
Two-player games for learning real-time model checking

Mitchell L. Neilsen
Department of Computer Science

Kansas State University
Manhattan, KS, USA

Abstract

This paper describes the utility of using two-player
games to teach formal methods and real-time model
checking. Many systems that we want to model
involve two parts: a discrete control program and a
continuous environment. One player can be used to
play the role of the control program and the other
can play the role of the environment. Consequently,
two-player games allow us to teach model checking
techniques that can also be applied to build models
to solve complex problems found in industry. The
limitations of model checkers and the challenge of
limiting the size of the state space are evident as
students try to solve problems of varying size and
difficulty.

Keywords: Cyber-physical systems, embedded
systems, model checking, finite games, real-time
systems.

1 Introduction

As real-time embedded systems become more
complex, the role of formal methods to specify,
design, implement, and validate such systems
becomes even more important. A description of all
formal methods is beyond the scope of this paper,
but a nice introduction can be found on a NASA
site: https://shemesh.larc.nasa.gov/fm/fm-what.html.
The focus of this paper is to describe how model
checking principles for real-time systems can be
taught using two-player games, and how model
checking can be used to derive winning strategies for
such games. In addition, model checkers can be
validated using finite game test suites [8].

UPPAAL is a tool for validation (via graphical
simulation) and verification (via automatic model
checking) of real-time systems [4]. Models are
constructed as a collection of timed automata; i.e.,
finite state machines with real-valued clocks.

Time is continuous and progresses globally at the
same rate for the entire system. A system is
composed of concurrent processes, modeled as
communicating automaton [1]. Each automaton has
a set of locations, and transitions can either delay or
change location via an action transition. Action
transitions can have a guard and synchronize with
other automaton when fired. In UPPAAL,
synchronization is achieved through hand shaking or
rendezvous: two processes take a transition at the
same time when one sends on a channel a, via a!,
and the other process receives on channel a, via a?.
Thus, a channel in UPPAAL is similar to a channel
in SPIN, but with zero capacity. Model checking is
basically an exhaustive search which covers all
possible dynamic behaviors of the system. Most
modern model checkers, including UPPAAL, use
on-the-fly verification combined with symbolic
techniques to reduce the verification problem to that
of solving a simple constraint system [7, 12]. The
verifier can be used to check for simple property
invariants and a variety of different reachability
properties. To model two-player games, a strategic
model checker which extends UPPAAL, called
UPPAAL-TIGA [5], can be used. Controlled edges
can be used to model moves by one player and
uncontrolled edges can be used to model moves by
the other player. Finally, while most games don’t
impose time constraints on game play, clocks can be
used to derive novel solutions to games and force
progress, as we shall see.

Section 2 presents some two-player games that
can be solved using UPPAAL-TIGA. Section 3
presents model solutions and some performance
results. Finally, Section 4 concludes the paper and
gives directions for additional research.

2 Two-Player Games

Several simple logic puzzles and multi-player
games have been used as examples for model
checkers [14]. In this section, we introduce a few
new ones which have not been used by others for

549

2018 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-1360-9/18/$31.00 ©2018 IEEE
DOI 10.1109/CSCI.2018.00112

real-time model checking, to the best of our
knowledge. Then we develop simple models to
develop strategies to play games using real-time
model checkers. We’ll start by describing some
twists on a traditional two-player game, tic-tac-toe.

Wild Tic-Tac-Toe

The game of Tic-Tac-Toe is traditionally played
by two players with paper and pencil on a 3x3 grid.
The players take turns marking X’s and O’s in any
open position. The first player able to place three of
their marks in a horizontal, vertical, or diagonal row
wins the game. For the board shown in Figure 1, the
winning sets are { {0,1,2}, {3,4,5}, {6,7,8}, {0,3,6},
{1,4,7}, {2,5,8}, {0,4,8}, {2,4,6} }. In the game play
shown in Figure 1, O wins with marks in positions 6,
7, and 8. Unfortunately, players soon discover that
optimal play always leads to a draw in which neither
player wins.

0 1 2
3 4 5
6 7 8

Figure 1. Tic-Tac-Toe Board and Game

One variant, called Wild Tic-Tac-Toe, allows a
player to play either X or O on their move. If a
player can win the game with either an X or an O
played, then they are declared the winner. In this
case, the first player can always win the game, but it
requires a bit more reasoning to develop a winning
strategy. Also, it’s easier for a player to make an
erroneous move. Another interesting variant of tic-
tac-toe is played on a triangular board as described
below.

