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Abstract

This paper presents a static type system for JAVA Virtual Machine
(JVM) code that enforces an access control mechanism similar to
the one found, for example, in a JAVA implementation. In addition
to verifying type consistency of a given JVM code, the type sys-
tem statically verifies that the code accesses only those resources
that are granted by the prescribed access policy. The type system
is proved to be sound with respect to an operational semantics that
enforces access control dynamically, similarly to JAVA stack in-
spection. This result ensures that “well typed code cannot violate
access policy.” The paper then develops a type inference algorithm
and shows that it is sound with respect to the type system and that
it always infers a minimal set of access privileges. These results
allows us to develop a static system for JVM access control without
resorting to costly runtime stack inspection.
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1 Introduction

Access controlis a mechanism to prevent an unauthorized agent
(or principal) from accessing protected resources. This has tradi-
tionally been enforced by monitoring each user’s resource access
requests dynamically in a resource server, typically in an operat-
ing system. This simple strategy has been based on the assumption
that the semantics of a program code the user executes is transpar-
ent to the user, and therefore resource access requests issued by the
code reflect the user’s intention. This assumption no longer holds
in the recently emerging network computing environment, where a
program code to be executed is dynamically composed from vari-
ous pieces downloaded from not necessarily trusted foreign sites.
To deal with this situation, we need to developcode-level access
control, where an unauthorized principal is not some other user but
some untrusted piece of code, and whether a principal has some
access privilege or not is a property of some portion of the code.
This requires us to develop a verification system for the property of
low-level code.

This problem has recently attracted attentions of the researchers and
developers, and several verification systems have been proposed
and developed. Among them, the most notable one is perhaps the
JAVA access control system [8] (implemented in JDK1.2 and later.)
In this system, each class (consisting of a set of methods) is owned
by some principal, and each principal is assigned a set of privileges
that is granted to the principal. In order to enforce access control,
the implementer of the code explicitly inserts a call of special static
methodcheckPermission before accessing protected resources.
This static method checks that the principal associated to the current
calling code has the required privilege under the current execution
environment. Since method calls are in general nested, and the ac-
cess requests issued by some method should be regarded as those of
calling methods, it traverses the current frame stack to ensure that
all the calling methods have the required access privileges. This
process is known asstack inspection. As we shall review later, the
JAVA access control system also provides a mechanism for trusted
code to gain privileges even when the calling method does not have
these privileges.

Various formal properties of this approach have been studied and
efficient implementation methods have been proposed. Karjoth [7]
has presented a formal operational semantics as a transition relation
on abstract machine states. Wallach, Appel and Felten [16, 15] and
Banerjee and Naumann [2] have provided denotational and logical



account, respectively. Fournet and Gordon [3] have studied seman-
tic properties of a program performing stack inspection. With these
efforts, this JAVA-style stack inspection approach has become one
of most important code-level access control methods.

There are however some weaknesses that are inherent in this ap-
proach. One is its high runtime overhead due to dynamic inspec-
tion of the entire call stack. This method also makes some pro-
gram optimization difficult or impossible to apply due to the need
of maintaining a call stack. To reduce the run-time overhead, Wal-
lach, Appel and Felten [16, 15] have analyzed the stack inspection
semantics, and proposed an alternative method, called asecurity-
passing styleapproach. Instead of inspecting the entire call stack,
this method explicitly passes security information as extra param-
eters so that the called method can verify access privileges. This
could be a potentially more efficient alternative to stack inspec-
tion. Since this method does not assume any runtime architecture,
it would also be more amenable to various optimization. Erlings-
son and Shneider [10] have reported implementation experiences
including one for security passing style. Despite these advantages,
it still incurs non-trivial runtime overhead for passing extra security
information, which could potentially be large.

Another and perhaps more serious weakness of the stack in-
spection approach is that the programmer must explicitly call
checkPermission method before accessing protected resources.
The apparent problem of this strategy is that some programmer
might fail to insert all the appropriate calls, or malicious one would
intentionally left out some of the necessary calls. The security-
passing approach [15] also share this weakness.

As we have noted above, code-level access control is a verification
system for security property of code. As such, it should ideally
be a proof system that verifies the desired properties of code stat-
ically from the given code itself without relying on practice of the
programmer. Based on this insight, Skalka and Smith [13] have
developed a static type system of code-level access control for a
variant of the lambda calculus by refining the static type system of
the lambda calculus with access privilege information. They have
proved the soundness of the type system, which ensures that a well
typed program will not cause security violation. Pottier, Skalka, and
Smith [4] further refined its type system. Banerjee and Naumann
[1] have defined a denotational semantics for a language similar to
the calculus considered in [13, 4], which provides another assur-
ance of the safety of this type-based approach. However, since the
target language is the lambda calculus and their development relies
on properties of a static type system of the lambda calculus, it is not
clear whether or not this approach can be applicable to low-level
code languages including the JVM bytecode language [12].

The goal of the present work is to establish a static type system
for code-level access control of the JVM bytecode language, and
show that it is correct with respect to a standard model of JVM ex-
ecution. We base our development on our earlier work [5], where
we have shown that the JVM language can be regarded as a typed
term calculus based on a proof theory for low-level code [6]. In this
formalism, the type system represents static semantics of a code
language as a type system of the lambda calculus does. This prop-
erty allows us to transfer the concepts and methods developed for
the lambda calculus in [13] to the JVM bytecode language. We de-
fine a type system with access control information for the JVM lan-
guage, and establish its soundness with respect to an operational se-
mantics which closely models the JAVA access control using stack
inspection. For this type system, we develop a type inference al-
gorithm. These results allow us to develop a static access control

system that automatically detects all the possible access violation
statically from a given code, and infers the minimal set of privi-
leges required to execute the code. Since the type system examines
each resource access directly through method invocation instruc-
tions, explicit insertion ofcheckPermission is unnecessary. This
property makes our system more reliable than those based on ex-
plicit library calls by the programmer, and it can also be used for
verifying un-trustworthy and potentially malicious code. A proto-
type type inference algorithm has been implemented, demonstrat-
ing the feasibility of our approach.

The rest of the paper is organized as follows. Section 2 outlines
our approach. Section 3 defines the target language and the type
system. Section 4 defines an operational semantics of the target
language and shows that the type system is sound with respect to the
semantics. Section 5 develops a type inference algorithm and shows
its soundness and other desirable properties. Section 6 discusses
several extensions and implementation. Section 7 concludes the
paper.

2 Our Approach

In order to develop a static access control system for a low-level
code language like the JVM bytecode language, we need to estab-
lish a type theoretical framework for low-level code. We also need
to devise a strategy to extract resource access information from a
given code. Before going to the technical details, in this section, we
outline our approach focusing on these two points.

In the framework of Skalka and Smith [13], a function has a type of
the form

τ1
Π→ τ2

indicating the fact that it takes an argument of typeτ1, and com-
putes a result of typeτ2 using the privilegesΠ. It is not immedi-
ately obvious that this idea can be applied to type systems of JVM
bytecode such as the one by Stata and Abadi [14] that only checks
consistency of machine states and instructions. To apply the general
idea exploited in [13] to a low-level language, we need to define a
type system that deduces a static semantics of a given code.

