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Abstract

This paper describes the utility of using two-player 
games to teach formal methods and real-time model 
checking. Many systems that we want to model 
involve two parts: a discrete control program and a 
continuous environment. One player can be used to 
play the role of the control program and the other 
can play the role of the environment. Consequently, 
two-player games allow us to teach model checking
techniques that can also be applied to build models 
to solve complex problems found in industry. The 
limitations of model checkers and the challenge of 
limiting the size of the state space are evident as 
students try to solve problems of varying size and 
difficulty. 
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systems, model checking, finite games, real-time 
systems.

1 Introduction

As real-time embedded systems become more 
complex, the role of formal methods to specify, 
design, implement, and validate such systems 
becomes even more important. A description of all 
formal methods is beyond the scope of this paper, 
but a nice introduction can be found on a NASA 
site: https://shemesh.larc.nasa.gov/fm/fm-what.html.
The focus of this paper is to describe how model 
checking principles for real-time systems can be 
taught using two-player games, and how model 
checking can be used to derive winning strategies for 
such games. In addition, model checkers can be 
validated using finite game test suites [8]. 

UPPAAL is a tool for validation (via graphical 
simulation) and verification (via automatic model 
checking) of real-time systems [4]. Models are 
constructed as a collection of timed automata; i.e., 
finite state machines with real-valued clocks.

Time is continuous and progresses globally at the 
same rate for the entire system. A system is 
composed of concurrent processes, modeled as 
communicating automaton [1]. Each automaton has 
a set of locations, and transitions can either delay or 
change location via an action transition. Action 
transitions can have a guard and synchronize with 
other automaton when fired. In UPPAAL, 
synchronization is achieved through hand shaking or 
rendezvous: two processes take a transition at the 
same time when one sends on a channel a, via a!,
and the other process receives on channel a, via a?.
Thus, a channel in UPPAAL is similar to a channel 
in SPIN, but with zero capacity. Model checking is 
basically an exhaustive search which covers all 
possible dynamic behaviors of the system. Most 
modern model checkers, including UPPAAL, use 
on-the-fly verification combined with symbolic 
techniques to reduce the verification problem to that 
of solving a simple constraint system [7, 12]. The 
verifier can be used to check for simple property 
invariants and a variety of different reachability 
properties. To model two-player games, a strategic 
model checker which extends UPPAAL, called 
UPPAAL-TIGA [5], can be used. Controlled edges 
can be used to model moves by one player and 
uncontrolled edges can be used to model moves by 
the other player. Finally, while most games don’t 
impose time constraints on game play, clocks can be 
used to derive novel solutions to games and force 
progress, as we shall see. 

Section 2 presents some two-player games that
can be solved using UPPAAL-TIGA. Section 3 
presents model solutions and some performance 
results. Finally, Section 4 concludes the paper and 
gives directions for additional research.

2 Two-Player Games

Several simple logic puzzles and multi-player
games have been used as examples for model 
checkers [14]. In this section, we introduce a few 
new ones which have not been used by others for 
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real-time model checking, to the best of our 
knowledge. Then we develop simple models to
develop strategies to play games using real-time 
model checkers. We’ll start by describing some
twists on a traditional two-player game, tic-tac-toe.

Wild Tic-Tac-Toe

The game of Tic-Tac-Toe is traditionally played 
by two players with paper and pencil on a 3x3 grid. 
The players take turns marking X’s and O’s in any 
open position. The first player able to place three of 
their marks in a horizontal, vertical, or diagonal row 
wins the game. For the board shown in Figure 1, the 
winning sets are { {0,1,2}, {3,4,5}, {6,7,8}, {0,3,6}, 
{1,4,7}, {2,5,8}, {0,4,8}, {2,4,6} }. In the game play 
shown in Figure 1, O wins with marks in positions 6, 
7, and 8. Unfortunately, players soon discover that 
optimal play always leads to a draw in which neither 
player wins. 

0 1 2
3 4 5
6 7 8

Figure 1.  Tic-Tac-Toe Board and Game

One variant, called Wild Tic-Tac-Toe, allows a 
player to play either X or O on their move. If a 
player can win the game with either an X or an O
played, then they are declared the winner. In this 
case, the first player can always win the game, but it 
requires a bit more reasoning to develop a winning 
strategy. Also, it’s easier for a player to make an 
erroneous move. Another interesting variant of tic-
tac-toe is played on a triangular board as described 
below.

Triangular Tic-Tac-Toe

The second game, called Triangular Tic-Tac-Toe,
is played like regular tic-tac-toe such that X’s or O’s 
in any three in a row constitutes a win, but the rows 
are organized into a triangle. Thus, if the triangle is 
numbered as shown in Figure 2, the winning sets are 
{{0,1,2}, {2,3,4}, {4,5,0}, {0,7,3}, {1,6,4}, {2,8,5}, 
{1,7,8}, {3,8,6}, {5,6,7}}. The board arrangement is 
from Martin Gardner’s book Mathematical Circus.

