A Static Type System for JVM Access Control ul

Tomoyuki Higuchi Atsushi Ohori
School of Information Science School of Information Science
Japan Advanced Institute of Japan Advanced Institute of
Science and Technology Science and Technology
Tatsunokuchi Ishikawa, 923-1292 Japan Tatsunokuchi Ishikawa, 923-1292 Japan
thiguchi@jaist.ac.jp ohori@jaist.ac.jp
Abstract Keywords

This paper presents a static type system for JAVA Virtual Machine JVM, access control, stack inspection, type system, type inference
(JVM) code that enforces an access control mechanism similar to
the one found, for example, in a JAVA implementation. In addition .
to verifying type consistency of a given JVM code, the type sys- 1 Introduction
tem statically verifies that the code accesses only those resources . .
that are granted by the prescribed access policy. The type systenf\CCESS controls a mechanism to prevent an unauthorized agent
is proved to be sound with respect to an operational semantics that(Cr Principal) from accessing protected resources. This has tradi-
enforces access control dynamically, similarly to JAVA stack in- tionally been enforced by monitoring each user’s resource access
spection. This result ensures that “well typed code cannot violate réquests dynamically in a resource server, typically in an operat-
access policy.” The paper then develops a type inference algorithmind system. This simple strategy has been based on the assumption
and shows that it is sound with respect to the type system and thatthat the semantics of a program code the user executes is transpar-
it always infers a minimal set of access privileges. These results €Nt to the user, and therefore resource access requests issued by the
allows us to develop a static system for JVM access control without c0de reflect the user's intention. This assumption no longer holds
resorting to costly runtime stack inspection. in the recently emerging network computing environment, where a
program code to be executed is dynamically composed from vari-
ous pieces downloaded from not necessarily trusted foreign sites.
Categories and Subject Descriptors To deal with this situation, we need to developde-level access
control, where an unauthorized principal is not some other user but
some untrusted piece of code, and whether a principal has some
access privilege or not is a property of some portion of the code.
This requires us to develop a verification system for the property of
low-level code.

D.3.1 [Programming Language$: Formal Definitions and The-
ory; D.3.2 Programming Language$: Language Classifica-
tions—Macro and assembly languages, Object-oriented languages
D.4.6 [Operating System$: Security and Protection-aecess con-

trols, authentication This problem has recently attracted attentions of the researchers and

developers, and several verification systems have been proposed
and developed. Among them, the most notable one is perhaps the
JAVA access control system [8] (implemented in JDK1.2 and later.)
In this system, each class (consisting of a set of methods) is owned
by some principal, and each principal is assigned a set of privileges
that is granted to the principal. In order to enforce access control,
The authors was partially supported by Grant-in-aid for sci- the implementer of the code explicitly inserts a call of special static
entific research on priority area “informatics” A01-08, grant MmethodcheckPermission before accessing protected resources.
no:15017239. The second author was also partially supported by This static method checks that the principal associated to the current

General Terms

Languages, Security, Theory, Verification

Grant-in-aid for scientific research (B), grant no:15300006. calling code has the required privilege under the current execution
This is the authors’ version of the paper to be presented at ~ €nvironment. Since method calls are in general nested, and the ac-
ACM ICFP Conference, August, 2003. cess requests issued by some method should be regarded as those of

calling methods, it traverses the current frame stack to ensure that
all the calling methods have the required access privileges. This
process is known astack inspectionAs we shall review later, the
JAVA access control system also provides a mechanism for trusted
code to gain privileges even when the calling method does not have
these privileges.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed Various formal properties of this approach have been studied and
for profit or commercial advantage and that copies bear this notice and the full citation efficient implementation methods have been proposed. Karjoth [7]
on the first page. To copy otherwise, to republish, to post on servers or to redistribute 55 yresented a formal operational semantics as a transition relation
to lists, requires prior specific permission and/or a fee. .
ICFP'03, August 25-29, 2003, Uppsala, Sweden. on abstract machine states. Wallach, Appel and Felten [16, 15] and
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00 Banerjee and Naumann [2] have provided denotational and logical