In an earlier work [5], we have developed a type theoretical frame-
work that allows us to regard the JVM bytecode language as a typed
term calculus. In this formalism, a JVM blockB is represented as
a static judgment of the form∆ ¤B : τ indicating the property that
B computes a value of typeτ using a stack of the form∆. (For the
simplicity of presentation, we ignore local variable environments,
which is irrelevant to the approach presented here.) The type system
is constructed based on a proof-theoretical interpretation of low-
level machine instructions [6], which we outline below.

Each ordinary instructionI , which changes a machine state∆ to a
new state∆′, is regarded as a left-rule of the form

∆′ ¤B : τ
∆ ¤ I ·B : τ

in a sequent style proof system.return statement corresponds to
an initial sequent (axiom in the proof system) of the form:

τ·∆ ¤return : τ

A jump instruction refers to an existing code block (proof) through
a label, and can be represented as a meta-level rule of the form:

∆ ¤goto(l) : τ (if L(l) = ∆¤ τ)



whereL is an environment describing the typing of each entry point
of existing blocks (i,e. the end sequent of existing proofs.)

Our strategy is to refine this formalism to introduce access control
information. We interpret a code blockB as a proof of a judgment
of the form

Π,∆, p ¤B : τ

indicating the fact thatB is owned by principalp, and computes a
value of typeτ from a stack of values of type∆, using a privilege
setΠ.

To define a type system to deduce a sequent of the above form, we
must prescribe the relationship between the privilege setsΠ and the
block B according to its behavior with respect to resource access.
Our strategy is to associate each method with a set of privilegesΠ′
required to execute it, and considerΠ in the sequent as a constraint
Π′ ⊆Π to invoke the method. A method has then a type of the form

∆ Π→ τ similar to function type in [13]. In order to properly grant a
code to gain some privilege through a special instruction similar to
doPrivileged in Java, the type system maintains an access policy,
which describes the maximum set of privileges for each principal.

The type system is constructed in such a way that it type-checks a
class with respect to an access policy and a given class environment
describing existing classes. Each method in an existing class is as-
sumed to be either one that has already been checked by this type
system so that it has a correct privilege information, or a trusted
method whose privilege information is declared correctly. After
type-checking a class under a given class environment, the type
system produces a correct type for each new method, so that the
system can extend the class environment with the new class.

Since the type system checks all the method invocation statically,
verification of conformance of access privileges against a given ac-
cess policy is thorough and complete. This mechanism frees the
programmer from the responsibility for checking access privilege
usingcheckPermission. The only thing required is to declare a

type of the form∆ Π→ τ for each trusted method so thatΠ represents
the set of privileges used by the method. These trusted methods
are typically native methods in a system library, for which we can
safely assume that the correct type has already been declared.

3 A JVM Access Control Calculus

To present our method, we define a calculus,JVMsec, and its static
type system.JVMsecis a language similar to Java bytecode contain-
ing minimal features sufficient to present our method.

In the subsequent development, we shall use the following nota-
tions. For a sequenceS and an elemente, e·S is the sequence ob-
tained by addinge at the front ofS, andS.i denotes theith element
of S. S{i ← e} is the sequence obtained fromSby updatingith el-
ement ofS to e. |S| is the length of the sequenceS. We use similar
notations for a finite functionf : f .x is the value assigned tox in f ,
and f{x← v} is the functionf such thatDom( f ′) = Dom( f )∪{x},
f ′(x) = v and f ′(y) = f (y) for anyy 6= x.

3.1 The language syntax

We assume that the user sets up an access policy (ranged over byA)
statically and globally. It is a function assigning a set ofprivileges
(ranged over byπ) to each principal. The syntax of access policies

is given below.

A := {p1 = Π1, · · · , pn = Πn}
Π := /0 | {π}∪Π
π := FileRead| FileWrite | SocketConnect| · · ·

A privilegeπ is an atom (constant) modeling some system resource
to be protected, and corresponds to apermissionin JAVA. A permis-
sion of JAVA consists of a target and an action. Later in Section 6,
we shall discuss a mechanism to extend our formalism to include
target specification inπ.

For simplicity, we assume that a unit of security verification is one
class under a given access policy and a given class environment.
An actual JVM program may contain a set of mutually dependent
classes. It is routine to extend our framework to allow mutually
dependent classes as a unit of verification.

A classconsists of a set of methods. The syntax of classes is given
below.

C := {m= M, . . . ,m= M}
M := {l1 : B1, · · · , ln : Bn} (entry∈ {l1, · · · , ln})
B := goto(l) | return | I ·B
I := acc(n) | iconst(n) | dup | ifeq(l)

| priv(π) | new(c) | invoke(c,m)

Each class is associated with its principal. We writeCp for a class
whose principal isp. Each methodM consists of a set of labeled
code blocks. We assume that the set of labels of a method contains
a special labelentryto indicate the entry point of the method. Each
methodM in a class is implicitly owned by the principal associated
to the class to which it belongs. We writeMp if M belongs to a class
Cp. A code blockB is a sequence of instructions terminated with
return or goto. acc(n) pushes thenth value of a stack on top
of the stack. This is added to make the set of instruction non triv-
ial, and does not have much significance to our type system.priv
corresponds todoPrivileged in the JAVA access control architec-
ture. If the block is of the formpriv(π)·B and the access policy
allows current principal to useπ, then the current privilege set is
extended withπ so thatB can use it. We only consider methods and
ignore object fields. A field can be regarded as a special form of a
method, and our access control mechanism for method carries over
to fields.

In Java, a class file contains explicit type declarations of the meth-
ods. We represent these type declaration byclass specificationΘ
whose syntax is given blow.

Θ := {c1 = methods, · · · ,cn = methods}
methods := {m1 = ∆1 → τ1, · · · ,mn = ∆n → τn}

This is an extra input to the type system in type-checking a class,
and not a static environment for typing derivation.

A static environment used in the type system is astatic class envi-
ronment(ranged over byC ) describing the static information about
(already verified) set of existing classes. It describes for each class
its method types (augmented with privileges). The syntax of class
environments is defined below.

C := {c1 = M1, · · · ,cn = Mn}
M := {m1 = ∆1

Π1→ τ1, · · · ,mn = ∆n
Πn→ τn}

∆ := /0 | τ·∆
τ := int | c



∆ is a stack type which is a sequence of types, and the leftmost
element corresponds to the stack top.

3.2 The type system

Corresponding to the structure ofJVMsec, the type system consists
of typing relations for code blocks, methods, and classes. We define
them in that order.

Block typing. As outlined in Section 2, the type system for blocks
is defined as a proof system to derive a judgment of the form:

Π,∆, p ¤B : τ

relative to a given class environmentC and an access policyA . C
is of the formC0∪ {c = M }, whereC0 is the class environment
describing all the existing classes and{c = M } describes the types
of methods of the current class. This structure reflects the mutu-
ally recursive nature of the set of methods of a class definition. In
addition to those two environments, we need to introduce a label
environmentL to describe the types of the set of code blocks to
whichB belongs. This is necessary due to mutually recursive block
definitions in a method induced by label references. A label en-
vironment has the form{l1 : Π1,∆1, p¤ τ, · · · , ln : Πn,∆n, p¤ τ}
wherel1, · · · , ln is the set of labels of the blocks. Since bindings of
labels and classes are static, there is no rule that changesC or L .
For this reason, in defining each typing rule, we treatC andL as
global variables. The set of typing rules is given in Figure 1.

