some pixels. This is an improvement but
is a slightly inaccurate way to count the labels. It is appar-
ent in our results how slow this processing really is, and
shows why this new algorithm is needed. Therefore, in
replacement of this unique label finding, we introduce the
estimated cluster count function, which uses our ground
truth knowledge and statistics to predict cluster sizes.

2.5 Estimated Cluster Counting

The accumulation of ground truth knowledge and ac-
tual seed counting comes from the estimated cluster
counting function. After the first call to findContours[8],
the resulting contour array is passed to this function. The
function iterates over all the contour points and popu-
lates three arrays. Area, perimeter, and inflection point
count are saved for each contour processed. Inflection
points are the spots on a contours boundary where a con-
vex line turns concave and vice versa. The use of inflec-
tion points helps find connected objects by first memo-
rizing how many inflection points are visible on ground
truth seeds; this is intuitively remembering features of that
seeds. Different types of seeds will have a differing num-
ber of default inflection points, and there should be an in-
crease of inflections as the seeds are clustered. OpenCV’s
convexHull function is:

O(Nlog(N)

where N is the number of contour points[8]. After the hull
points are found, another function is called to calculate

0"-.&-.\;. £

(Y

Figure 4: Drawing contours on 3960 seeds.

Figure 5: Visualization of clusters.

the convexity defects which are the inflection points, this
algorithm is:
o(M?)

where M is the number of hull points. Because these cal-
culations are made for each contour type the total runtime
of this for loop is:

O(NM? +N?log(N))

Subsequently the averages for areas, perimeters and in-
flection points are calculated which will have a time com-
plexity of:

O(N)

The next for loop in this function will iterate over all the
possible contours which is again N total points. In this
loop three scores are calculated by dividing the current
contours area, perimeter, and inflection count by the av-
erages of each respectively. If these scores are between
90 and 100 percent accurate they are considered a ground
truth. Remembering the assumption that most seeds are
alone, the average should be close to the ground truth,
therefore these scores should be close to one in order to
be reliable data about the seed. These ground truths popu-
late three arrays respectively. Again, the averages of these
ground truth arrays are created having similar time com-
plexity as before. This function has one final for loop,
again iterating over the possible contour points. A final
score is created by taking the minimum of the rounded di-
vision of the area divided by the ground truth average and
the division of perimeter by the ground truth average. This
is considered the estimated count and is returned from the
function along with the contour points.

C = Min(areas|index]/onesAverageArea,)
perimeters|index]/onesAveragePerimeter)
2.6 Just Ones Average Threshold

After the cluster estimate function is run the function
has access to the average area, perimeter, and number of
inflection points for a given seed. The next part of the
algorithm uses the Pythagorean’s theorem, convex hulls,
and a ones-average threshold to predict how seeds are con-
nected. First, a for loop iterates over the possible contours,
and there is a threshold check to see if the given area is
greater than the average seed area. As mentioned earlier,
a given count may differ depending on the cluster config-
uration; therefore, a parameter o is used to represent the
number of possible seeds in a contour. The defined thresh-
old is given in Figure 6. Next, the convex hull and defects
processing happens again on these contours, but instead
of counting inflection points (which is a better overall es-
timate of the features on a seed) Pythagorean’s theorem

def justOnesAverage(area, perimeter):
if area > onesAvgArea * B
and perimeter > onesAvgPerimeter:
return True
return False

Figure 6: Python code representing the just ones average
threshold.

def distanceThreshold(xl, x2, yi1, y2):
dst = math.sqrt((x2-x1) ** 2
+ (y2-y1) ** 2)
adjOp = (onesAvgPerimeter / 4.0) *x* 2
if dst > A * math.sqrt(2*adjOp):
inflections = inflections + 1

Figure 7: Python code using Euclidean distance and
Pythagoreans theorem to create a threshold on the dis-
tance from the start and end points of an inflection.

is used to calculate the distance between the start and end
points of an inflection. As seen in Figure 7 the function
defined is used to count the number of inflections given
a certain threshold. The second parameter of this algo-
rithm, B is used to learn how far this distance should be
to accurately count a cluster. The threshold is based on
the average perimeter of a singular seed; the intuition is to
capture the inflections that are large enough to represent
seed connections rather than features on the seed itself. A
visualization of this distance and inflection points them-
selves can be see in Figure 8.

Imagine drawing the letter V, the start and end points
are when the drawer puts the pen down and picks the pen
up respectively. The middle point is the inflection point,
this is a simple concave region. Previously, the Extended
Watershed algorithm would manually calculate the piece-
wise cross products of a contours boundary and attempt to
detect the inflection regions[1]. The Extended Watershed
algorithm deferred in how they used this information, but
the code itself was simplified by applying the two for-
merly introduced functions to calculate convex hulls and
then detect defects within the hulls.

A final score is created to represent the count of a given
contour. The equation combines the estimated cluster
count and the number of threshed inflection points with
this formula:

Count = (counts|index] + inflections)/2

2

The above equation represents the final count of a given
contour using the calculated inflection defects and the

Figure 8: A visualization of the start and end points of
inflections.

4

count given by the estimated cluster function (which was
saved into an array earlier).