Triangular Tic-Tac-Toe

The second game, called Triangular Tic-Tac-Toe,
is played like regular tic-tac-toe such that X’s or O’s
in any three in a row constitutes a win, but the rows
are organized into a triangle. Thus, if the triangle is
numbered as shown in Figure 2, the winning sets are
{{0,1,2}, {2,3,4}, {4,5,0}, {0,7,3}, {1,6,4}, {2,8,5},
{1,7,8}, {3,8,6}, {5,6,7}}. The board arrangement is
from Martin Gardner’s book Mathematical Circus.

The interesting thing about this version of Tic-
Tac-Toe is that the first player can always win,

unlike regular 3x3 Tic-Tac-Toe where the game can
always end in a draw. Consequently, this allows for
an interesting assignment where we ask students to
derive a “winning strategy” using a strategic model
checker such as UPPAAL-TIGA [5]. Of course, it’s
not too much fun to play against the computer if it
always wins whenever it plays first. Other questions
to be solved relate to the minimum number of moves
required to guarantee a win, or if a win is possible
regardless of the first move.

Figure 2. Triangular Tic-Tac-Toe

Hot Spot Tic-Tac-Toe

The final game is a brand-new variant of tic-tac-
toe that makes for a more interesting game which
doesn’t always result in a win or a draw with
optimal play. Note that the triangular tic-tac-toe
game can always be won by the first player and has
a total of 9 winning combinations, but the regular
tic-tac-toe game can always end in a draw and only
has a total of 8 winning combinations. The unique
idea behind Hot Spot Tic-Tac-Toe is to randomly
select three spots or positions on the board to also
constitute a winning combination, thus giving a total
of 9 winning combinations. Of course, if the hot spot
winning combination is the same as an existing
combination, then the game will end in a draw with
optimal play. But if the game randomly selects the
hot spot combination {1,3,5}, then the first player
can always win. In this way, the game won’t always
end in a draw, and the play strategy changes based
on the random hot spot numbers selected.

X O X
O X X
O O O

550

0 1 2
3 4 5
6 7 8

Figure 3. Hot Spot Tic-Tac-Toe Board

3 Model Checking

After the problems are proposed, it is up to the
students to derive concise models and properties that
can be used to solve the problems. This section
provides solutions to some of the problems and
directions for further discovery.

To derive a model that doesn’t suffer from the
well-known “state-space explosion” problem, it is
important to minimize the number of real-valued
clocks included in the model because they highly
influence the size of the state space. Other tricks are
used as well, like using committed locations when
possible and limiting the number, range, and scope
of variables. Fortunately, UPPPAAL provides some
convenient syntax which allows model builders to
accomplish this goal efficiently.

To limit the variable scope, students should favor
the use of local variables over global variables, and
they should also minimize the use of channels. To
limit range, they can use UPPAAL syntax to specify
the range of values that a variable can hold; for
example, in the model for triangular tic-tac-toe
described below, just declare a new type called
move, using:

 typedef int[0,8] move;

to declare that move positions will be integers in the
range of 0 to 8 as shown in Figure 4.

Triangular Tic-Tac-Toe

Triangular Tic-Tac-Toe is a two-player game that
can be modeled as a timed two-player game using
UPPAAL-TIGA [5]. Control transitions are denoted
as solid edges, and uncontrolled transitions, typically
denoting the environment, are denoted as dashed
edges. To constrain the state space size, the possible
moves can be denoted as an integer from 0 to 8 by
using the enumeration of the board shown above in
Figure 2. Each board position can be enumerated as
blank (0), a play of X (1), or a play of O (2). The
board is initialized to all blanks. Then, the set of all
winning combinations can be stored in a two-

dimensional array, called winner; e.g., if board
positions 0, 1, and 2 are all the same value (1 or 2),
then a winning state has been realized. Finally, a
real-valued clock c is needed to force progress as
discussed below.

Figure 4. Global declarations

A single process, Play, shown in Figure 5, can be
used to model the system. From the initial state, the
controlled player, Player 1, is set to make the first
move by setting turn = 1. To verify that the first
player can always win, we can just use the property
that under control, it is always the case on all paths,
we eventually reach the Win state where Player 1
wins as shown in Figures 5 and 6.