The rules forinvoke andpriv realize static access control. The
other rules are essentially the same as those in [5]. To invoke a

method of typeτ Π→ τ, a caller must have at least all the privi-
leges inΠ. For a simple type discipline such as that of the lambda
calculus, this would be sufficient. However, since, inJVMsec, the
method actually called is determined at runtime based on the run-
time class of the receiver object, this constraint must therefore be
checked against all the possible methods that may be called. The
condition “Πi ⊆ Π for eachi” in the rule for invoke guarantees
this constraint for each possible method. The auxiliary function
lookupAll(c,m) traverses the subclass of classc and returns the
set of classes that define a methodm. The rule forpriv(π) adds
π to the current privilege set forB, if the principal ofB has access
privilegeπ under the access policyA .

Method typing. A method consists of a set of code blocks. A
methodM is well typed if each block inM is well typed. This
relation is defined below.

C `Mp : L
⇐⇒ for eachl ∈ Dom(Mp), following conditions hold:

L(l) = Π,∆, p¤ τ ,
C ,L `Π,∆, p ¤Mp(l) : τ ,
andΠ⊆ A(p)

Π ⊆ A(p) reflects the property that the privileges each code block
may use must not surpass the set of allowable privileges granted by
the access policyA .

Since the type of a method is the type of the entry block, we define
method typing as follows.

C `Mp : ∆ Π→ τ
⇐⇒ there exists someL such thatC `Mp : L

andC ,L `Π,∆, p ¤Mp.entry : τ

Class typing. Using these definition, typing of a classCp with
respect to a class environmentC0 of existing classes is defined as
follows.

C0,Θ `Cp : M
⇐⇒ for eachm∈ Dom(Cp), following conditions hold:

C = C0∪{c = M } ,
C `Cp.c.m : M .c.m,

M .c.m= ∆ Π→ τ andΘ.c.m= ∆→ τ

A well typed classCp namedc with type M underC0 yields an
extended class environmentC0∪{c = M }.

3.3 Example of program and its typing

We show an example of type derivation using a simple program. Let
IO be an existing system class having privilegeFRead for reading
files, andreadFile be a native method defined in the class, which
takes a file name and returns a content of the file as a string. Sup-

pose the type ofreadFile is declared asstr
{FRead}→ str. This

type indicates that privilegeFRead is required to read files through
this method. This condition is statically enforced by the typing rule
for method invocation.

To enable any user withoutFRead to read a public file, a trusted
user withFRead can define the following class usingpriv.

class safeClass {
readFooFile() : str -> str = {

new(IO)
sconst("/public/foofile")
priv(FRead)
invoke(IO,readFile)
return

}
}

sconst(s) is an instruction which pushes a strings onto the stack
and has a typing rule similar toiconst(n). Any user should be
able to callreadFooFile, even if he or she doesn’t haveFRead
privilege.

This is achieved by our type system. Lettrusted be the princi-
pal of the classsafeClass such thatFRead ∈ A(trusted). The
type system deduce the following typing for the body of method
readFooFile.

{FRead},str· /0, trusted ¤return : str

{FRead},str·IO· /0, trusted ¤invoke(IO,read) : str

/0,str·IO· /0, trusted ¤priv(Read) : str
/0, IO· /0, trusted ¤sconst(‘‘/public/foofile’’) : str

/0, /0, trusted ¤new(IO) : str

From this type derivation,readFooFile is given typevoid
/0→ str.

This means that no privilege is required to invoke it.

4 Operational Semantics and Type Soundness

In order to show that the type system just defined properly enforces
the desired access control, we define an operational semantics that
models Java-style dynamic stack inspection, and show the sound-
ness of the type system with respect to the operational semantics.



Π,τ·∆, p ¤return : τ Π,∆, p ¤goto(l) : τ (if L(l) = Π′,∆, p¤ τ ∧ Π′ ⊆Π)

Π,(∆.n)·∆, p ¤B : τ
Π,∆, p ¤acc(n)·B : τ

Π,int·∆, p ¤B : τ
Π,∆, p ¤iconst(n)·B : τ

Π,τ·τ·∆, p ¤B : τ
Π,τ·∆, p ¤dup·B : τ

Π,∆, p ¤B : τ
Π,int·∆, p ¤ifeq(l)·B : τ

(if L(l) = Π′,∆, p¤ τ ∧ Π′ ⊆Π)
Π,c·∆, p ¤B : τ

Π,∆, p ¤new(c)·B : τ

Π,τ1·∆, p ¤B : τ {c1, · · · ,cn}= lookupAll(c,m)
Π,∆0·c0·∆, p ¤invoke(c,m)·B : τ

(if ∆1
Πi→ τ1 = C .ci .m, ∆0 <: ∆1 , c0 <: c andΠi ⊆Π for eachi)

π·Π,∆, p ¤B : τ
Π,∆, p ¤priv(π)·B : τ

(if π ∈ A(p))
Π,∆, p ¤B : τ

Π,∆, p ¤priv(π)·B : τ
(if π /∈ A(p))

Figure 1. Typing rules for code blockB

4.1 Operational semantics

Since semantics of a method in a class depends on other methods
of the class and those of existing classes, the operational semantics
is defined relative to adynamic class environment(ranged over by
Ω) of the form:

Ω = Ω0∪{c = Cp}
whereΩ0 is a dynamic class environment for existing classes whose
static information is described in a static class environmentC0 used
in the type system, andc is the current class.

SinceC0 is a class environment for already verified classes, the op-
erational semantics for a class is defined under the assumption that
method bodies inΩ0 satisfies the static constraints described inC0.
To model this situation, we assume that each method inΩ0 acts as
an opaquefunctionsatisfying the corresponding typing constraint
in C0, whose precise condition will be given when we prove the
type soundness theorem. To emphasize the distinction between the
method bodies in the current class (for which the semantics is being
defined) and those inΩ0 modeled by opaque functions in existing
classes, we writeΩ.c.m= PreChecked( f ) if m is a method in an
existing class, and writeΩ.c.m= Code(M) if m is a method in the
current class.

The operational semantics is defined by specifying for each instruc-
tion I , its effect as a transition rule on machine states using a dy-
namic class environmentΩ, a static class environmentC0 for exist-
ing classes, and a class specificationΘ describing the types of the
methods.Θ is necessary to check the type of the current method.

A machine state has the form:

(P,S,Mp{B},D),h

P is a dynamic privilege set, which represents the set of privileges
that the blockB can currently use.S is an operand stack, which is
a sequence of runtime value (ranged over byv). Following [13],
we model access violation by a special runtime valuesecfail. If
an access violation occurs at runtime, the machine terminates with
this special value. Introduction of this special value is necessary
to distinguish it from type error, which causes the machine to stop
prematurely. An ordinary runtime value is either an integern or a
heap addressr. Mp{B} indicates that the machine is executing the
first instruction of blockB belonging to methodMp. h is a heap,
which is a function from heap address (ranged over byr) to object
instances of the form〈〉c of classc. Since we omitted object fields,

the contents of an object instance is empty.D is adump, which is a
sequence of saved method frames of the form(P,S,Mp{B}).