account, respectively. Fournet and Gordon [3] have studied seman-system that automatically detects all the possible access violation
tic properties of a program performing stack inspection. With these statically from a given code, and infers the minimal set of privi-
efforts, this JAVA-style stack inspection approach has become oneleges required to execute the code. Since the type system examines
of most important code-level access control methods. each resource access directly through method invocation instruc-
tions, explicit insertion otheckPermission is unnecessary. This
There are however some weaknesses that are inherent in this approperty makes our system more reliable than those based on ex-
proach. One is its high runtime overhead due to dynamic inspec- plicit library calls by the programmer, and it can also be used for
tion of the entire call stack. This method also makes some pro- verifying un-trustworthy and potentially malicious code. A proto-
gram optimization difficult or impossible to apply due to the need type type inference algorithm has been implemented, demonstrat-
of maintaining a call stack. To reduce the run-time overhead, Wal- ing the feasibility of our approach.
lach, Appel and Felten [16, 15] have analyzed the stack inspection
semantics, and proposed an alternative method, calkstarity- The rest of the paper is organized as follows. Section 2 outlines
passing styleapproach. Instead of inspecting the entire call stack, our approach. Section 3 defines the target language and the type
this method explicitly passes security information as extra param- system. Section 4 defines an operational semantics of the target
eters so that the called method can verify access privileges. Thislanguage and shows that the type system is sound with respect to the
could be a potentially more efficient alternative to stack inspec- semantics. Section 5 develops a type inference algorithm and shows
tion. Since this method does not assume any runtime architecture,its soundness and other desirable properties. Section 6 discusses
it would also be more amenable to various optimization. Erlings- several extensions and implementation. Section 7 concludes the
son and Shneider [10] have reported implementation experiencespaper.
including one for security passing style. Despite these advantages,
it still incurs non_-tnvnal runtime qverhead for passing extra security 2 Our Approach
information, which could potentially be large.

In order to develop a static access control system for a low-level
code language like the JVM bytecode language, we need to estab-
lish a type theoretical framework for low-level code. We also need
to devise a strategy to extract resource access information from a
given code. Before going to the technical details, in this section, we
outline our approach focusing on these two points.

Another and perhaps more serious weakness of the stack in-
spection approach is that the programmer must explicitly call
checkPermission method before accessing protected resources.
The apparent problem of this strategy is that some programmer
might fail to insert all the appropriate calls, or malicious one would
intentionally left out some of the necessary calls. The security-

passing approach [15] also share this weakness. In the framework of Skalka and Smith [13], a function has a type of

. theform
As we have noted above, code-level access control is a verification

system for security property of code. As such, it should ideally 1 n T

be a proof system that verifies the desired properties of code stat- .

ically from the given code itself without relying on practice of the indicating the fact that it takes an argument of type and com-

programmer. Based on this insight, Skalka and Smith [13] have Putes a result of type; using the privileges1. It is not immedi-

developed a static type system of code-level access control for aately obvious that this idea can be applied to type systems of JVM

variant of the lambda calculus by refining the static type system of bytecode such as the one by Stata and Abadi [14] that only checks

the lambda calculus with access privilege information. They have consistency of machine states and instructions. To apply the general

proved the soundness of the type system, which ensures that a welidea exploited in [13] to a low-level language, we need to define a

typed program will not cause security violation. Pottier, Skalka, and type system that deduces a static semantics of a given code.

Smith [4] further refined its type system. Banerjee and Naumann))

[1] have defined a denotational semantics for a language similar to In an earlier work [5], we have developed a type theoretical frame-

the calculus considered in [13, 4], which provides another assur- Work that allows us to regard the JVM bytecode language as a typed

ance of the safety of this type-based approach. However, since theterm calculus. In this formalism, a JVM blodkis represented as

target language is the lambda calculus and their development relies? static judgment of the forsd B : T indicating the property that

on properties of a static type system of the lambda calculus, it is not B computes a value of typeusing a stack of the form. (For the

clear whether or not this approach can be applicable to low-level Simplicity of presentation, we ignore local variable environments,

code |anguages inc|uding the JVM bytecode |anguage [12] Whlch isirrelevant to the approaCh pl’esen_ted I‘_lel’e.) The type SyStem
is constructed based on a proof-theoretical interpretation of low-