Figure 5. Play automaton

If Player 1 is not allowed to make the first move,
then the property is no longer satisfied; to check,
just change “turn = 1” to “turn = 2” in the transition
from the initial state. It is interesting to note that
without the addition of the real-valued clock to force
progress, the propery is also not satisfied. In this

551

case, the environment, Player 2, can just delay,
refusing to make a move, when Player 1 has forced
Player 2 into a corner without a move that will
prevent Player 1 from winning.

Figure 6. UPPAAL-TIGA verifier

As shown in Figure 6, we can also verify that the
system never deadlocks and that without control, it’s
no longer the case that the first player will always
eventually win; i.e., (A<> Play.Win) is not satisfied.

Wild Tic-Tac-Toe

In Wild Tic-Tac-Toe, players can win the game
by either completing the board with three X’s or
three O’s, so the strategy is much different than
regular tic-tac-toe or triangular tic-tac-toe. The play
becomes much more defensive to ensure that the
opponent is not able to win on their next move,
while at the same time forcing the opponent to make
a move that allows you to win.

Figure 7. Global declarations

A model, similar to the one in Figure 5, can be used,
but the move made can either set a given board
position to 1 or 2. Also, the set of winning sets are
the same as in regular tic-tac-toe, so global
declarations are updated as shown in Figure 7. The
updated play automaton is shown below in Figure 8.
In this case a play, p, is either 1 or 2.

Figure 8. Play automaton

As in triangular tic-tac-toe, the first player can
always win. But some of the plays are interesting.
The strategy found by UPPAAL-TIGA is to play X
in the center. If the opponent plays O in a corner,
then TIGA counters to play O in the opposite corner.
Likewise, if the opponent plays O in a side position
(positions 1,3,5, or 7), TIGA counters by playing an
O in the opposite side. In either case, the opponent is
forced to make a move which causes them to lose.

The function to test if a player wins checks to see
if there exists a winning set of board positions all set
equal to 1 or 2:

 bool Player_wins() {
 if (exists(i:winning_set)
 exists(p:int[1,2])
 forall(j:elements)board[winner[i][j]]==p)
 return true;
 else
 return false;

 }

The same properties shown in Figure 6 for triangular
tic-tac-toe are satisfied. In particular, on some path
(E), eventually (<>) it is possible for the first player
to win, and further under control on all paths (A),
eventually (<>) the first player can win.

To enable play against the strategy generated, just
select Options + Diagnostic Trace + tiga_some.
When the property is checked, the dialog shown in
Figure 9 is displayed. After generating a winning

552

strategy, you can make moves for the environment,
and TIGA counters with controllable moves made
by the controller as shown in Figure 10. This allows
students to observe the strategy first-hand by making
plays against the computer.

Figure 9. Load trace dialog

The controller starts by setting a 2 in the center. If
the environment counters by playing a 1 in a corner,
the controller counters by playing a 1 in the opposite
corner, forcing the environment to lose.

Figure 10. Play against the controller

An obvious follow-on question is what happens if
we play wild tic-tac-toe on a triangular tic-tac-toe
board. Counter to our intuition, the combined game
is not so advantageous to the first player, and indeed
the first player is not guaranteed to win.

Hot Spot Tic-Tac-Toe

The final game to consider is a new game that we
just invented and call Hot Spot Tic-Tac-Toe. Before
play, three random numbers, call hot spots, are set
by the game. They could be set to be different than
any existing winning combination. Play proceeds
like regular tic-tac-toe, but the existing standard set
of winning combinations are augmented with the set

of hot spots. Depending on the hot spots, the first
player may be able to win with optimal play. For
example, if the hot spots are 1, 3, and 5 as shown in
Figure 3, then the first player can always eventually
win.

Figure 11. Hot spots {0,2,4}

However, if the hot spots are 0, 2, and 4, as shown in
Figure 11, then the first player cannot always
eventually win. So, it really depends on which hot
spots are selected by the game. Most hot spot sets of
size 3 give the first player an edge, but any hot spot
set that includes 4 is not a winning configuration for
the first player, but the first player can keep from
losing as shown in Figure 12.

Figure 12. Verify first player can win or draw

If we allow the hot spot set to contain a different
number of positions, then not surprisingly, smaller
sets are more likely to allow the first player to win.
All sets of size 1 would be instant winners for the
first player. However, not all sets of size 2 are so
lucky; for example, the set {0, 4} is one case.