A state transition rule is of the form

C0,Ω,Θ ` (P,S,Mp{I ·B},D),h−→ (P′,S′,M′p′{B′},D′),h′

indicating thatI transforms the machine state(P,S,Mp{I ·B},D),h
to (P′,S′,M′p′{B′},D′),h′ under C0,Ω,Θ. The set of transition
rules is given in Figure 2 (omitting the contextC0,Ω,Θ which are
not changed during the execution.) The functionlookup(c,m)
used in the rule forinvoke locates the class which is the closest
super class ofc that defines a methodm. Instructionnew creates an
initialized new object. The only instruction which may causes the
security error isinvoke. There are three cases forinvoke. If the
method to be invoked is defined in the current class, then the method
body is called just as in the conventional JVM. If the method to be
invoked is one defined in an existing class and the set of privileges
required by the method is included in the dynamic privilege set,
then the method must succeeds with a value of appropriate type.
If the method to be invoked is defined in an existing class and the
set of privileges required by the method is not included in the dy-
namic privilege set, then the method invocation is aborted and the
system returns the special valuesecfail. This is the case of run-
time access violation. The type soundness theorem we shall show
later guarantees that when the current privileges include the stati-
cally deduced privileges of the method, then access violation will
not happen.

The observant reader may have noted that the operational seman-
tics is based on eager semantics for security checking i.e., a new
privilege setP is calculated at every method call byinvoke. There-
fore, security verification can be done by checking the current frame
without traversing the entire frame stack. Since a method call oc-
cur frequently, eager semantics may incur high runtime overhead
due to computation ofP. For this reason, most implementations
including JDK [8] adopt lazy semantics, where calculation of the
effective privilege set is performed by stack inspection only when
security check is actually required. The trade-off between eager
and lazy semantics may be important for access-control systems
based on dynamic checking of privilege information. It should be
noted, however, that this issue is irrelevant for us. The operational
semantics is defined only to show soundness of the type system.
The type soundness theorem guarantees that a type-checked pro-
gram will never cause security violation. We therefore use the op-
erational semantics that does not perform any runtime access check
for actual execution. Since it is proved that eager and lazy seman-



(P,v·S,Mp{return}, /0),h−→ ( /0,v, /0, /0),h

(P,v·S,Mp{return},(P0,S0,M
p0
0 {B0})·D),h

−→ (P0,v·S0,M
p0
0 {B0},D),h

(P,S,Mp{acc(n)·B},D),h−→ (P,(S.n)·S,Mp{B},D),h

(P,S,Mp{iconst(n)·B},D),h−→ (P,n·S,Mp{B},D),h

(P,v·S,Mp{dup·B},D),h−→ (P,v·v·S,Mp{B},D),h

(P,0·S,Mp{ifeq(l)·B},D),h−→ (P,S,Mp{M(l)},D),h

(P,n·S,Mp{ifeq(l)·B},D),h−→ (P,S,Mp{B},D),h
if n 6= 0

(P,S,Mp{new(c)·B},D),h−→ (P, r·S,Mp{B},D),h′

if h′ = h{r ← 〈〉c} andr /∈ dom(h)

(P,S,Mp{goto(l)·B},D),h−→ (P,S,Mp{Mp(l)},D),h

(P,S1·r·S,Mp{invoke(c,m)·B},D),h
−→ (P′,S1· /0,M′p′{M′.entry},(P,S,Mp{B})·D),h

if h(r) = 〈〉c0, c1 = lookup(c0,m),
Ω.c1.m= Code(M′p′), Θ.c1.m= ∆→ τ,
|S1|= |∆| andP′ = P∩A(p′)

(P,S1·r·S,Mp{invoke(c,m)·B},D),h
−→ (P,v·S,Mp{B},D),h′

if h(r) = 〈〉c0, c1 = lookup(c0,m),

Ω.c1.m= PreChecked( f ), C0.c1.m= ∆ Π′→ τ,
|S1|= |∆|, Π′ ⊆ P, and(v,h′) = f (S1,h)

(P,S1·r·S,Mp{invoke(c,m)·B},D),h
−→ ( /0,secfail, /0, /0),h

if h(r) = 〈〉c0, c1 = lookup(c0,m),

Ω.c1.m= PreChecked( f ), C0.c1.m= ∆ Π′→ τ,
|S1|= |∆| andΠ′ 6⊆ P

(P,S,Mp{priv(π)·B},D),h−→ (P′,S,Mp{B},D),h
if π ∈ A(p) thenP′ = {π}∪P elseP′ = P

Figure 2. Transition rules for instructions

tics are equivalent [1, 3], we choose an eager one, which yields a
simpler proof of the soundness theorem.

We define aJVMsec program to be a top-level invocation of a
method of the current class by the user. To execute a methodMp

with argumentsSat the top level by the user identified by the prin-
cipal p>, the machine state is initialized as follows:

(P>,S,Mp{M.entry}, /0),h

whereP> = A(p)∩A(p>). We write
∗→ for the reflective transitive

closure of the relation→. We define the top level evaluation relation
p>,C0,Θ,Ω `Mp ⇓ v as

p>,C0,Θ,Ω `Mp ⇓ v

⇐⇒ C0,Θ,Ω ` (P>,S,Mp{M.entry}, /0),h ∗→ ( /0,v, /0, /0),h′

indicating the fact that methodMp is executed by the user of prin-
cipal p> and returns the valuev.

|= h : H ⇐⇒ Dom(h) = Dom(H) and
∀r ∈ Dom(h) if h(r) = 〈〉c thenc <: H(r)

H |= n : int

H |= r : τ (if H(r) <: τ)
H |= S: ∆ ⇐⇒ Dom(S) = Dom(∆) andH |= S.i : ∆.i

for eachi.

H,C |= /0 : τ (for anyτ)
H,C |= (P,S,Mp{B})·D : τ

⇐⇒∃L ,∃∆,∃Π,∃τ′ such that
C `Mp : L ,
H |= S: ∆ ,
Π⊆ P,
C ,L `Π,τ·∆, p ¤B : τ′,
andH,C |= D : τ′

Figure 3. Typing of runtime values

4.2 Type soundness

In order to prove the soundness theorem with respect to the opera-
tional semantics defined above, we first define typing relations for
runtime structures consisting of the following:

• |= h : H (heaph has heap typeH)

• H |= v : τ (valuev has typeτ underH)

• H |= S: ∆ (stackShas type∆ underH)

• H,C |= D : τ (dumpD has typeτ underH andC )

Heap typeH is a mapping from heap addresses to types. This is
similar to store type [11] and is needed for the soundness theorem
we shall establish below to scale to heaps containing cyclic struc-
tures [5]. The last relation for dumpD means thatD accepts a value
of τ and resumes the saved computation. Figure 3 shows the def-
initions of these relations. Using these definitions, we define type
correctness of a machine state as follows.

H,C |= (P,S,Mp{B},D),h : τ
⇐⇒∃L ,∃∆,∃Π such that

C `Mp : L ,
H |= S: ∆,
Π⊆ P,
C ,L `Π,∆, p ¤B : τ′, and
H,C |= D : τ′

This definition says that for a machine state to be type correct, each
component must be well typed and the setΠ of privileges statically
deduced by the type system must be contained in the setP of privi-
leges the block has at runtime. We also define the relation`Ω0 : C0
denoting the fact that dynamic class environmentΩ0 of existing
classes satisfies static class environmentC0 of existing classes as
follows.