The interesting thing about this version of Tic-
Tac-Toe is that the first player can always win, 

unlike regular 3x3 Tic-Tac-Toe where the game can 
always end in a draw. Consequently, this allows for 
an interesting assignment where we ask students to 
derive a “winning strategy” using a strategic model 
checker such as UPPAAL-TIGA [5]. Of course, it’s 
not too much fun to play against the computer if it
always wins whenever it plays first. Other questions 
to be solved relate to the minimum number of moves 
required to guarantee a win, or if a win is possible 
regardless of the first move.

Figure 2.  Triangular Tic-Tac-Toe

Hot Spot Tic-Tac-Toe

The final game is a brand-new variant of tic-tac-
toe that makes for a more interesting game which 
doesn’t always result in a win or a draw with 
optimal play. Note that the triangular tic-tac-toe 
game can always be won by the first player and has 
a total of 9 winning combinations, but the regular 
tic-tac-toe game can always end in a draw and only 
has a total of 8 winning combinations. The unique
idea behind Hot Spot Tic-Tac-Toe is to randomly 
select three spots or positions on the board to also 
constitute a winning combination, thus giving a total 
of 9 winning combinations. Of course, if the hot spot 
winning combination is the same as an existing 
combination, then the game will end in a draw with 
optimal play. But if the game randomly selects the 
hot spot combination {1,3,5}, then the first player 
can always win. In this way, the game won’t always 
end in a draw, and the play strategy changes based 
on the random hot spot numbers selected. 

X O X
O X X
O O O
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0 1 2
3 4 5
6 7 8

Figure 3. Hot Spot Tic-Tac-Toe Board

3 Model Checking

After the problems are proposed, it is up to the 
students to derive concise models and properties that 
can be used to solve the problems. This section
provides solutions to some of the problems and 
directions for further discovery.

To derive a model that doesn’t suffer from the 
well-known “state-space explosion” problem, it is 
important to minimize the number of real-valued 
clocks included in the model because they highly 
influence the size of the state space. Other tricks are 
used as well, like using committed locations when 
possible and limiting the number, range, and scope 
of variables. Fortunately, UPPPAAL provides some 
convenient syntax which allows model builders to 
accomplish this goal efficiently.

To limit the variable scope, students should favor 
the use of local variables over global variables, and
they should also minimize the use of channels. To 
limit range, they can use UPPAAL syntax to specify 
the range of values that a variable can hold; for 
example, in the model for triangular tic-tac-toe
described below, just declare a new type called 
move, using:

   typedef int[0,8] move; 
 
to declare that move positions will be integers in the 
range of 0 to 8 as shown in Figure 4.

Triangular Tic-Tac-Toe

Triangular Tic-Tac-Toe is a two-player game that 
can be modeled as a timed two-player game using 
UPPAAL-TIGA [5]. Control transitions are denoted 
as solid edges, and uncontrolled transitions, typically 
denoting the environment, are denoted as dashed 
edges. To constrain the state space size, the possible 
moves can be denoted as an integer from 0 to 8 by 
using the enumeration of the board shown above in 
Figure 2. Each board position can be enumerated as 
blank (0), a play of X (1), or a play of O (2). The 
board is initialized to all blanks. Then, the set of all 
winning combinations can be stored in a two-

dimensional array, called winner; e.g., if board 
positions 0, 1, and 2 are all the same value (1 or 2), 
then a winning state has been realized. Finally, a 
real-valued clock c is needed to force progress as
discussed below.

Figure 4.  Global declarations

A single process, Play, shown in Figure 5, can be 
used to model the system. From the initial state, the 
controlled player, Player 1, is set to make the first 
move by setting turn = 1. To verify that the first 
player can always win, we can just use the property 
that under control, it is always the case on all paths, 
we eventually reach the Win state where Player 1
wins as shown in Figures 5 and 6.

Figure 5.  Play automaton

If Player 1 is not allowed to make the first move, 
then the property is no longer satisfied; to check,  
just change “turn = 1” to “turn = 2” in the transition 
from the initial state. It is interesting to note that 
without the addition of the real-valued clock to force 
progress, the propery is also not satisfied. In this 
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case, the environment, Player 2, can just delay, 
refusing to make a move, when Player 1 has forced 
Player 2 into a corner without a move that will 
prevent Player 1 from winning.

Figure 6.  UPPAAL-TIGA verifier

As shown in Figure 6, we can also verify that the 
system never deadlocks and that without control, it’s 
no longer the case that the first player will always 
eventually win; i.e., (A<> Play.Win) is not satisfied.