A final for loop iterates through the count array and
sums a final count for the given image. Therefore we can
establish the following runtime complexity for the entire
algorithm:

2% O(NM? 4 N*log(N)) +2% O(N)

= O(NM? +N%log(N)) ®)

2.7 Experiment Setup

Similar to the Extended Watershed algorithm, a light
box is used to create an even distribution of light among
contours to assimilate the most information possible. A
phone-holder was designed and 3D-printed to keep a stan-
dard distance between the phone and light box. The focal
distance between the phone and the light box surface is
about 18cm. To find a threshold in order to eliminate
noise, we found the smallest seed possible in this setup
was about 100 pixels in area, anything smaller than this
detected is removed. A caveat of both the Extended Wa-
tershed algorithm and this is the possibility of inner con-
tours. Both algorithms use the RETR TREE parameter
for OpenCV’s findContour function[8], this will essen-
tially eliminate all contours that are within another con-
tour. Therefore, it will be inaccurate for those cases in
which multiple seeds are beset a contour. Inner contour
processing could be a further extension to this algorithm
to relieve these scenarios.

So far the basic idea of contour and seed counting for
this algorithm has been explained. Continuing the pur-
pose for this paper, it is apparent that a second algorithm is
needed to learn the parameters ¢ and 3 as mentioned ear-
lier. We introduce an inductive Turing Machine, which is
a variant of Turing Machines which may return solutions
while never halting. For this experiment, the inductive
TM will always halt in a finite number of steps and will
save the best results and parameters to reproduce those

results. The algorithm for this inductive TM simply iter-
ates K times, instantiates the counting algorithm with ran-
domly generated values for a and 3, runs the algorithm
and saves these parameters and the final score to a list.
A final score is created by the use of a known test set. As
mentioned previously, if the score is at least 99 percent ac-
curate given the known count, then that algorithm is con-
sidered accurate and contained in the language of P. It is
apparent from the no free lunch theorem that the model
created by this algorithm may not accurately classify data
that it has not been trained on[5]. Knowing this, we aim
to utilize this algorithm to generate labeled data for more
effective machine learning algorithms. However, from the
data provided we found that there are suitable static val-
ues for & and 8 which will return accurate results, but not
necessarily contained in the set P, mentioned earlier. This
allows a fast yet unreliable way to count clusters.

3 Results

The following results sections will first describe how
object detection is undecidable for Turing Machines, sec-
ondly it will report the accuracy and runtime for the al-
gorithm in comparison to the Extended Watershed algo-
rithm.

We claim that image segmentation and object detection
is undecidable, and will show this using Rice’s Theorem.
We know that if all recursively enumerable languages sat-
isfy a property, or no recursively enumerable language
satisfies a property that property is trivial[6]. To show a
property is non-trivial we can give two examples, a lan-
guage that does not satisfy the property, and a language
that does. We propose two instantiations of the above al-
gorithms, one with an o value of one, and another with
an o value of two. This will essentially enable cluster
counting for every contour and every contour with an area
greater than two of the average seeds size respectively.
Using an image with 1025 poppy seeds as our reference
the algorithm for an & of one has an accuracy of 0.533,
while the algorithm for an ¢ of two has an accuracy of
0.993. Because these two algorithms exist and one sat-
isfies P while the other does not, we can say that P is a
non-trivial property. Because P is a non-trivial property,
by Rice’s Theorem P is undecidable[6]. Which shows that
no Turing Machine can promise an accurate count for any
cluster of seeds in an image. This justifies the usage of
machine learning techniques, and why we are using this
algorithm to generate data. Thirty different images were
tested on a Google Nexus5X with a high number of seeds
to encourage clustering. For some extreme cases such as
the image with 3960 poppy seeds, the Extended Water-
shed took almost a full minute to process, while the pro-

posed algorithm takes a half second for any segmentation.
The two algorithms have some innate differences that lead
to this result, as mentioned previously the usage of Water-
shed and unique label finding is a leading cause for a large
runtime on high resolution photographs. The Extended
Watershed algorithm essentially searches through every
pixel of a high resolution photograph, which is a daunt-
ing task on a mobile device. Table 2 reports the accuracy
of the test set for the Extended Watershed and proposed
algorithm. In most cases there is a significant increase in
accuracy, but the Extended Watershed algorithm still per-
forms exceptionally.

Table 1: Runtime results from the algorithm running on
an Android device.

Label Runtime EW Runtime New
poppy825 12.9040 0.4349
poppy925 14.0438 0.4627
poppy 1025 15.3391 0.5278
poppy 1160 17.0709 0.4687
poppy 1260 19.1071 0.4694
poppy 1360 20.1819 0.4976
poppy 1560 23.0418 0.4394
poppy 1760 25.6147 0.4783
poppy 1960 28.2106 0.4973
poppy3960 53.3821 0.5742
silphium100 2.9261 0.3940
silphium200 4.2223 0.3881
silphium300 5.5776 0.3835
silphium500 7.3155 0.4637
silphium800 11.5078 0.4376
silphium1200 16.8501 0.4887
silphium1600 20.5449 0.4545
silphium2000 26.2489 0.5691
soy50 2.2948 0.4179
soy100 3.1177 0.4195
soy222 4.3677 0.4508
soy350 5.9584 0.4449
soy500 7.4616 0.5546
wheat200 4.2908 0.4450
wheat300 5.4986 0.4683
wheat400 7.1205 0.4481
wheat500 8.1606 0.4831
wheat700 9.5016 0.5417
wheat800 12.3562 0.4878
wheat900 11.9804 0.5058

Table 2: Accuracy results from the algorithm running on
an Android device.