`Ω : C ⇐⇒
for anyc,m, the following conditions hold.

Let PreChecked( f ) = Ω.c.m and∆ Π→ τ = C .c.m. For
anyS,h, if there is someH such that|= h : H andH |=
S : ∆ then the applicationf (S,h) computes(h′,v) such
that|= h′ : H ′ andH ′ |= v : τ for some extensionH ′ of H
using only the privileges inΠ .



Let C0,Ω0,Θ be a given static class environment, a given dynamic
class environment, and a given class specification satisfying`Ω0 :
C0. Also letCp be a given class namedc such that there is someM
satisfyingC0,Θ `Cp : M .

We can now prove the following. LetC = C0∪ {c = M }, Ω =
Ω0∪{c = Cp}.
THEOREM 1 (TYPE SOUNDNESS). For any methodMp in Cp,
if H,C ` (P,S,Mp{B},D),h then either (1)B = return andD = /0
or (2) there are someP′, S′, M′, p′, B′, D′, h′, H ′ such that

C ,Ω,Θ ` (P,S,Mp{B},D),h−→ (P′,S′,M′p′{B′},D′),h′

andH ′,C ` (P′,S′,M′p′{B′},D′),h′ for some extensionH ′ of H.

PROOF. This is proved by the case analysis of the first instruction
of B, using the following simple lemma.

LEMMA 1. If H |= v : τ andH ′is an extension ofH thenH ′ |= v : τ.

The theorem implies the following desired property.

COROLLARY 1. Let Θ be a given class specification;C0,Ω0 be a
static class environment and a dynamic class environment of exist-
ing classes satisfying̀ Ω0 : C0; let Cp be a class such thatC0,Θ `
Cp : M . Also letp> be the principal of the user. IfΠ⊆ A(p>) for

anyΠ such thatM .m= ∆ Π→ τ then if p>,C0,Θ,Ω `Mp ⇓ v thenv
is notsecfail.

This is a direct consequence of the definition of top-level execution
and our type soundness theorem.

This result says that a well typed program will never cause security
violation when executed with the privileges specified in its type. We
can therefore safely use a type-checked code without monitoring its
resource access at runtime.

5 Type Inference

In JVM, each method is explicitly typed but the privilege setΠ is
not given. In order to use a type system defined in Section 3 we
need to develop a type inference algorithm.

5.1 The type inference algorithm

In order to define a type inference algorithm, we extend types and
stack types by introducingtype variables(ranged over byt) and
sequence variables(ranged over byδ) respectively as follows.

• τ := t | int | c

• ∆ := /0 | δ | τ·∆
Type variables are bounded by a bound environmentK , which is
a mapping from a finite set of type variables to class names or∗.
K (t) = c indicates thatt ranges only over subclasses ofc, and
K (t) = ∗ indicates thatt has no bound. We writeK ` τ <: c if
τ is a subclass ofc under bound environmentK . This relation is
given as follows.

K ` c′ <: c (if c′ <: c)
K ` t <: c (if K (t) <: c)

A (type variable)substitution(ranged over byS) is a function from
a finite subset of type variables to types. We say that a substitution
S respectsK if for all t in Dom(K ), K ` S(t) <: K (t).

(E∪{(τ,τ)},S) =⇒ (E,S)

(E∪{(t,τ)},S) =⇒ ([τ/t]E,{(t,τ)}∪ [τ/t]S)
(if K (t) = ∗)

(E∪{(t,c)},S) =⇒ ([c/t]E,{(t,c)}∪ [c/t]S)
(if c <: K (t))

(E∪{(t1, t2)},S) =⇒ ([t2/t1]E,{(t1, t2)}∪ [t2/t1]S)
(if K (t2) <: K (t1))

(E∪{(t1, t2)},S) =⇒ ([t1/t2]E,{(t2, t1)}∪ [t1/t2]S)
(if K (t1) <: K (t2))

Unify(K ,E) =
{

S ((E, /0) ∗=⇒ ( /0,S))
f ailure (otherwise)

Figure 4. Unification algorithm

A unification algorithmUnify accepts a bound environmentK and
a setE of pairs of types, and returns substitutionS that respectsK .
Algorithm Unify is given in Figure 4. It is easily checked thatUnify
is a unification algorithm if the subclass relation<: has the property
that if two classes are incomparable then they have no common
subclass. The set of JVM classes satisfies this property. However,
if we extend JAVA-style interfaces, then a more refined algorithm
will become necessary.

In what follows, we identifyS with its homomorphic extension
to any syntactic structures containing type variables and sequence
variables.

We also extend the language of privilege sets to includeset vari-
ablesρ as follows.

Π := P | P·ρ
P is a (closed) set of privileges.P·ρ is an open set of privileges
denoting the set consisting of privileges inP and those in the set
denoted by set variableρ. We sometimes writeP∪Π to denote the
element of this language, i.e., ifΠ = P′ thenP∪Π = P∪P′ and
if Π = P′·ρ thenP∪Π = (P∪P′)·ρ. A set variable substitution
(ranged over byϕ) is a function from a finite set of set variables to
sets.

The role of the type inference algorithm is twofold. It infers a most
general typing usingUnify for each method body and to verify that
it satisfies the type specification. It also infers the minimal set of
privileges required to execute each method. To perform the latter,
the algorithm generates a set ofinclusion constraintsof the form
Π v Π′, and then solves the constraint sets to compute the mini-
mal set of privileges. We usePC as a meta variable for a finite set
of inclusion constraints. We say that a set variable substitutionϕ
satisfiesPC if ϕ(Π)⊆ ϕ(Π′) for anyΠvΠ′ ∈ PC.

Figure 5 shows the main algorithmW C performing these steps us-
ing a sub-algorithmW M for inferring method typing. The main
algorithm takes a static class environmentC for existing classes,
class definitionCp, and class namec, and infers the set of method
typesM of the class. It first generates a type skeleton containing
a privilege set variable for each method. It then infers a type of
each method usingW M , which returns a set of constraintsPC.
Its definition is given in Figure 6.W M first sets up a skeleton of
each code block and makes a label environment. It then infers a
type of each code block using another sub-algorithmW B, which
infers a typing of a code block usingUnify. Figure 7 gives its defini-



W C (C ,{m1 = Mp
1 , · · · ,mn = Mp

n},c) =

let M = {m1 = ∆1
/0·ρ1→ τ1, · · · ,mn = ∆n

/0·ρn→ τn}
(if Θ.c.mi = ∆i → τi for eachi)

PC0 = {ρ1 v A(p), · · · ,ρn v A(p)}
C ′ = C ∪M
for each i do
PCi = W M (C ′,M (mi),M

p
i ,PCi−1)

end
ϕ = Solve(PCn)

in ϕ(M )

Figure 5. Type inference algorithm for classes

W M (C ,(∆ Π→ τ),Mp,PC) =
let {l1 = B1, · · · , ln = Bn}= Mp

Bentry = Π,∆, p¤ τ
Bi = ρi ,δi , p¤ τ (1≤ i ≤ n)
L = {l1 = B1, · · · , ln = Bn}
S0 = /0, K0 = /0
PC0 = PC∪{ρ1 v A(p), · · · ,ρn v A(p)}
for each i do
(S ,Ki ,PCi) = W B(C ,Si−1(L),Si−1(Bi),Bi ,Ki−1,PCi−1)
Si = S ◦Si−1

end
in PCn

Figure 6. Type inference algorithm for methods

tion. After obtaining a constraint set for all the methods byW M ,
the main algorithm solves the constraints bySolve, which returns a
substitutionϕ that satisfiesPC. The definition ofSolve is given in
Figure 8.