The goal of the present work is to establish a static type system level machine instructions [6], which we outline below.

for code-level access control of the JVM bytecode language, and)))))

show that it is correct with respect to a standard model of JVM ex- Each ordinary instructioh, which changes a machine stdteo a

ecution. We base our development on our earlier work [5], where New statel', is regarded as a left-rule of the form

we have shown that the JVM language can be regarded as a typed N >B:T

term calculus based on a proof theory for low-level code [6]. In this W

formalism, the type system represents static semantics of a code '

language as a type system of the lambda calculus does. This propin a sequent style proof systemeturn statement corresponds to

erty allows us to transfer the concepts and methods developed foran initial sequent (axiom in the proof system) of the form:

the lambda calculus in [13] to the JVM bytecode language. We de-

fine a type system with access control information for the JVM lan- TA >return: T

guage, and establish its soundness with respect to an operational sex

mantics which closely models the JAVA access control using stack

inspection. For this type system, we develop a type inference al-

gorithm. These results allow us to develop a static access control A >goto() T (if L(I)=AD>T)

jump instruction refers to an existing code block (proof) through
a label, and can be represented as a meta-level rule of the form:

whereL is an environment describing the typing of each entry point is given below.
of existing blocks (i,e. the end sequent of existing proofs.)

A4 = {pr=Mg, -+, pn="Tn}
Our strategy is to refine this formalism to introduce access control n = oj{mun
information. We interpret a code bloékas a proof of a judgment n = FileRead| FileWrite| SocketConnedt- - -

of the form - . .
A privilege 1tis an atom (constant) modeling some system resource

MAp>B:t to be protected, and corresponds feamissionin JAVA. A permis-

sion of JAVA consists of a target and an action. Later in Section 6,
we shall discuss a mechanism to extend our formalism to include
target specification im

indicating the fact thaB is owned by principalp, and computes a

value of typet from a stack of values of typ&, using a privilege

setrl.

To define a type system to deduce a sequent of the above form WeFor simplicity, we assume that a unit of secgrity verificatior_1 is one
h . : o ' "=class under a given access policy and a given class environment.

must prescrlbe_the rel_atlonshlp_ betv_/een the privilegel3etsd the An actual JVM program may contain a set of mutually dependent

block B according to its behavior with respect to resource access. classes. It is routine to extend our framework to allow mutually

Our strategy is to associate each method with a set of privildges dependént classes as a unit of verification

required to execute it, and consid@iin the sequent as a constraint '

))

M I'Ig M to invoke the method. A method has then a type of the form A classconsists of a set of methods. The syntax of classes is given

A — Tt similar to function type in [13]. In order to properly granta below.

code to gain some privilege through a special instruction similar to

doPrivileged in Java, the type system maintains an access policy,

which describes the maximum set of privileges for each principal.

= {m=M,....m=M}

= {l1:Bg,---,In:Bn} (entrye {l1,---,In})
))] ‘= goto(l) |return|I-B

The type system is constructed in such a way that it type-checks a
class with respect to an access policy and a given class environment)]
describing existing classes. Each method in an existing class is as- | priv(m |new(c) | invoke(c,m)

sumed to be either one that has already been checked by this typgach class is associated with its principal. We wafefor a class
system so that it has a correct privilege information, or a trusted \yhose principal isp. Each method consists of a set of labeled
method whose privilege information is declared correctly. After .q4e plocks. We assume that the set of labels of a method contains
type-checking a class under a given class environment, the type, special labesntryto indicate the entry point of the method. Each
system produces a correct type for each new method, so that themethodM in a class is implicitly owned by the principal associated
system can extend the class environment with the new class. to the class to which it belongs. We wriw® if M belongs to a class

