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Abstract 

 

This paper describes the utility of using puzzles to 

teach formal methods and real-time model checking. 

Puzzles allow us to teach model checking via finite 

games. The limitations of model checkers and the 

challenge of limiting the size of the state space are 

evident as students try to solve problems of varying 

size and difficulty. Students gain valuable practical 

experience in constructing models for puzzles before 

moving on to industry-sized problems. 
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1   Introduction 
 

     As real-time embedded systems become more 

complex, the role of formal methods to specify, 

design, implement, and validate such systems 

becomes even more important. A description of all 

formal methods is beyond the scope of this paper, 

but a nice introduction can be found on a NASA 

site: https://shemesh.larc.nasa.gov/fm/fm-what.html. 

The focus of this paper is to describe how model 

checking principles for real-time systems can be 

taught using finite puzzle games, and how model 

checking can be used to derive winning strategies for 

such games. In addition, model checkers can be 

validated using finite game test suites [8].  

     UPPAAL is a tool for validation (via graphical 

simulation) and verification (via automatic model 

checking) of real-time systems [4]. Models are 

constructed as a collection of timed automata; i.e., 

finite state machines with real-valued clocks. 

     Time is continuous and progresses globally at the 

same rate for the entire system. A system is 

composed of concurrent processes, modeled as 

communicating automaton [1]. Each automaton has 

a set of locations, and transitions can either delay or 

change location via an action transition. Action 

transitions can have a guard and synchronize with 

other automaton when fired. In UPPAAL, 

synchronization is achieved through hand shaking or 

rendezvous: two processes take a transition at the 

same time when one sends on a channel a, via a!, 

and the other process receives on channel a, via a?. 

Thus, a channel in UPPAAL is similar to a channel 

in SPIN, but with zero capacity. Model checking is 

basically an exhaustive search which covers all 

possible dynamic behaviors of the system. Most 

modern model checkers, including UPPAAL, use 

on-the-fly verification combined with symbolic 

techniques to reduce the verification problem to that 

of solving a simple constraint system [7, 12]. The 

verifier can be used to check for simple property 

invariants and a variety of different reachability 

properties. While most puzzles don’t impose time 

constraints on game play, clocks can be used to 

derive novel solutions to puzzles as we shall see.  

    Section 2 presents puzzles that can be solved 

using UPPAAL. Section 3 presents puzzle solutions 

and some performance results. Finally, Section 4 

concludes the paper and gives directions for future 

research. 

 
 

 

2   Puzzle Problems 
 

     A number of simple puzzles and finite games 

have been used as examples for model checkers. In 

this section, we introduce a few new ones which 

have not been used for real-time model checking, to 

the best of our knowledge.  
 

 

 
 

Figure 1.  Flip-Side Puzzle 

https://shemesh.larc.nasa.gov/fm/fm-what.html


 

Flip-Side 

 

     The first puzzle, called “Flip-SideTM”, as shown 

in Figure 1, was invented by Ferdinand Lammertink. 

It is sold by ThinkFun. Each row of numbers can 

slide back and forth, and the middle three numbers 

can be flipped as shown in Figure 2, so that from 

Figure 1, “1,8,4” is now in the top row and “5,2,3” is 

in the bottom row. 

 

 
 

Figure 2.  Flip-Side Puzzle after Flip 

 

The objective is to get the sequence 0,1,2,3,4 in the 

top row and 5,6,7,8,9 in the bottom row as shown in 

Figure 3. 
 