Note thatP appearing in inclusion constraints is a set not contain-
ing set variable, and expressionsP1 \P2 andP1∪P2 used in this
algorithm are ordinary set-theoretic operations. In contrast to the
constrained type system of [13], introduction of expressions corre-
sponding to these set operations in set inclusion constraints is not
required in our formalism due to the simpler nature ofJVMseccom-
pared to the lambda calculus.

5.2 Example of type inference

We show how the algorithm computes typing using a simple exam-
ple. Let writeFile be a native method defined in the classIO,

which writes a string to a file and has typestr·str {FWrite}→ void.
The following program reads a file and writes the contents to other
file.

class SomeClass {
updateFoo() : str,str -> str {

new(IO)
sconst("/protect/foo.txt")
new(SafeClass)
invoke(SafeClass,readPublicFile)
invoke(IO,writeFile)

}
}

W B(C ,L ,(Π,∆, p¤ τ),return,K ,PC) =
let K1 = K ∪{t = ∗}

S = Unify(K1,{(∆, t·δ),(t,τ)})
in (S ,K1,PC)

W B(C ,L ,(Π,∆, p¤ τ),goto(l),K ,PC) =
let Π′,∆′, p¤ τ′ = L(l)

PC1 = PC∪{Π′ vΠ}
S = Unify(K ,{(∆,∆′),(τ,τ′)})

in (S ,K ,PC1)

W B(C ,L ,(Π,∆, p¤ τ),acc(n)·B,K ,PC) =
let K1 = K ∪{t1 = ∗, · · · , tn = ∗}

S1 = Unify(K1,{(∆, t1 · . . . · tn·δ)})
(S2,K2,PC′) = W B(C ,S1(L),

S1(Π, tn·∆, p¤ τ),B,K1,PC)
in (S2 ◦S1,K2,PC′)

W B(C ,L ,(Π,∆, p¤ τ),iconst(c)·B,K ,PC) =
W B(C ,L ,(Π,int·∆, p¤ τ),B,K ,PC)

W B(C ,L ,(Π,∆, p¤ τ),dup·B,K ,PC) =
let K1 = K ∪{t = ∗}

S1 = Unify(K1,{(∆, t·δ)})
(S2,K2,PC1) = W B(C ,S1(L),

S1(Π, t·t·δ, p¤ τ),B,K1,PC)
in (S2 ◦S1,K2,PC1)

W B(C ,L ,(Π,∆, p¤ τ),ifeq(l)·B,K ,PC) =
let Π′,∆′, p¤ τ′ = L(l)

S1 = Unify(K ,{(∆,int·δ)})
S2 = Unify(K ,{(S1(∆),∆′),(S1(τ),τ′)})
S3 = S2 ◦S1
(S4,K1,PC1) = W B(C ,S3(L),

S3(Π,δ, p¤ τ),B,K ,PC)
PC2 = PC1∪{Π′ vΠ}

in (S4 ◦S3,K3,PC2)

W B(C ,L ,(Π,∆, p¤ τ),new(c)·B,K ,PC) =
W B(C ,L ,(Π,c·∆, p¤ τ),B,K ,PC)

W B(C ,L ,(Π,∆, p¤ τ),invoke(c,m)·B,K ,PC) =
let ∆′→ τ′ = Θ.c.m

K1 = K ∪{t1 = ∆′(1), · · · , tn = ∆′(n), t0 = c}
(if |∆′|= n)

S1 = Unify(K1,{(t1· . . . ·tn·t0 ·δ,∆)}
{c1, · · · ,cn}= lookupAll(c,m)

∆′ Πi→ τ′ = C .ci .m
PC1 = PC∪{Πi vΠ} (for eachi)
(S2,K2,PC2) = W B(C ,S1(L),

S1(Π,τ′·δ¤ τ),B,K1,PC1)
in (S2 ◦S1,K2,PC2)

W B(C ,L ,(Π,∆, p¤ τ),priv(π)·B,K ,PC) =
let Π′ = if π ∈ A(p) then{π}∪Π elseΠ
in W B(C ,L ,(Π′,∆, p¤ τ),B,K ,PC)

Figure 7. Type inference algorithm for blocks



Solve(PC) =
if isSolved(s) for all s∈ PC thenϕ

where∀ρ ∈ PC.ϕ(ρ) = /0
else let{Π1 vΠ2}∪PC0 = PC

such thatisSolved(Π1 vΠ2) is false
(ϕ1,Π′

1 vΠ′
2) = Solve1({Π1 vΠ2})

ϕ2 = Solve({Π′
1 vΠ′

2}∪ϕ1(PC0))
in ϕ2 ◦ϕ1

Solve1(P1 v P2) = Failure
Solve1(P1 v P2·ρ) = let P3 = P1 \P2

ϕ = [P3·ρ′/ρ] (ρ′ is a fresh)
in (ϕ,P1 v (P2∪P3)·ρ3)

Solve1(P1·ρv P2) = Failure
Solve1(P1·ρ1 v P2·ρ2) = let P3 = P1 \P2

ϕ = [P3·ρ3/ρ2] (ρ3 is a flesh)
in (ϕ,P1 v (P2∪P3)·ρ3)

isSolved(P1 v P2) = P1 ⊆ P2
isSolved(P1 v P2·ρ) = P1 ⊆ P2
isSolved(P1·ρv P2) = P1 ⊆ P2
isSolved(P1·ρ1 v P2·ρ2) = P1 ⊆ P2

Figure 8. Algorithm Solve

Assume thatSomeClass is owned by principalsomebodyandA is
set up such thatFWrite ∈ A(somebody).

For this class,W C performs the following computation. It first

creates method typesM = {updateFoo = str · str {}·ρ→ void}
and the inclusion constraintsPC0 = {ρ v A(somebody)}. It
then obtains inclusion constraintsPC = {FWrite v ρ, /0 v ρ,ρ v
A(somebody)} by invoking the functionW M . Next, it calls
Solve for PC. Solve first obtains the substitution[FWrite·ρ′/ρ]
from FWritev ρ and transformsPC to {FWritev FWrite·ρ′, /0v
FWrite·ρ′,FWrite·ρ′ v FWrite}. It then returns the substitution
ϕ = [FWrite·ρ′/ρ, /0/ρ′]. Finally, W C appliesϕ to M and returns

method types{updateFoo = str ·str {FWrite}→ void}.

The constraintsFWrite v ρ and /0 v ρ in PC represent the
necessary conditions for invoking the methodwriteFile and
readFooFile respectively. The substitutionϕ satisfies these con-
straints andρv A(somebody). If FWrite /∈ A(somebody), PC has
no solution, andSolve reports failure.

5.3 Correctness of type inference

For the type inference algorithm just defined to serve as a static
verification system for code level access control, it must be sound
with respect to the type system ofJVMsec, which we shall establish
in this section.