.) . . CP. A code blockB is a sequence of instructions terminated with
Since the type system checks all the method invocation statically, ;¢ urn or goto. acc(n) pushes theth value of a stack on top

verification of conformance of access privileges against a given ac- of the stack. This is added to make the set of instruction non triv-
cess policy is thorough and cqm_plete. This r_nechanism frt_ees theial, and does not have much significance to our type systerw
programmer from the responsibility for checking access privilege corresponds tdoPrivileged in the JAVA access control architec-
usingcheckPermission. The only thing required is to declare @ e If the block is of the fornpriv(m)-B and the access policy
type of the formA % 1 for each trusted method so tHatrepresents allows current principal to usg, then the current privilege set is
the set of privileges used by the method. These trusted methodsextended withtso thatB can use it. We only consider methods and
are typically native methods in a system library, for which we can ignore object fields. A field can be regarded as a special form of a
safely assume that the correct type has already been declared. method, and our access control mechanism for method carries over
to fields.

—wm <0

= acc(n) | iconst(n) | dup | ifeq(l)

3 A JVM Access Control Calculus

In Java, a class file contains explicit type declarations of the meth-
ods. We represent these type declaratiorclags specificatio®

To present our method, we define a calcull8yise; and its static whose syntax is given blow.

type systemJVMsecis a language similar to Java bytecode contain-
ing minimal features sufficient to present our method. © := {c1 =methods--,ch=method$

] methods (= {m =41 > T3, - ,My=0n—Tn}
In the subsequent development, we shall use the following nota- _ =~ . .) .
tions. For a sequenc@and an elemerg, e Sis the sequence ob- This is an extra input to the type system in ty_pe-checklng a class,
tained by adding at the front ofS, andSi denotes théth element ~ @nd not a static environment for typing derivation.
of S. S{i — e} is the sequence obtained frddby updatingith el- .)) o .
ement ofSto e. |3 is the length of the sequen& We use similar A static environment used in the type system ®atic class envi-

notations for a finite functiori: f.x is the value assigned tain f, ronment(ranged over by") describing the static information about
andf{x « v} is the functionf such thaDom(f') = Dom(f)U{x}, (already verified) set of existing classes. It describes for each class
f/(x) = vandf’(y) = f(y) for anyy # x. its method types (augmented with privileges). The syntax of class
environments is defined below.

3.1 The language syntax C = {ci=M, - Ca=Mn}

o _ |_|1 . _ rln
We assume that the user sets up an access policy (ranged o@gr by 9\2 - grl Z ATy, Mh =40 = T}

= T

statically and globally. It is a function assigning a sepdfileges
(ranged over by to each principal. The syntax of access policies T = int]cC

A is a stack type which is a sequence of types, and the leftmost Class typing. Using these definition, typing of a cla&® with

element corresponds to the stack top. respect to a class environmefy of existing classes is defined as
follows.
G,OFCP: M
3.2 The type system <= for eachme Dom(CP), following conditions hold:
C=Gu{c=M},

Corresponding to the structure ®Mse the type system consists b)
of typing relations for code blocks, methods, and classes. We define cr-Chcm .nfM.c.m,
them in that order. Mcm=A->TandO.cm=A—T

Block typing. As outlined in Section 2, the type system for blocks A well typed classCP namedc with type / under (o yields an
is defined as a proof system to derive a judgment of the form: extended class environmegi§U {c = 2 }.

MAp>B:t . .
P 3.3 Example of program and its typing
relative to a given class environmefitand an access policg. C
is of the form U {c = M}, where(y is the class environment
describing all the existing classes afw= M} describes the types

We show an example of type derivation using a simple program. Let
10 be an existing system class having privilégead for reading
files, andreadFile be a native method defined in the class, which

of methods of the current class. This structure reflects the mutu- K fil d f the fi > S
ally recursive nature of the set of methods of a class definition. In t@kes afile name and returns a content o t{lfR;aed?s a string. Sup-

addition to those two environments, we need to introduce a label pose the type ofeadFile is declared astr = — str. This
environmentL to describe the types of the set of code blocks to type indicates that privilegeRead is required to read files through
which B belongs. This is necessary due to mutually recursive block this method. This condition is statically enforced by the typing rule
definitions in a method induced by label references. A label en- for method invocation.

