

Puzzles for learning real-time model checking

Mitchell L. Neilsen

Department of Computer Science

Kansas State University

Manhattan, KS, USA

Abstract

This paper describes the utility of using puzzles to

teach formal methods and real-time model checking.

Puzzles allow us to teach model checking via finite

games. The limitations of model checkers and the

challenge of limiting the size of the state space are

evident as students try to solve problems of varying

size and difficulty. Students gain valuable practical

experience in constructing models for puzzles before

moving on to industry-sized problems.

Keywords: Cyber-physical systems, education,

model checking, finite games, puzzles, real-time

embedded systems.

1 Introduction

 As real-time embedded systems become more

complex, the role of formal methods to specify,

design, implement, and validate such systems

becomes even more important. A description of all

formal methods is beyond the scope of this paper,

but a nice introduction can be found on a NASA

site: https://shemesh.larc.nasa.gov/fm/fm-what.html.

The focus of this paper is to describe how model

checking principles for real-time systems can be

taught using finite puzzle games, and how model

checking can be used to derive winning strategies for

such games. In addition, model checkers can be

validated using finite game test suites [8].

 UPPAAL is a tool for validation (via graphical

simulation) and verification (via automatic model

checking) of real-time systems [4]. Models are

constructed as a collection of timed automata; i.e.,

finite state machines with real-valued clocks.

 Time is continuous and progresses globally at the

same rate for the entire system. A system is

composed of concurrent processes, modeled as

communicating automaton [1]. Each automaton has

a set of locations, and transitions can either delay or

change location via an action transition. Action

transitions can have a guard and synchronize with

other automaton when fired. In UPPAAL,

synchronization is achieved through hand shaking or

rendezvous: two processes take a transition at the

same time when one sends on a channel a, via a!,

and the other process receives on channel a, via a?.

Thus, a channel in UPPAAL is similar to a channel

in SPIN, but with zero capacity. Model checking is

basically an exhaustive search which covers all

possible dynamic behaviors of the system. Most

modern model checkers, including UPPAAL, use

on-the-fly verification combined with symbolic

techniques to reduce the verification problem to that

of solving a simple constraint system [7, 12]. The

verifier can be used to check for simple property

invariants and a variety of different reachability

properties. While most puzzles don’t impose time

constraints on game play, clocks can be used to

derive novel solutions to puzzles as we shall see.

 Section 2 presents puzzles that can be solved

using UPPAAL. Section 3 presents puzzle solutions

and some performance results. Finally, Section 4

concludes the paper and gives directions for future

research.

2 Puzzle Problems

 A number of simple puzzles and finite games

have been used as examples for model checkers. In

this section, we introduce a few new ones which

have not been used for real-time model checking, to

the best of our knowledge.

Figure 1. Flip-Side Puzzle

https://shemesh.larc.nasa.gov/fm/fm-what.html

Flip-Side

 The first puzzle, called “Flip-SideTM”, as shown

in Figure 1, was invented by Ferdinand Lammertink.

It is sold by ThinkFun. Each row of numbers can

slide back and forth, and the middle three numbers

can be flipped as shown in Figure 2, so that from

Figure 1, “1,8,4” is now in the top row and “5,2,3” is

in the bottom row.

Figure 2. Flip-Side Puzzle after Flip

The objective is to get the sequence 0,1,2,3,4 in the

top row and 5,6,7,8,9 in the bottom row as shown in

Figure 3.

Figure 3. Flip-Side Puzzle Goal State

Flip-Side has been analyzed online on Jaap’s Puzzle

Page (https://www.jaapsch.net/puzzles/flipside.htm)

by Jaap Scherphuis. With 10 digits, and enumerating

all possible states, it is easy to see that there are at

most 10! = 3,628,800 initial configurations with the

numbers centralized, and it turns out that all of these

initial configurations are solvable in at most 11 flips,

but solutions may require many more moves where a

move consists of shifting one of the rows left or

right, or flipping the middle three. Only four initial

configurations require 11 flips, and they are:

58069

34127

89672

03514

27856

03914

58469

72301

For this puzzle, it is feasible to enumerate all

possible states, but for more complex problems, that

may not be possible. For the puzzle in Figure 1, a

shortest solution can be realized by the 19 moves:

(1) top-right, (2) flip, (3) bottom-left, (4) flip, (5)

bottom-right, (6) bottom-right, (7) flip, (8) top-left,

(9) bottom-left, (10) bottom-left, (11) flip, (12) top-

right, (13) flip, (14) top-left, (15) top-left, (16) flip,

(17) bottom right, (18) flip, and (19) top-right. Thus,

a total of 19 moves including 7 flips are required in

solving this moderately difficult puzzle.