Another customary criteria of correctness of a type inference algo-
rithm is its completeness. For our type system, this has two aspects.
One is on typings of methods of the form∆→ τ and the other is on
accuracy of inferred privilege setsΠ. The first aspect is sensitive
to the language constructs. SinceJVMsec only contains explicitly
typed methods and does not contain those mechanisms such as sub-
routines and object initialization which have subtle interaction with
type inference, the first aspect does not involve much significant
issues. For this reason, in this paper, we omit its discussion and

only consider the second aspect which has significant impact on the
usefulness of our method. The interested reader is referred to [5]
which deals with type inference with polymorphic subroutines.

The soundness of the type inference algorithm is established by the
combination of soundness results of the components of the type
inference algorithm.

We first verify that the unification algorithm correctly computes a
unifier.

LEMMA 2. LetE be a set of equations under a bound environment
K . If Unify(E,K ) = S thenSrespectsK andSis a unifier forE.

This is verified by simple inspection of each transformation rule.
Using this property, we prove the soundness ofW B, which is the
main lemma for establishing the soundness of the type inference
algorithm.

LEMMA 3. If W B(C ,L ,(Π,∆, p ¤ τ),B,K ,PC) = (S ,K ′,PC′)
then for all S0, ϕ0 such thatϕ0 ground for PC′, ϕ0 satisfies
PC, S0 ground forK ′ and S0 respectsK , the following is deriv-
able: ϕ0(S0(S(C ))), ϕ0(S0(S(L))) ` ϕ0(Π),S0(S(∆)), p ¤ B :
S0(S(τ)).

PROOF. This is proved by induction onB. The proof proceeds by
cases in terms of the first instruction ofB. Here we only show some
of them.

CaseB = return. By the definition ofW B, K ′ = K ∪{t = ∗},
S = Unify(K1,{(∆, t·δ),(t,τ)}), andPC′ = PC. Let S0, ϕ0 be such
that ϕ0 ground forPC, ϕ0 satisfiesPC′, S0 ground forK ′ andS0
respectsK . By Lemma 2,S1(∆) = S1(t·δ) and S1(τ) = S1(t).
Then by the typing rule, we haveϕ0(S0 ◦ S1(C )), ϕ0(S0 ◦ S1(L))
` ϕ0(Π), S0◦S1(∆), p ¤ B : S0 ◦S1(τ).
CaseB = priv(π)·B1. We only show the case forπ ∈ A(p). The
other case is similar. By the definition ofW B, Π′ = {π}∪Π and
(S ,K ′,PC′) = W B(C ,L ,(Π′,∆, p¤ τ),B,K ,PC). Let beϕ0,S0
such thatϕ0 ground forPC′, ϕ0 satisfiesPC, S0 ground forK ′,
and S0 respectsK . By the induction hypothesis,ϕ0(S0 ◦ S(C )),
ϕ0(S0 ◦S(L)) ` ϕ0(Π′),S0 ◦S(∆), p ¤ B : S0 ◦S(τ). By the def-
inition of the type system,ϕ0(S0 ◦S(C )), ϕ0(S0 ◦S(L)) ` ϕ0(Π),
S0 ◦S(∆), p ¤ B : S0 ◦S(τ).
CaseB = invoke(c,m)·B1. By the definition ofW B, ∆′ →
τ′ = Θ.c.m, K1 = K ∪ {t1 = ∆′(1), · · · , tn = ∆′(n)}, S1 =
Unify(K1,{(t1· . . . ·tn·t0 · δ,∆)}, {c1, · · · ,cn} = lookupAll(c,m),

∆′ Πi→ τ′ = C .ci .m, PC1 = PC ∪ {Πi v Π}, (S2,K2,PC2) =
W B(S1(C ),S1(L),S1(∆,τ′·δ, p ¤ τ,B1,K1,PC1), and S = S2 ◦
S1,K ′ = K3,PC′ = PC2. Let be ϕ0,S0 such thatϕ0 ground for
PC2, ϕ0 satisfiesPC1, S0 ground forK2, andS0 respectsK1. By
induction hypothesis,ϕ0(S0 ◦ S(C )), ϕ0(S0 ◦ S(L)) ` ϕ0(Π),S0 ◦
S(τ′·δ), p ¤ B : S0 ◦ S(τ). By Lemma 2,S1(t1·, . . . , ·δ) = S1(∆).
Then by the typing rule,ϕ0(S0 ◦ S(C )), ϕ0(S0 ◦ S(L)) ` ϕ0(Π),
S0 ◦ S(∆), p ¤ B : S0 ◦ S(τ). Apparently,S0 respectsK and ϕ0
satisfiesPC.

We next show the soundness of the inference algorithmW M for
method.

LEMMA 4. If W M (C , (∆ Π→ τ), Mp, PC) = PC′ thenC |= Mp :

∆
ϕ0(Π)→ τ for all ϕ0 that is ground forPC and satisfiesPC.

SinceW M simply callsW B for each block in the method, this
follows from Lemma 3 with the following additional property of
W B: if W B(· · · ,K , · · ·) = (S ,K ′) thenS respectsK (underK ′).



The following lemma shows thatSolve computes the minimal so-
lution of a given constraint set.

LEMMA 5. 1. Solve terminates on all inputs.

2. If Solve(PC) = ϕ thenϕ satisfiesPC.

3. If ϕ satisfiesPC thenSolve(PC) = ϕ′ such that for eachρ
occurring inPC, ϕ′(ρ)⊆ ϕ(ρ).

PROOF. The first property follows from the facts thatSolve mono-
tonically increases the size of constraints and that there are only
finitely many privilege atoms. The second and the third properties
can then be shown by induction on the number of recursive calls of
Solve.

By combining Lemma 4 and Lemma 5, we can show the following.

THEOREM 2 (SOUNDNESS OFW C ). If W C (C0,Cp,c) = M
thenC0,Θ `Cp : M .

The following minimality result with respect to privilege set follows
from the definition of the algorithmW B and Lemma 5.

THEOREM 3. If W C (C0,Cp,c) = M and C0,Θ ` Cp : M ′ such
that M ′ is equal toM except for privilege set annotations, then
each privilege setΠ in M is included in the correspondingΠ′ in
M ′.

6 Extensions and discussions

The calculus we have considered so far can be extended in several
ways to include practically useful features. This section discusses
some of them.

6.1 Inclusion of target objects

One simplification we have made in the previous development is
that a privilegeπ is an atom, representing some privileged opera-
tion. In the Java access control architecture, a permission consists
of a target and an action to be performed on the target. This allows
finer access control.

One way to incorporate this feature is to refine a privilegeπ to be
a term of the formF(v) whereF denotes an operation name as be-
fore andv represents the target object. Integration of those privilege
terms in our type system requires several refinements. Firstly, since
v denotes a possible runtime value which the static type system can
only approximate, we need to introduce a type attribute denoting a
set of possible values. Secondly, in order to propagate this attribute
information across method invocation boundary, some mechanism
for abstraction over those sets of possible values is necessary. A
complete access control system including these features is beyond
the scope of the current paper. In the following, we describe the
necessary refinement to the type system to incorporate these fea-
tures.