vironment has the forn{ly : M1,A1,p> T, Iy Mp, A, p> 1}

wherely,---,In is the set of labels of the blocks. Since bindings of To enable any user withowRead to read a public file, a trusted
labels and classes are static, there is no rule that changes_. user withFRead can define the following class usipgiv.
For this reason, in defining each typing rule, we tr€aand L as
global variables. The set of typing rules is given in Figure 1. class safeClass {
readFooFile() : str -> str = {
The rules forinvoke andpriv realize static access control. The new(I0)
other rules are essentially the same as those in [5]. To invoke a sconst ("/public/foofile")
method of typet - 1, a caller must have at least all the privi- priv(FRead))
leges inM. For a simple type discipline such as that of the lambda invoke(I0,readFile)
calculus, this would be sufficient. However, sinceJifMseg the 3 return

method actually called is determined at runtime based on the run-
time class of the receiver object, this constraint must therefore be

checked against all the possible methods that may be called. Theg st (s) is an instruction which pushes a striagnto the stack
condition ‘T1; C N for eachi” in the rule for invoke guarantees

.) X - . and has a typing rule similar tbconst (n). Any user should be
this constraint for each possible method. The auxiliary function gpie to callreadFooFile. even if he or she doesn't haRRead

lookupAll(c,m) traverses the subclass of clasand returns the privilege.
set of classes that define a methad The rule forpriv (1) adds
Tto the current privilege set fds, if the principal ofB has access

}

This is achieved by our type system. Lltetisted be the princi-

privilege tunder the access policy. pal of the classafeClass such thatFRead € A(trusted. The
type system deduce the following typing for the body of method
Method typing. A method consists of a set of code blocks. A ryepach)z/oFile. g yping y
methodM is well typed if each block irM is well typed. This
relation is defined below. {FRead}, str-0,trusted > return : str
CEMP: L {FRead},str-10-0,trusted > invoke (I0,read) : str
< for eachl € Dom(MP), following conditions hold: 0,stx-10-0,trusted > priv(Read) : str
L(1)=N,4A,p>T, 0,10-0,trusted > sconst (¢ ¢ /public/foofile’’) : str

C,LETLA p>MP(I) @ T,

andr C 4(p) 0,0,trusted >new(I0) : str

. — s)

M C A(p) reflects the property that the privileges each code block From this type derivationeadFooFile is given typevoid = str.
may use must not surpass the set of allowable privileges granted by his means that no privilege is required to invoke it.

the access policyl.

Since the type of a method is the type of the entry block, we define 4 Operatlonal Semantics and Type Soundness

method typing as follows. In order to show that the type system just defined properly enforces

crmP:alle the desired access control, we define an operational semantics that
<= there exists somé such thaiC - MP: £ models Java-style dynamic stack inspection, and show the sound-
andC,LFM,Ap>MPentry: T ness of the type system with respect to the operational semantics.

M,T-A,p >return : T M,A p>goto() 11 (if L) =N"Ap>1 AN CH)

M, (An)-Apr>B:t M,int-A,p>B:t MmNttApre>B:T
MAp>acc(nB:1 MAp>iconst(n)-B:1 MtTAp>dupB:1
MAp>B:T McAp>B:t

(f L()=1"Ap>1 ATV CN)
M,int-A,p >ifeq()B:1 M,A,p >new(c)B:1

Mty:Ap>B:t {c, - -,Cn} =lookupAll(c,m)
M,Ap-Co-A, p > invoke(c,m)-B : T
TtMAp>B:t MAp>B:T

if a if 2
M,A,p >priv(m-B: 1 (it e Ap) M.A,p >priv(mB: 1 (if ¢ A(p))

(if Aq L} 11 = C.ci.m, Ag <: Aq, ¢ <: candl; C N for eachi)

Figure 1. Typing rules for code blockB

4.1 Operational semantics the contents of an object instance is emjitys adump which is a
sequence of saved method frames of the s MP{B}).