 
 

Figure 3.  Flip-Side Puzzle Goal State 

 

Flip-Side has been analyzed online on Jaap’s Puzzle 

Page (https://www.jaapsch.net/puzzles/flipside.htm) 

by Jaap Scherphuis. With 10 digits, and enumerating 

all possible states, it is easy to see that there are at 

most 10! = 3,628,800 initial configurations with the 

numbers centralized, and it turns out that all of these 

initial configurations are solvable in at most 11 flips, 

but solutions may require many more moves where a 

move consists of shifting one of the rows left or 

right, or flipping the middle three. Only four initial 

configurations require 11 flips, and they are: 
 

58069 

34127 

89672 

03514 

27856 

03914 

58469 

72301 
 

For this puzzle, it is feasible to enumerate all 

possible states, but for more complex problems, that 

may not be possible. For the puzzle in Figure 1, a 

shortest solution can be realized by the 19 moves: 

(1) top-right, (2) flip, (3) bottom-left, (4) flip, (5) 

bottom-right, (6) bottom-right, (7) flip, (8) top-left, 

(9) bottom-left, (10) bottom-left, (11) flip, (12) top-

right, (13) flip, (14) top-left, (15) top-left, (16) flip, 

(17) bottom right, (18) flip, and (19) top-right. Thus, 

a total of 19 moves including 7 flips are required in 

solving this moderately difficult puzzle. 

 

Triangular Tic-Tac-Toe 
 

     The second puzzle is Triangular Tic-Tac-Toe. It 

is played like regular tic-tac-toe such that X’s or O’s 

in any three in a row constitutes a win. Thus, if the 

triangle is numbered as shown in Figure 4, the 

winning sets are {{0,1,2}, {2,3,4}, {4,5,0}, {0,7,3}, 

{1,6,4}, {2,8,5}, {1,7,8}, {3,8,6}, {5,6,7}}. The 

board arrangement is from Martin Gardner’s book 

Mathematical Circus. 

 

 
 

Figure 4.  Triangular Tic-Tac-Toe 

 

The interesting thing about this version of Tic-Tac-

Toe is that the first player can always win, unlike 

regular 3x3 Tic-Tac-Toe where the game can always 

end in a draw. Consequently, this allows for an 

interesting assignment where we ask students to 

derive a “winning strategy” using a strategic model 

checker such as UPPAAL-Tiga [5]. Of course, it’s 

not too much fun to play against the computer if it 

always wins whenever it plays first. Other questions 

to be solved relate to the minimum number of moves 

required to guarantee a win, or if a win is possible 

regardless of the first move. 

https://www.jaapsch.net/puzzles/flipside.htm


 

Peg Solitaire 
 

     The third puzzle is called Peg Solitaire. This 

puzzle dates back to the 17th century. The game 

involves jumping over pegs on a board. The standard 

game fills the entire board with pegs except for one 

empty position. The objective is to empty the entire 

board by jumping and removing pegs by making 

valid moves, and in the end have only one peg 

remain. If the puzzle is solved so that the remaining 

peg is in the same position as the initially missing 

peg, then this is called a solution to the complement 

problem. A comprehensive coverage of all types of 

peg solitaire boards can be found online at George 

Bell’s site: http://www.gibell.net/pegsolitaire/.  

     Rectangular boards where the number of rows n 

and the number of columns m are both even are 

called “even-even” boards. The 4x4 board starts with 

15 pegs placed on the board. Since there are 15 pegs 

to start, all solutions require 14 jumps. When, the 

same peg jumps one or more pegs in succession, this 

is called a move. Solvable 4x4 boards require at 

least 9 moves. One possible 9 move solution is 

shown below in Figure 5. Jumps can only be made 

in a horizontal or vertical direction, diagonal jumps 

are not allowed. Consider the board shown below in 

Figure 5. 
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Figure 5.  Peg Solitaire Solution 

 

If we number the rows and columns 0 to 3 from the 

top-left corner, then the initial puzzle has a peg in all 

positions except for row 1, column 0, denoted as 

(1,0). The first move is to jump the peg in position 

(3,0) over the peg in position (2,0). The peg in 

position (2,0) is removed and the peg from (3,0) now 

resides in position (1,0). Note that the final move 

consists of starting with the peg in (0,3), jumping 

over pegs (0,2), (1,1), and (2,2) to end up in position 

(2,3) as shown. Thus, a total of 14 jumps and 9 

moves are required to solve the puzzle. Model 

checking was used to determine the minimum 

number of moves required to solve a puzzle, and to 

determine the moves required as shown in Figure 5. 