Label Accuracy EW Accuracy New
poppy825 0.9406 0.9490
poppy925 0.9459 0.9978
poppy 1025 0.9395 0.9980
poppy 1160 0.9318 0.9931
poppy 1260 0.9460 0.9944
poppy 1360 0.9470 0.9985
poppy 1560 0.9397 0.9974
poppy 1760 0.9477 0.9971
poppy 1960 0.9413 0.9914
poppy3960 0.8795 0.9987
silphium100 0.9345 0.9708
silphium200 0.975 1
silphium300 0.88 0.9900
silphium500 0.808 0.998
silphium800 0.8712 0.9975
silphium1200 0.8533 0.9991
silphium1600 0.816875 0.9981
silphium2000 0.8375 0.9945
soy50 0.7692 0.98
soy100 0.9174 0.9900
soy222 0.8648 0.9910
soy350 0.82 1
soy500 0.796 0.994
wheat200 0.965 1
wheat300 0.9566 0.9933
wheat400 0.96 0.9975
wheat500 0.902 0.9920
wheat700 0.7385 0.9857
wheat800 0.7612 0.995
wheat900 0.7711 0.9922

4 Conclusions

The implementations contained within this paper are
available on Github, an open source version control web-
site. From the results it is apparent that the runtime
for segmenting seeds has been decreased dramatically.
Future work will delve into the recent culmination of
GPU libraries for mobile devices, which may open up
more possibilities for these devices. The sources avail-
able on Github include an Android application that uti-
lizes this implementation, the application will be a part
of the PhenoApps organization on Github which started
a suite of applications for phenotypical research[9]. Sec-
ondly, we were able to show that all such algorithms have
no promise in returning an accurate result; however, with
suitable knowledge on the seed counted, an accurate result

Table 3: Values of o found after the random parameter
search.

Label

poppy825

poppy925

poppyl025
poppy1160
poppyl1260
poppy1360
poppyl560
poppyl760

poppy1960
poppy3960

sil phium100
sil phium200
sil phium300
sil phium500
sil phium800
sil phium1200
sil phium1600
sil phium2000
s0y50

soy100
s0y222
s0y350
s0y500
wheat200
wheat300
wheat400
wheat500
wheat700
wheat800
wheat900

)
=
<
=
S

AN NP PR UNRAEOWNDOXIAANANNPR, WD UNWLWUMRE OV WLWER WOV

can be produced. Thoroughly, usage of an inductive Tur-
ing Machine innately means we may never get an accurate
result, and may never halt. The gains of this paper support
the future use of deep learning to generalize over segmen-
tation data. Using these implementations, deep learning
algorithms should theoretically be able to not only seg-
ment seeds in real time but they should be able to classify
them. Another source available on the Github is a python
implementation of the above algorithm, this implementa-
tion can output Microsoft’s COCO data format. This for-
mat is typically used in object detectors for deep learning,
and is the next step for a real time seed classifier.

References

[1] M.L. Neilsen, S.D. Gangadhara, T. Rife, Extending
watershed segmentation algorithms for high through-
put phenotyping. in Proceedings of the 29th Interna-
tional Conference on Computer Applications in In-
dustry and Engineering, Denver, CO, Sept. 26-28,
2016.

)
&

Shaoqing Ren, Kaiming He, Ross Girshick, Jian
Sun, “Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks”
arXiv:1506.01497 [cs.CV]

[3] Kaiming He, Georgia Gkioxari, Piotr Dollr, Ross Gir-
shick, "Mask R-CNN” arXiv:1703.06870 [cs.CV]

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali
Farhadi, "You Only Look Once: Unified, Real-Time
Object Detection” arXiv:1506.02640 [cs.CV]

[5] Ian Goodfellow and Yoshua Bengio and
Aaron Courville, Deep Learning MIT Press,
http://www.deeplearningbook.org, 2016.

[6] John E. Hopcroft, Jeffrey D. Ullman ”Introduc-
tion To Automata Theory, Languages, And Computa-
tion”, Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1990.

[7] P. Soille and L.M. Vincent, Determining watersheds
in digital pictures via flooding simulations Lausanne-
DL tentative, International Society for Optics and
Photonics, 1990.

[8] Bradski, G., "The OpenCV Library” Dr. Dobb’s Jour-
nal of Software Tools, 25(11), 120-125, 2000.

[9] T.W. Rife and J. A. Poland, Field Book: An open-
source application for field data collection on An-
droid. In Crop Science 54, 1624-1627, 2014. DOI:
10.2135/cropsci2013.08.0579.

[10] Chaney Courtney, “Github
https://www.github.com/chaneylc

account page”