553

At the other extreme, some sets of size 4 are
winning hot spot sets for the first player, including
the sets {0, 2, 3, 5} and {0, 2, 3, 8}, and set
symmetrical to these sets. There aren’t very many
sets of size 4 that result in a winning configuration
for the first player.

4 Conclusions

While solving puzzle problems and constructing
models for two-player games, students master model
checking “tricks of the trade”. Then, they are ready
to solve more challenging industry-sized problems,
and derive models for systems that aren’t as obvious,
such as real-time seed counters [9,10] or real-time
communication systems [13]. Qualitative assessment
has shown that the use of two-player games is an
effective way to motivate students to learn how to
use model checkers effectively.

Overall, the use of two-player games has been an
effective approach to teach real-time model
checking. This paper presents several novel two-
player game problems that lend themselves to real-
time model checking, and solutions to some of the
problems are provided to demonstrate techniques
that can be used to build industry-sized models, and
as a side also verify game properties.

References
[1] R. Alur and D. Dill, “A theory for timed

automata”, In Theoretical Computer Science,
Vol. 125, pp. 183–235, 1994.

[2] C. Baier and J.P. Katoen, “Principles of Model
Checking”, MIT Press, Cambridge, MA, 2008.

[3] J.K. Barker and R. Korf, “Solving peg solitaire
with bidirectional BFIDA*”, in Proceedings of
the 26th AAAI Conference on Artificial
Intelligence, pp. 420-426, 2012.

[4] J. Bengtsson, K.G. Larsen, F. Larsson, P.
Pettersson and W. Yi, “UPPAAL - a tool suite
for automatic verification of real-time
systems”, In Proceedings of the 4th DIMACS
Workshop on Verification and Control of
Hybrid Systems, New Brunswick, New Jersey,
Oct. 22-24, 1995.

[5] G. Behrmann, A. Cougnard, A. David, E.
Fleury, K. Larsen, D. Lime, “UPPAAL-TIGA:
Timed games for everyone”, In L. Aceto and A.
Ingolfdottir (eds.) Proceedings of the 18th

Nordic Workshop on Programming Theory
(NWPT 2006), Reykjavik University, 2006.

[6] E.M. Clarke, E.A. Emerson, and J. Sifakis,
“Model checking: algorithmic verification and
debugging”, Communications of the ACM,
52(11):74–84, 2009.

[7] K.G. Larsen, P. Pettersson, and W. Yi, “Model-
checking for real-time systems”, In Proc. of
Fundamentals of Computation Theory, Vol.
965 of Lecture Notes in Computer Science, pp.
62–88, 1995.

[8] M.L. Neilsen, D.H. Lenhert, M. Mizuno, G.
Singh, J. Staver, N. Zhang, K. Kramer, W.J.
Rust, Q. Stoll, M.S. Uddin, “Encouraging
interest in engineering through embedded
system design”, In American Society of
Engineering Educators (ASEE) Computers in
Education Journal, Vol. XV, No. 3, pp. 68-77,
July 2005.

[9] M.L. Neilsen, S.D. Gangadhara, S. Amaravadi,
“Extending watershed segmentation algorithms
for high-throughput phenotyping on mobile
devices”, in Proc. of the 30th International
Conference on Computer Apps in Industry and
Engineering, San Diego, CA, 2017.

[10] M.L. Neilsen, C. Courtney, S. Amaravadi, Z.
Xiong, J. Poland and T. Rife, “A dynamic, real-
time algorithm for seed counting”, in Proc. Of
the 26th International Conference on Software
Engineering and Data Engineering, 2017.

[11] J. Scherphuis “Jaap’s Puzzle Page”, retr. from
https://www.jaapsch.net/puzzles/logitoli.htm,
2018.

[12]N.V. Shilov and K. Yi, “Puzzles for learning
model checking, model checking for
programming puzzles, puzzles for testing
model checkers”, In Electronic Notes in
Theoretical Computer Science 43, 2001,
http://www.elsevier.nl/locate/entcs/volume43.h
tml.

[13]Y. Wang, P. Pettersson, and M. Daniels,
“Automatic verification of real-time
communicating systems by constraint-solving”,
In Proc. of the 7th International Conference on
Formal Description Techniques, 1994.

[14] M.L. Neilsen, “Puzzles for learning real-time
model checking”, In Proc. of the International
Conference on Frontiers in Education, FECS
2018, pp. 11-17, 2018.

554