Model checking can also be used to determine that 

all puzzles are solvable, but not in such a way that 

the final peg ends in the original empty slot; thus, 

there are no solutions to the complement problem on 

a 4x4 board. 

 

Logi Toli and Modified Logi Toli 

 

    The final puzzle that we will consider is called 

Logi Toli as shown in Figure 6. 

 

 
 

 

 

 
 

Figure 6.  Logi Toli Puzzle and Solution [11] 

 

The puzzle consists of tracks with six sliding pieces 

with three of each color on either end. The goal is to 

slide the pieces to exchange their positions so that 

the orange pieces have swapped positions with the 

yellow pieces. The minimum number of moves to 

solve the puzzle is 17 as shown in Figure 6. This is 

the same solution generated by the model checker.    

     Just for fun, we propose a variant of the Logi Toli 

puzzle that starts with 4 pieces on each side as 

shown below in Figure 7. The obvious problem to 

solve is to determine if the puzzle is still solvable; 

and if so, the minimum number of moves required. 

http://www.gibell.net/pegsolitaire/


 

The solution of this problem is left as an exercise for 

the interested reader. 
 

 

 
 

Figure 7.  Modified Logi Toli Puzzle 

 

 

3  Model Checking 

 

     After the problems are proposed, it is up to the 

students to derive concise models and properties that 

can be used to solve the problems. This section 

provides solutions to some of the problems and 

directions for further discovery. 

     To derive a model that doesn’t suffer from the 

well-known “state-space explosion” problem, it is 

important to minimize the number of real-valued 

clocks included in the model because they highly 

influence the size of the state space. Other tricks are 

used as well, like using committed locations when 

possible and limiting the number, range, and scope 

of variables. Fortunately, UPPPAAL provides some 

convenient syntax which allows model builders to 

accomplish this goal efficiently. 

     To limit the variable scope, students should favor 

the use of local variables over global variables, and 

minimize the use of channels. To limit range, they 

can use UPPAAL syntax to specify the range of 

values that a variable can hold; for example, in the 

peg solitaire model described below, just declare a 

new type called position, using: 
 

   typedef int[0,3] position; 

 

to declare that board positions (row or column) will 

be integeral in the range of 0 to 3. 

 

Flip-Side 

 

     The model constructed for Flip-Side captures the 

board configuration and allowable moves. There are 

a total of 14 positions for the numbers 0-9 to occupy 

so the board can be modeled as a one-dimensional 

array of size 14. Letting a blank position be denoted 

as -1, we can specify the initial board configuration 

as shown in Figure 8 as an array containing board 

values{ -1,0,5,2,3,9,-1,-1,6,1,8,4,7,-1 }. Note the 

usage of typedefs to reduce the size of the state 

vector. 
 

 
 

 
 

 
 

Figure 8.  Flip-Side Model in UPPAAL 



 

To model allowable game play, we can use a single 

automaton process called Play which has a single 

edge from the initial state to select a feasible move, 

update the board, and increment the number of 

moves made. Note that feasible(m) is a function that 

acts as a guard to ensure that the selected move can 

be made; update(m) is another function to update the 

board based on the move m selected. 

     Note that move is declared to be an integral type 

with values from 0 to 4, the moves are enumerated 

from 0 to 4. If the top-left position is empty then a 

top-left move (0) is feasible, and so on. A flip, 

denoted as move (4) is always feasible. To update 

the board after a move is a simple exercise. Finally, 

to verify that a solution can be obtained, use the 

query: 
 

  E<>(forall(i:position)(board[i]==solution[i])) 

 

That is, on some path (E), is it eventually the case 

(<>) that for all positions, the board value is equal to 

the solution value. To find a solution that requires 

the fewest number of moves, we can request a 

diagnostic trace with the least number of transitions 

using the setting as shown in Figure 9. Once a trace 

is generated, we can go back to the simulator to step 

through the trace generated by the verifier. 