Triangular Tic-Tac-Toe

 The second puzzle is Triangular Tic-Tac-Toe. It

is played like regular tic-tac-toe such that X’s or O’s

in any three in a row constitutes a win. Thus, if the

triangle is numbered as shown in Figure 4, the

winning sets are {{0,1,2}, {2,3,4}, {4,5,0}, {0,7,3},

{1,6,4}, {2,8,5}, {1,7,8}, {3,8,6}, {5,6,7}}. The

board arrangement is from Martin Gardner’s book

Mathematical Circus.

Figure 4. Triangular Tic-Tac-Toe

The interesting thing about this version of Tic-Tac-

Toe is that the first player can always win, unlike

regular 3x3 Tic-Tac-Toe where the game can always

end in a draw. Consequently, this allows for an

interesting assignment where we ask students to

derive a “winning strategy” using a strategic model

checker such as UPPAAL-Tiga [5]. Of course, it’s

not too much fun to play against the computer if it

always wins whenever it plays first. Other questions

to be solved relate to the minimum number of moves

required to guarantee a win, or if a win is possible

regardless of the first move.

https://www.jaapsch.net/puzzles/flipside.htm

Peg Solitaire

 The third puzzle is called Peg Solitaire. This

puzzle dates back to the 17th century. The game

involves jumping over pegs on a board. The standard

game fills the entire board with pegs except for one

empty position. The objective is to empty the entire

board by jumping and removing pegs by making

valid moves, and in the end have only one peg

remain. If the puzzle is solved so that the remaining

peg is in the same position as the initially missing

peg, then this is called a solution to the complement

problem. A comprehensive coverage of all types of

peg solitaire boards can be found online at George

Bell’s site: http://www.gibell.net/pegsolitaire/.

 Rectangular boards where the number of rows n

and the number of columns m are both even are

called “even-even” boards. The 4x4 board starts with

15 pegs placed on the board. Since there are 15 pegs

to start, all solutions require 14 jumps. When, the

same peg jumps one or more pegs in succession, this

is called a move. Solvable 4x4 boards require at

least 9 moves. One possible 9 move solution is

shown below in Figure 5. Jumps can only be made

in a horizontal or vertical direction, diagonal jumps

are not allowed. Consider the board shown below in

Figure 5.

● ● ● ●

 ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

 ● ● ●

 ● ● ●

 ● ● ●

 ● ● ●

● ● ● ●

 ● ● ●

● ●

 ● ● ●

● ● ● ●

 ● ● ●

● ● ●

 ● ●

● ● ●

 ● ● ●

 ● ●

 ● ●

● ● ●

 ● ● ●

 ● ●

 ●

● ● ●

 ● ● ●

 ● ●

 ●

 ● ●

 ●

 ● ●

 ●

 ●

Figure 5. Peg Solitaire Solution

If we number the rows and columns 0 to 3 from the

top-left corner, then the initial puzzle has a peg in all

positions except for row 1, column 0, denoted as

(1,0). The first move is to jump the peg in position

(3,0) over the peg in position (2,0). The peg in

position (2,0) is removed and the peg from (3,0) now

resides in position (1,0). Note that the final move

consists of starting with the peg in (0,3), jumping

over pegs (0,2), (1,1), and (2,2) to end up in position

(2,3) as shown. Thus, a total of 14 jumps and 9

moves are required to solve the puzzle. Model

checking was used to determine the minimum

number of moves required to solve a puzzle, and to

determine the moves required as shown in Figure 5.

Model checking can also be used to determine that

all puzzles are solvable, but not in such a way that

the final peg ends in the original empty slot; thus,

there are no solutions to the complement problem on

a 4x4 board.

Logi Toli and Modified Logi Toli

 The final puzzle that we will consider is called

Logi Toli as shown in Figure 6.

Figure 6. Logi Toli Puzzle and Solution [11]

The puzzle consists of tracks with six sliding pieces

with three of each color on either end. The goal is to

slide the pieces to exchange their positions so that

the orange pieces have swapped positions with the

yellow pieces. The minimum number of moves to

solve the puzzle is 17 as shown in Figure 6. This is

the same solution generated by the model checker.

 Just for fun, we propose a variant of the Logi Toli

puzzle that starts with 4 pieces on each side as

shown below in Figure 7. The obvious problem to

solve is to determine if the puzzle is still solvable;

and if so, the minimum number of moves required.

http://www.gibell.net/pegsolitaire/

The solution of this problem is left as an exercise for

the interested reader.

Figure 7. Modified Logi Toli Puzzle

3 Model Checking

 After the problems are proposed, it is up to the

students to derive concise models and properties that

can be used to solve the problems. This section

provides solutions to some of the problems and

directions for further discovery.