Since semantics of a method in a class depends on other methods

of the class and those of existing classes, the operational semantic#\ state transition rule is of the form

is defined relative to dynamic class environmefrianged over b ,
y ang Y 0,0+ (RSMP{IB},D),h— (P, MP (B},D'),1

Q) of the form:
Q=QoU{c=CP} indicating that transforms the machine state S MP{l -B},D),h
))) o to (P,S,MP{B'},D'),h under (5,Q,0. The set of transition
whereQg is a dynamic class environment for existing classes whose (jjes is given in Figure 2 (omitting the contes, Q, © which are
static information is described in a static class environnggntsed not changed during the execution.) The functiospkup (¢, m)
in the type system, andlis the current class. used in the rule foinvoke locates the class which is the closest
. .) . super class of that defines a methau. Instructionnew creates an
Since(y is a class environment for already verified classes, the op- jpitialized new object. The only instruction which may causes the
erational semantics for a class is defined under the assumption tha%ecurity error isinvoke. There are three cases faivoke. If the
method bod_les _n§20 _satlsfles the static constraints desc_nbed‘dn method to be invoked is defined in the current class, then the method
To model this situation, we assume that each methddgiacts as pody is called just as in the conventional JVM. If the method to be
an opaqudunctionsatisfying the corresponding typing constraint jnyoked is one defined in an existing class and the set of privileges
in Co, whose precise condition will be given when we prove the yequired by the method is included in the dynamic privilege set,
type soundness theorem. To emphasize the distinction between thgnen the method must succeeds with a value of appropriate type.
method bodies in the current class (for which the semantics is being|f the method to be invoked is defined in an existing class and the
defined) and those ifo modeled by opaque functions in existing set of privileges required by the method is not included in the dy-
classes, we writ€.c.m = PreChecked(f) if mis a method inan hamic privilege set, then the method invocation is aborted and the
existing class, and writ@.c.m = Code(M) if mis a method inthe gystem returns the special valsecfail. This is the case of run-
current class. time access violation. The type soundness theorem we shall show
later guarantees that when the current privileges include the stati-

The operational semantics is defined by specifying for each instruc- a1y deduced privileges of the method, then access violation will
tion |, its effect as a transition rule on machine states using a dy- ot happen.

namic class environmef, a static class environmegy for exist-

ing classes, and a class specificat@ulescribing the types of the The opservant reader may have noted that the operational seman-
methods © is necessary to check the type of the current method. ics js based on eager semantics for security checking i.e., a new
. privilege sefP is calculated at every method call byvoke. There-
A machine state has the form: fore, security verification can be done by checking the current frame
(P.SMP{B},D),h without traversing the entire frame stack. Since a method call oc-
' T cur frequently, eager semantics may incur high runtime overhead
P is a dynamic privilege set, which represents the set of privileges due to computation oP. For this reason, most implementations
that the blockB can currently useSis an operand stack, which is including JDK [8] adopt lazy semantics, where calculation of the
a sequence of runtime value (ranged ovenhy Following [13], effective privilege set is performed by stack inspection only when
we model access violation by a special runtime valeefail. If security check is actually required. The trade-off between eager
an access violation occurs at runtime, the machine terminates withand lazy semantics may be important for access-control systems
this special value. Introduction of this special value is necessary based on dynamic checking of privilege information. It should be
to distinguish it from type error, which causes the machine to stop noted, however, that this issue is irrelevant for us. The operational

prematurely. An ordinary runtime value is either an integer a semantics is defined only to show soundness of the type system.
heap address MP{B} indicates that the machine is executing the The type soundness theorem guarantees that a type-checked pro-
first instruction of blockB belonging to method/P. his a heap, gram will never cause security violation. We therefore use the op-
which is a function from heap address (ranged over)itp object erational semantics that does not perform any runtime access check

instances of the fornj)¢ of classc. Since we omitted object fields, for actual execution. Since it is proved that eager and lazy seman-