The syntax of the refined set of privileges is given below

π ::= F(v)
v ::= {s1, . . . ,sn} | α | v∪v | ⊥

s is an address of an object represented by a string such as an URL,
and{s1, . . . ,sn} denotes a set of (possible) target objects identified
by the addresss1, . . . ,sn. α is a variable ranging over sets of target
objects, andv1∪ v2 denotes the union ofv1 andv2. ⊥ denotes the

set of all possible objects.v is ordered by set inclusion with⊥ the
largest element. Koved et. al. [9] have used a similar mechanism in
their data flow analysis.

The type system can be extended to incorporate these refined notion
of privileges. We assume that the language contains string values
of typestr with a set of operations such assconst(s). The set of
types is extended as follows.

τ ::= int | c | str(v)
str(v) represents the subset of strings denoted byv. For example,
str({s}) represents the singleton set andstr(⊥) represents the set
of all strings. For this refined string types, the subsumption relation
is extended to include the relation generated by the rule:

v1 ⊆ v2
str(v1) <: str(v2)

The type system is refined to keep track of possible runtime values
of stack entries. For example, the typing rule forsconst instruction
is given as follows.

Π,str({s})·∆, p ¤B : τ
Π,∆, p ¤sconst(s)·B : τ

The possible set of target objects ({s} in the above example) will
be promoted through the subsumption relation above when control
flow merges.

The another necessary refinement is to consider a method as poly-
morphic with respect to the object set variablesα appearing in its
typing, and to give a polymorphic type in the style of ML’s let-
polymorphism. Since method is not a first-class object, this treat-
ment is compatible with our type system. We can adopt the tech-
nique of introducing let-polymorphism in the JVM we have devel-
oped [5] for JVM subroutines. For example, a method which re-
ceives a file name and opens the file is given the following poly-
morphic type.

∀α.(str(α)
{FOpen(α)}→ Void)

When this method is invoked with a parameters, FOpen(s) privi-
lege is generated through ML-style type instantiation.

With these refinements, the type system ofJVMseccan be extended
to incorporate possible target objects of privileged accesses. Some
more efforts are needed to extend the type inference algorithm.

6.2 Adding other JVM features

To develop a static verification system for the JVM bytecode lan-
guage based on our method, we must extend our type system to
include various other instructions of JVM. Since the type system
is based on the logical presentation of the JVM bytecode language
[5], we believe that the set of instructions considered there can be
added without much difficulty. These include instructions for lo-
cal variable access, and for object field manipulation. Furthermore,
the type system developed in [5] supports polymorphic subroutines,
whose treatment is orthogonal to typing mechanism for access con-
trol presented here. So, our type system should extend smoothly to
JVM subroutines without any additional machinery.

In Java,checkPermission can be used to protect object fields.
This feature is easily added by extending field types to include priv-
ilege annotation similar to method types as in

{ f1 : (Π1,τ1), . . . , fn : (Πn,τn)}



and define a typing rule for field manipulation as follows.

Π,τ′·∆, p ¤B : τ
Π,c0·∆, p ¤getfield(c, f)·B : τ

(if c0 <: c, (Π′,τ′) = Θ.c. f andΠ′ ⊆Π)

The rule forputfiled can similarly be defined.

6.3 Implementation issues

In order to develop a practical access control system based on our
static method, we have to consider a number of implementation
issues. We briefly discuss some of them below.

Compatibility with existing programs.As we have explained ear-
lier, the current practice in Java access control is to dynamically in-
voking static methodscheckPermission anddoPrivileged sup-
plied as a JDK security package. A static access control system
should work for existing programs using these methods. One ap-
proach is to replace these two methods with those whose intended
effect is represented by their types but whose runtime effect is nil,
and to considerdoPrivileged invocation aspriv instruction.

Relationship with JVM runtime system.In JVM, a bytecode verifier
checks the type consistency of a class file. A security verification
is static type-checking similar to bytecode verification, so it is de-
sirable to unite these two verification systems. Since our security
verification system is based on a type theory [5] for bytecode veri-
fication, it is not hard to develop a static system which checks type
consistency and security violation simultaneously. However, since
the JVM bytecode verifier is closely related to a complicated fea-
ture such a dynamic class loading, development of such a integrated
system requires us to modify a major part of JVM runtime system.
A simpler strategy is to check all the class files in a program inde-
pendently of JVM before executing the program. Adopting this ap-
proach, we plan to design a verifier as a stand alone system which
reads an access policy file, a target class file, and infers types of
methods in the class, and reports a security violation if it is detected.

Specifying privilege requirements.We also need to declare the priv-
ilege set for each native method. One possible approach is to di-
rectly write it in a class file which declares a native method. An-
other approach is to describe it in an external file corresponding to
the class file. In this approach, a coding technique such as digital
signature used in the current JDK to sign a code may be required to
guarantee credibility of the file.

7 Conclusions

We have developed a static access control system for the JVM byte-
code language. We have extended our earlier work of presenting the
JVM code language as a typed term calculus to incorporate privi-
lege attributes in a method type. We have then defined an opera-
tional semantics that simulates JDK style runtime stack inspection,
and have shown that the type system is sound with respect to the
operational semantics. This result guarantees that we can safely
omit costly runtime stack inspection. All the possible access vi-
olation is statically detected. Another advantage of our approach
is that the user can verify whether a code conforms to a given ac-
cess policy or nor directly without relying on explicit insertion of
checkPermision. This approach can therefore be used as a se-
curity verification system for foreign and possibly malicious code.
For this type system, we have develops a type inference algorithm,
which achieves automatic verification for code-level access control.

Acknowledgments

The authors would like to thank Yasuharu Oda, who have helped in
implementing the type inference algorithm and testing our methods
through examples. These results have been useful for better under-
standing our framework. The authors also thank the anonymous
referees for helpful comments.

8 References

[1] A. Banerjee and D. Naumann. A simple semantics and static
analysis for java security. CS Report AI-068-85, Stevens In-
stitute of Technology, 2001.

[2] A. Banerjee and D.A. Naumann. Representation indepen-
dence, confinement and access control. InProc. ACM POPL
Symposium, pages 166–177, 2002.

[3] C. Fournet and A. Gordon. Stack inspection: Theory and vari-
ants. InProc. ACM Symposium on Principles of Programming
Languages, pages 307–318, 2002.

[4] F.Pottier, C.Skalka, and S.Smith. A systematic approach to
static access control. InIn Proc. of the 10th European Sym-
posium on Programming (ESOP’01) Springer LNCS 2028,
pages 30–45, 2001.

[5] T Higuchi and A Ohori. Java bytecode as a typed term cal-
culus. InProceedings of the conference on Principles and
practice of declarative programming, 2002.

[6] A Ohori. The logical abstract machine: a Curry-Howard iso-
morphism for machine code. InProceedings of International
Symposium on Functional and Logic Programming, 1999.

[7] Gunter Karjoth. An operational semantics of Java 2 access
control. In In Proc. IEEE Computer Security Foundations
Workshop (CSFW’00), pages 224–232, 2000.

[8] L.Gong.Inside JavaTM 2 Platform Security. Addison-Wesley,
1999.

[9] L. Koved, M. Pistoia, and A. Kershenbaum. Access Rights
Analysis for Java. InProc. ACM OOPSLA Conference, pages
359–372, 2002.
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