 

 
 

 

Figure 9.  Options + Diagnostic Trace + Shortest 

 

As you probably suspected, the solution generated is 

the same as the one given in Section 2 above. As a 

challenge solve one of the most difficult puzzles and 

determine the number of moves required. 

 

Triangular Tic-Tac-Toe 
 

     Triangular Tic-Tac-Toe is a two-player game that 

can be modeled as a timed two-player game using 

UPPAAL-Tiga [5]. Control transitions are denoted 

as solid edges, and uncontrolled transitions, typically 

denoting the environment, are denoted as dashed 

edges. To constrain the state space size, the possible 

moves can be denoted as an integer from 0 to 8 by 

using the enumeration of the board shown above. 

The set of all winning combinations can be store in a 

two-dimensional array. Finally, a real-valued clock c 

is needed to force progress as shown in Figure 10. 
 

 

 
 

Figure 10.  Global declarations 

 

A single process, Play, shown in Figure 11, can be 

used to model the system. 
 

 
 

Figure 11.  Play automaton 

 

From the initial state, the controlled player, Player 1, 

is set to make the first move by setting turn = 1. To 

verify that the first player can always win, we can 

just use the property that under control, it is always 

the case on all paths, we reach the Win state where 

Player 1 wins as shown in Figures 11 and 12. 

     If Player 1 is not allowed to make the first move, 

then the property is no longer satisfied; to check,  

just change “turn = 1” to “turn = 2”. It is interesting 

to note that without the addition of the real-valued 



 

clock to force progress, the propery is also not 

satisfied. In this case, the environment, Player 2, can 

just delay, refusing to make a move, when Player 1 

has forced them into a corner. 
 

 

 
 

Figure 12.  UPPAAL-Tiga verifier 

 

Peg Solitaire 
 

     Peg solitaire can be solved using a carefully 

constructed UPPAAL model. For the 4x4 problem 

shown in Figure 5, the following model can be used. 
 

 
 

 
 

Figure 13.  Peg solitaire model 

From the initial state, select a random peg at location 

row i, column j, and try to move in direction d, by 

calling the jump function shown in Figure 14, only 

the first part of the function is shown, but the other 

parts are similar. The real-valued clock or the moves 

counter can be used to determine the minimum 

number of moves required to solve the problem. 

Recall that at least 9 moves are required, if the same 

peg jumps several other pegs, it only counts as a 

single move. 

 

 
 

Figure 14.  Jump function fragment 

 
 

The same results are found using the verifier. 

 

 
Figure 15.  Verification results 

 
 

To generate a trace, just select Options + Diagnostic 

Trace + Fastest -- note that Shortest will not work 

because all solutions involve exactly 14 jumps or 

transitions, but by using the real-valued clock, only 

the first jump in each move takes 1 time unit, and the 



 

transitions to make additional jumps in the same 

move (the top transition in Figure 13) take no time. 

 

Logi Toli and Modified Logi Toli 

 

     Due to space limitations, the Logi Toli puzzle and 

the Modified Logi Toli puzzles are left as exercises 

for the interested reader. However, we would be 

happy to supply anyone with complete solutions 

upon request. Both have solutions. 

     Once students master solving puzzle problems 

and learn model checking “tricks of the trade”, they 

are ready to solve more challenging industry-sized 

problems, and derive models for systems that aren’t 

as obvious, such as real-time seed counters [9,10] or 

real-time communication systems [13]. Qualitative 

assessment has shown that the use of puzzles is an 

effective way to motivate students to learn how to 

use model checkers effectively.    

 
 

4  Conclusions 
 

     Overall, the use of puzzles has been an effective 

approach to teach real-time model checking. This 

paper presents several novel puzzle problems that 

lend themselves to real-time model checking, and 

solutions to some of the problems are provided to 

demonstrate techniques that can be used to build 

industry-sized models, and as a side also verify 

puzzle properties. 
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