Motlvation Approximate Algorithms

Amtoft

Introduction

If a problem you want to solve has been shown to be
NP-hard, your best bet is

» solve a more restricted version, or

» find an algorithm that computes a good
approximation.

You may have gotten the impression that all
N'P-complete problems are created equal.

» it is true that they are equivalent in the sense that
they are equally hard to solve exactly

» but they are not equally hard to approximate.

Absolute and Relative Approximations fppresimate Algerthms

Amtoft

Introduction

We shall aim for algorithms that are guaranteed to
produce a result whose value R is within a certain
proximity of the optimal value B.

The approximation is c-absolute if

B> R>B—c for maximization problems
B<R<B+c for minimization problems

The approximation is e-relative if

B>R>B(1—¢) for maximization problems
B<R<B(1+4¢€) for minimization problems

Non-approximating Greedy Algorithms

Recall graph coloring: if (u, w) edge then u and w must
have different color.

Problem: find the minimum number of colors needed.

Greedy Strategy: consider the nodes one by one

» assign the current node one of the colors used so far,
if possible
» otherwise, use a new color
Now consider graph with
» nodes labeled 1..2n
» edges connect all odd nodes to all even nodes,
except no edges (1,2),(3,4),...
There is a trivial 2-coloring. But the greedy strategy will
assign 1,2 the same color which then cannot be reused,

then 3,4 same color which then cannot be reused, etc,
resulting in n colors being used.

Approximate Algorithms

Amtoft

Introduction

Binary Knapsack Approximate Algorithms
Amtoft
> find / to maximize) ;. v;, given > ;o w; < W
> greedy strategy Go picks most precious
(value/weight ratio) items until no more space

Fixed Precision

This is non-approximating, since R = 2 while B = N for
W1:1,V1:2,W2:/V,V2:N,W:N
But we can get 0.5-relative (factor 2) by a simple trick:
1. use Gg to produce Iy with value Ry
2. return the best of Iy and {M} with V), the highest v;

Proof: assume items are ordered after preciousness, and
that J be smallest with W, =wy +...+w; > W.
Observe that if the capacity had been W,, Gy would have
yielded the optimal value Bj. Thus

R = max(Ro,VM)
max(vi + ...+ vy_1,vy)

>
> (vn+...vy)/2=B,/2>B)2

Traveling Salesman

» We shall see that in the general case, it is N'P-hard
to get a c-absolute or e-relative approximation

But it is often the case that distances form metric:
d(x,y) < d(x,z) +d(z,y)
Then there is a 1-relative approximation:

1. construct (by Kruskal or Prim) minimum spanning
tree T, with cost M. Since removing one edge from
any Hamiltonian cycle is a spanning tree, B > M.

2. traverse T from root through leaves and back to
root, thus visiting each edge twice so cost is 2/V.

3. Now make short-cuts when traveling from root to
root, skipping nodes already visited. The resulting
path has cost R < 2M, due to metric property.

We have found a Hamiltonian cycle, with cost R < 2B.

Approximate Algorithms

Amtoft

Fixed Precision

C—AbSOI ute May Be Hard Approximate Algorithms

Amtoft
Consider again the Traveling Salesman Problem

» assume that we in polynomial time can find a
c-absolute approximation Hardness Results

» then we can also in polynomial time find a round trip
that is exactly optimal (hence P = N'P)

For given a distance map D, where we assume all
distances are positive integers, and assume B is the
minimal value of a round trip (Hamiltonian cycle). Then

1. construct a distance map D’ from D, by multiplying
all distances by ¢ + 1. Thus B’ = B(c + 1).

2. call our purported approximative algorithm on D’;
this returns a cycle @ with cost R’ where

B(c+1)=B'<R'<B'+c<(B+1)(c+1)
3. Return Q which wrt. D has cost R = R'/(c + 1).
Thus B< R< B+1 and hence R = B.

€- Relative M ay Be Hard Approximate Algorithms

Amtoft

» assume we in polynomial time can find e-relative
approximation to traveling salesman problem
» then we can also in polynomial time decide if a Hardness Results
graph has a Hamiltonial cycle (and hence P = N/'P)
For given G = (V, E), we
1. construct distance map d as follows:

dlu,w) = 1 if (u,w) e E
d(u,w) = 2+ |ne|] if (u,w)¢E
Observe this is in general not a metric.

2. Call our purported approximate algorithm on d,
returning a cycle with cost R. With B the minimal
cost, we have B < R < B(1 +¢).

Fact: G has Hamiltonial cycle iff R < (14 ¢€)n
» if G has Ham. cycle then B=nso R < (1+¢)n.
» if G does not have a Hamiltonian cycle then
R>B>n+1+|ne] >n+en=(1+¢)n.

MIN-CLUSTER and MaAx-CuT Approximate Algerithms

Amtoft

Even problems that appear dual may exhibit vastly
different behavior. Consider MIN-CLUSTER/MAX-CUT:
» given complete graph where each edge has a cost

» we must split the nodes into 3 partitions (clusters) Surprisng Asymmetry
» then some edges will be internal
» while the rest will be cross edges

This setting gives rise to two problems:

» MIN-CLUSTER: minimize the total cost of the
internal edges

» MAX-CUT: maximize the total cost of the cross
edges.

Clearly, an exactly solution to one will yield an exact
solution to the other!