Wild Tic-Tac-Toe

In Wild Tic-Tac-Toe, players can win the game 
by either completing the board with three X’s or 
three O’s, so the strategy is much different than 
regular tic-tac-toe or triangular tic-tac-toe. The play 
becomes much more defensive to ensure that the 
opponent is not able to win on their next move, 
while at the same time forcing the opponent to make 
a move that allows you to win. 

Figure 7.  Global declarations

A model, similar to the one in Figure 5, can be used, 
but the move made can either set a given board 
position to 1 or 2. Also, the set of winning sets are 
the same as in regular tic-tac-toe, so global 
declarations are updated as shown in Figure 7. The 
updated play automaton is shown below in Figure 8.
In this case a play, p, is either 1 or 2.

Figure 8.  Play automaton

As in triangular tic-tac-toe, the first player can 
always win. But some of the plays are interesting. 
The strategy found by UPPAAL-TIGA is to play X 
in the center. If the opponent plays O in a corner, 
then TIGA counters to play O in the opposite corner. 
Likewise, if the opponent plays O in a side position 
(positions 1,3,5, or 7), TIGA counters by playing an 
O in the opposite side. In either case, the opponent is
forced to make a move which causes them to lose.

The function to test if a player wins checks to see 
if there exists a winning set of board positions all set 
equal to 1 or 2:

 bool Player_wins() { 
 if (exists(i:winning_set) 
   exists(p:int[1,2]) 
     forall(j:elements)board[winner[i][j]]==p) 
  return true; 
 else 
   return false; 

 } 

The same properties shown in Figure 6 for triangular 
tic-tac-toe are satisfied. In particular, on some path 
(E), eventually (<>) it is possible for the first player 
to win, and further under control on all paths (A), 
eventually (<>) the first player can win. 

To enable play against the strategy generated, just 
select Options + Diagnostic Trace + tiga_some. 
When the property is checked, the dialog shown in 
Figure 9 is displayed. After generating a winning 
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strategy, you can make moves for the environment, 
and TIGA counters with controllable moves made 
by the controller as shown in Figure 10. This allows 
students to observe the strategy first-hand by making 
plays against the computer.

Figure 9.  Load trace dialog

The controller starts by setting a 2 in the center. If 
the environment counters by playing a 1 in a corner, 
the controller counters by playing a 1 in the opposite 
corner, forcing the environment to lose.

Figure 10. Play against the controller

An obvious follow-on question is what happens if 
we play wild tic-tac-toe on a triangular tic-tac-toe 
board. Counter to our intuition, the combined game 
is not so advantageous to the first player, and indeed 
the first player is not guaranteed to win. 
        

Hot Spot Tic-Tac-Toe

The final game to consider is a new game that we 
just invented and call Hot Spot Tic-Tac-Toe. Before 
play, three random numbers, call hot spots, are set 
by the game. They could be set to be different than 
any existing winning combination. Play proceeds
like regular tic-tac-toe, but the existing standard set 
of winning combinations are augmented with the set 

of hot spots. Depending on the hot spots, the first 
player may be able to win with optimal play. For 
example, if the hot spots are 1, 3, and 5 as shown in 
Figure 3, then the first player can always eventually 
win. 

Figure 11.  Hot spots {0,2,4}

However, if the hot spots are 0, 2, and 4, as shown in 
Figure 11, then the first player cannot always 
eventually win. So, it really depends on which hot 
spots are selected by the game. Most hot spot sets of 
size 3 give the first player an edge, but any hot spot 
set that includes 4 is not a winning configuration for 
the first player, but the first player can keep from 
losing as shown in Figure 12.

Figure 12.  Verify first player can win or draw

If we allow the hot spot set to contain a different 
number of positions, then not surprisingly, smaller 
sets are more likely to allow the first player to win. 
All sets of size 1 would be instant winners for the 
first player. However, not all sets of size 2 are so 
lucky; for example, the set {0, 4} is one case. 
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At the other extreme, some sets of size 4 are 
winning hot spot sets for the first player, including 
the sets {0, 2, 3, 5} and {0, 2, 3, 8}, and set
symmetrical to these sets. There aren’t very many 
sets of size 4 that result in a winning configuration 
for the first player.

4 Conclusions

While solving puzzle problems and constructing 
models for two-player games, students master model 
checking “tricks of the trade”. Then, they are ready 
to solve more challenging industry-sized problems, 
and derive models for systems that aren’t as obvious, 
such as real-time seed counters [9,10] or real-time 
communication systems [13]. Qualitative assessment 
has shown that the use of two-player games is an 
effective way to motivate students to learn how to 
use model checkers effectively.

Overall, the use of two-player games has been an 
effective approach to teach real-time model 
checking. This paper presents several novel two-
player game problems that lend themselves to real-
time model checking, and solutions to some of the 
problems are provided to demonstrate techniques 
that can be used to build industry-sized models, and 
as a side also verify game properties.
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