 To derive a model that doesn’t suffer from the

well-known “state-space explosion” problem, it is

important to minimize the number of real-valued

clocks included in the model because they highly

influence the size of the state space. Other tricks are

used as well, like using committed locations when

possible and limiting the number, range, and scope

of variables. Fortunately, UPPPAAL provides some

convenient syntax which allows model builders to

accomplish this goal efficiently.

 To limit the variable scope, students should favor

the use of local variables over global variables, and

minimize the use of channels. To limit range, they

can use UPPAAL syntax to specify the range of

values that a variable can hold; for example, in the

peg solitaire model described below, just declare a

new type called position, using:

 typedef int[0,3] position;

to declare that board positions (row or column) will

be integeral in the range of 0 to 3.

Flip-Side

 The model constructed for Flip-Side captures the

board configuration and allowable moves. There are

a total of 14 positions for the numbers 0-9 to occupy

so the board can be modeled as a one-dimensional

array of size 14. Letting a blank position be denoted

as -1, we can specify the initial board configuration

as shown in Figure 8 as an array containing board

values{ -1,0,5,2,3,9,-1,-1,6,1,8,4,7,-1 }. Note the

usage of typedefs to reduce the size of the state

vector.

Figure 8. Flip-Side Model in UPPAAL

To model allowable game play, we can use a single

automaton process called Play which has a single

edge from the initial state to select a feasible move,

update the board, and increment the number of

moves made. Note that feasible(m) is a function that

acts as a guard to ensure that the selected move can

be made; update(m) is another function to update the

board based on the move m selected.

 Note that move is declared to be an integral type

with values from 0 to 4, the moves are enumerated

from 0 to 4. If the top-left position is empty then a

top-left move (0) is feasible, and so on. A flip,

denoted as move (4) is always feasible. To update

the board after a move is a simple exercise. Finally,

to verify that a solution can be obtained, use the

query:

 E<>(forall(i:position)(board[i]==solution[i]))

That is, on some path (E), is it eventually the case

(<>) that for all positions, the board value is equal to

the solution value. To find a solution that requires

the fewest number of moves, we can request a

diagnostic trace with the least number of transitions

using the setting as shown in Figure 9. Once a trace

is generated, we can go back to the simulator to step

through the trace generated by the verifier.

Figure 9. Options + Diagnostic Trace + Shortest

As you probably suspected, the solution generated is

the same as the one given in Section 2 above. As a

challenge solve one of the most difficult puzzles and

determine the number of moves required.

Triangular Tic-Tac-Toe

 Triangular Tic-Tac-Toe is a two-player game that

can be modeled as a timed two-player game using

UPPAAL-Tiga [5]. Control transitions are denoted

as solid edges, and uncontrolled transitions, typically

denoting the environment, are denoted as dashed

edges. To constrain the state space size, the possible

moves can be denoted as an integer from 0 to 8 by

using the enumeration of the board shown above.

The set of all winning combinations can be store in a

two-dimensional array. Finally, a real-valued clock c

is needed to force progress as shown in Figure 10.

Figure 10. Global declarations

A single process, Play, shown in Figure 11, can be

used to model the system.

Figure 11. Play automaton

From the initial state, the controlled player, Player 1,

is set to make the first move by setting turn = 1. To

verify that the first player can always win, we can

just use the property that under control, it is always

the case on all paths, we reach the Win state where

Player 1 wins as shown in Figures 11 and 12.

 If Player 1 is not allowed to make the first move,

then the property is no longer satisfied; to check,

just change “turn = 1” to “turn = 2”. It is interesting

to note that without the addition of the real-valued

clock to force progress, the propery is also not

satisfied. In this case, the environment, Player 2, can

just delay, refusing to make a move, when Player 1

has forced them into a corner.

Figure 12. UPPAAL-Tiga verifier

Peg Solitaire

 Peg solitaire can be solved using a carefully

constructed UPPAAL model. For the 4x4 problem

shown in Figure 5, the following model can be used.

Figure 13. Peg solitaire model

From the initial state, select a random peg at location

row i, column j, and try to move in direction d, by

calling the jump function shown in Figure 14, only

the first part of the function is shown, but the other

parts are similar. The real-valued clock or the moves

counter can be used to determine the minimum

number of moves required to solve the problem.

Recall that at least 9 moves are required, if the same

peg jumps several other pegs, it only counts as a

single move.

Figure 14. Jump function fragment

The same results are found using the verifier.