» but MAX-CUT can approximated efficiently
» while MIN-CLUSTER can not (unless P = N'P).

MIN-CLUSTER: no efficient approximation Aopresimate Algerthms
Amtoft
» assume that we in polynomial time can find an
e-relative approximation to MIN-CLUSTER.
» then 3-CoL € P and hence P = NP

For given G = (V, E), we Surprsing Asymmetry
1. construct costs ¢ as follows:
c(u,w) = 1 if (u,w)¢E
du,w) = n*(1+¢) if (u,w)€E

2. Call our purported approximate algorithm on d,
returning a partitioning with cost R. With B the
minimum cost (sum of internal edges), we have
B <R<B(1+e).

Fact: G has 3-coloring iff R < n?(1 + e).

» A 3-coloring induces partitioning where all internal
edges have cost 1. Then B < n? so R < n?(1+).

» if no 3-coloring exists one internal edge has cost
n?(1+e¢), and hence R > B > n?(1 +¢).

MAX-CUT can be efficiently approximated Arpreximate Algerthms

Amtoft

Max-CuUT has a %—relative approximation:

1. consider each node u in turn
so as to place it in a cluster

Surprising Asymmetry

2. consider the edges from u to the nodes previously
considered

3. add u to the cluster that causes the sum of the
internal edges to decrease least.
We infer that of the total cost C, at most one third will

come from internal edges. With R the sum of cross edges
in the resulting cluster, we thus have

2
R>-C>
Z3-=

Binary Knapsack, Revisited Approsmate Algorithms

Amtoft

The simple greedy algorithm
> prioritizes after value/weight ratio
» can be arbitrarily imprecise Poly-Approx Schemes

» but we can get a 0.5-relative approximation if we,
whenever our selection is less valuable than the
single most valuable item, take that item instead

» Can we get higher precision?
Idea: to get a %—relative approximation, we
1. generate all k-element subsets that fit;

2. for each such subset J, build a solution by running
the simple greedy algorithm with J as initial value

3. pick the best such solution

Polynomial Approximation Scheme fppresimate Algerthms

Amtoft
Recall our algorithm feeds all possible k-element subsets
as initial values to the simple greedy strategy, and picks
the best such solution. With R the value of that solution,
and B the optimal value, one can prove

. Bk Bk
k+1 k

Poly-Approx Schemes

Yon-)

R

and hence we have a %—relative approximation.

» When k = 1, we have the expected R > B/2.
But running time is in ©(n**1), so our high precision
comes with a cost!

» This is a polynomial approximation scheme

» but we would rather like a fully polynomial

approximation scheme.

A fully polynomial approximation scheme achieves
%-relative approximation in time polynomial in n_and in k.

Approximate Algorithms

Employing Dynamic Programming

Amtoft

We shall now construct a fully polynomial approximation
scheme for the binary knapsack problem. First recall the
dynamic programming algorithm for computing a table

from which we can find an exact optimal solution:

the entry V[i, w] denotes the maximum value R

we can get from items 1 ... and weight limit w

and is computed as follows:

» ifw=0ori=0then0

> else if w < w; then V[i —1,w]

> else max(V[i — 1, w], V[i = 1w — wj] + v}).
Running Time is in ©(nW).

» W may be exponential in size of input

Key to approximation: make the table smaller.

Twisting Dynamic Programming Approximate Algerithms

Amtoft
To cut down the size of the dynamic programming table:

» divide numbers by big constant, ignoring remainders
» but dangerous to mess with weights, as rounding off
may render a feasible solution infeasible, or vice versa
» rather mess with the values
We therefore reformulate dynamic programming so that it cme "
constructs a table indexed by values:

an entry C[i, v] denotes the minimum weight
needed to get at least value v from items {1..i}

Then the optimal value can be found as the largest v such
that C[n, v] < W. Each entry is computed as follows:

» if v <0thenO

> else if i =0 then oo

> else min(C[i — 1,v], C[i — 1,v — vi] + w;)
This runs in time O(nV), where V is an upper bound of
the optimal solution.

A Fully Polynomial Approximation Scheme Appreximate fleertims

Amtoft

Let / be optimal solution of the problem, with value B.

1. Use cheap greedy algorithm to find Ry such that

B/2 < Ry < B.

Fully Poly-Approx
Scheme

2. Split into two cases:

Ro < 2nk: Then just apply dynamic programming,
creating a table W[0..n,0..V] to compute the
solution exactly.

As 2Ry > B, we can pick V = 2Ry, and hence
achieve a running time in O(nRy) C O(n?k).

Ro > 2nk: see next page.

Fully Polynomial Approximation, part Il S

Amtoft

R
When Ry > 2nk, with d = L—zj we let
n

v,{:Lngoriel

and hence dv! < v; < dv/ + d. We now apply dynamic
programming on this reduced problem, giving an optimal
solution /" with value B'.

Let R be the value of /" wrt. the original values. Then

R = Zv;ZdZv{ZdZv{

Fully Poly-Approx
Scheme

iel’ iel’ iel
> > (vi—d)>B—dn
iel
Ro B 1
> B——2>B——=B(1--).
= k = r — B0

R
The algorithm runs in time O(ngo) C O(n’k) (as case 1)

	Introduction
	Fixed Precision
	Hardness Results
	Surprising Asymmetry
	Poly-Approx Schemes
	Fully Poly-Approx Scheme