Figure 15. Verification results

To generate a trace, just select Options + Diagnostic

Trace + Fastest -- note that Shortest will not work

because all solutions involve exactly 14 jumps or

transitions, but by using the real-valued clock, only

the first jump in each move takes 1 time unit, and the

transitions to make additional jumps in the same

move (the top transition in Figure 13) take no time.

Logi Toli and Modified Logi Toli

 Due to space limitations, the Logi Toli puzzle and

the Modified Logi Toli puzzles are left as exercises

for the interested reader. However, we would be

happy to supply anyone with complete solutions

upon request. Both have solutions.

 Once students master solving puzzle problems

and learn model checking “tricks of the trade”, they

are ready to solve more challenging industry-sized

problems, and derive models for systems that aren’t

as obvious, such as real-time seed counters [9,10] or

real-time communication systems [13]. Qualitative

assessment has shown that the use of puzzles is an

effective way to motivate students to learn how to

use model checkers effectively.

4 Conclusions

 Overall, the use of puzzles has been an effective

approach to teach real-time model checking. This

paper presents several novel puzzle problems that

lend themselves to real-time model checking, and

solutions to some of the problems are provided to

demonstrate techniques that can be used to build

industry-sized models, and as a side also verify

puzzle properties.

Acknowledgements

 This material is based upon work supported by

the National Science Foundation under NSF-IOS

Grant No. 1543958. Any opinions, findings, and

conclusions or recommendations expressed in this

material are those of the author(s) and do not

necessarily reflect the views of the National Science

Foundation.

References

[1] R. Alur and D. Dill, “A theory for timed automata”,

In Theoretical Computer Science, Vol. 125, pp. 183–

235, 1994.

[2] C. Baier and J.P. Katoen, “Principles of Model

Checking”, MIT Press, Cambridge, MA, 2008.

 [3] J.K. Barker and R. Korf, “Solving peg solitaire with

bidirectional BFIDA*”, in Proceedings of the 26th

AAAI Conference on Artificial Intelligence, pp. 420-

426, 2012.

[4] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson

and W. Yi, “UPPAAL - a tool suite for automatic

verification of real-time systems”, In Proceedings of

the 4th DIMACS Workshop on Verification and

Control of Hybrid Systems, New Brunswick, New

Jersey, Oct. 22-24, 1995.

 [5] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.

Larsen, D. Lime, “UPPAAL-Tiga: Timed games for

everyone”, In L. Aceto and A. Ingolfdottir (eds.)

Proceedings of the 18th Nordic Workshop on

Programming Theory (NWPT 2006), Reykjavik

University, 2006.

[6] E.M. Clarke, E.A. Emerson, and J. Sifakis, “Model

checking: algorithmic verification and debugging”,

Communications of the ACM, 52(11):74–84, 2009.

 [7] K.G. Larsen, P. Pettersson, and W. Yi, “Model-

checking for real-time systems”, In Proc. of

Fundamentals of Computation Theory, Vol. 965 of

Lecture Notes in Computer Science, pp. 62–88, 1995.

[8] M.L. Neilsen, D.H. Lenhert, M. Mizuno, G. Singh, J.

Staver, N. Zhang, K. Kramer, W.J. Rust, Q. Stoll,

M.S. Uddin, “Encouraging interest in engineering

through embedded system design”, In American

Society of Engineering Educators (ASEE) Computers

in Education Journal, Vol. XV, No. 3, pp. 68-77, July

2005.

 [9] M.L. Neilsen, S.D. Gangadhara, and S. Amaravadi,

“Extending watershed segmentation algorithms for

high-throughput phenotyping on mobile devices”, in

Proc. of the 30th International Conference on

Computer Applications in Industry and Engineering,

San Diego, CA, 2017.

[10] M.L. Neilsen, C. Courtney, S. Amaravadi, Z. Xiong,

J. Poland and T. Rife, “A dynamic, real-time

algorithm for seed counting”, in Proc. Of the 26th

International Conference on Software Engineering

and Data Engineering, 2017.

[11]J. Scherphuis “Jaap’s Puzzle Page”, retrieved from

https://www.jaapsch.net/puzzles/logitoli.htm, 2018.

[12] N.V. Shilov and K. Yi, “Puzzles for learning model

checking, model checking for programming puzzles,

puzzles for testing model checkers”, In Electronic

Notes in Theoretical Computer Science 43, 2001,

http://www.elsevier.nl/locate/entcs/volume43.html.

[13] Y. Wang, P. Pettersson, and M. Daniels, “Automatic

verification of real-time communicating systems by

constraint-solving”, In Proc. of the 7th International

Conference on Formal Description Techniques, 1994.

https://www.jaapsch.net/puzzles/logitoli.htm
http://www.elsevier.nl/locate/entcs/volume43.html