(P,v-SMP{return},0),h — (0,v,0,0),h
(Pv-SMP{return}, (Po, So,Mg°{Bo})-D),h
— (Po,v-S0,Mg"{Bo},D),h
P,.SMP{acc(n)-B},D),h— (P,(Sn)-SMP{B},D),h
P,S MP{iconst(n)-B},D),h— (P.n-S MP{B},D),h
RVSMp{dUPB},D),h—> (PVVSMp{B}vD)vh
ROSMp{lfeq(l)B}vD)>h—> (P,S,MP{MU)},D)/h
P.n-SMP{ifeq(l)-B},D),h— (P,SMP{B},D),h
ifn£0
(P,S MP{new(c)-B},D),h— (P,r-S MP{B},D),H
if I = h{r — ()¢} andr ¢ dom(h)
(RS MP{goto(l)-B},D),h — (P.SMP{MP(I)},D),h
(P,S1-r-SMP{invoke (c,m)-B},D),h
— (P/,S1-0,M'P {M' entry}, (P, S MP{B})-D),h
if h(r) = ()c,, €1 = lookup(Co, M),
Q.c;.m=Code(M'P), ©.c;.m=A—T,
|S1| = |A] andP’ = PN A(p')
(P,S1-r-S MP{invoke (c,m)-B},D),h
— (Pv-SMP{B},D),l
if h(r) = ()o» €1 = Lookup(co, M),
Q.c;.m=PreChecked(f), Co.cl.m:Al/L
|S1| = |4, ' CP, and(v,h') = f(S,h)
(P,S1-r-SMP{invoke (c,m)-B},D),h
— (0,secfail,0,0),h
if h(r) = ()c,, €1 = lookup(Co, M),
Q.c;.m=PreChecked(f), Co.Cl.m:AlL
1/ = [&] andn’ ¢ P
(R,SMP{priv(m-B},D),h — (P',SMP{B},D),h
if me 4(p) thenP’ = {m} UP elseP’ =P
Figure 2. Transition rules for instructions

(
(
(
(
(

tics are equivalent [1, 3], we choose an eager one, which yields a
simpler proof of the soundness theorem.

We define aJVMsec program to be a top-level invocation of a
method of the current class by the user. To execute a meytbd
with argumentsS at the top level by the user identified by the prin-
cipal pr, the machine state is initialized as follows:

(Pr.SMP{M.entry}.0).h

wherePr = 4(p)NA4(pr). We write— for the reflective transitive
closure of the relation». We define the top level evaluation relation
pT,(0,©,QFMP |vas
pT7C07OaQ F Mp‘U’V
= (0,0,QF (P;,SMP{M.entry},0),h = (0,v,0,0),H

indicating the fact that methadP is executed by the user of prin-
cipal p+ and returns the value

Eh:H <= Domh)=DomH) and
vr € Dom(h) if h(r) = ()c thenc <: H(r)
HEnN:int
HEr:t (if H(r)<:1)
HES:A<= DomS) =DomA)andH |= Si:Ai
for eachi.
E0:1t (foranyt)

F(P.SMP{B})D:t
+<=3,,3A,3M,37 such that

H,C
H,C

CFMP: L,

HES:A,

nce
C,LFNTApP>B:T,
andH,C=D: T

Figure 3. Typing of runtime values

4.2 Type soundness

In order to prove the soundness theorem with respect to the opera-
tional semantics defined above, we first define typing relations for
runtime structures consisting of the following:

e =h:H (heaph has heap typ#l)

e HEv:1 (valuevhas typer underH)

e HES:A (stackShas typeA underH)

e H,CED:1 (dumpD has typer underH and()

Heap typeH is a mapping from heap addresses to types. This is

similar to store type [11] and is needed for the soundness theorem
we shall establish below to scale to heaps containing cyclic struc-
tures [5]. The last relation for dunip means thab accepts a value

of T and resumes the saved computation. Figure 3 shows the def-
initions of these relations. Using these definitions, we define type

correctness of a machine state as follows.

H,C |= (R.SMP{B},D),h:1
<=3,£,3A,3M such that
CHMP: £,
HES:A,
nce,
C,LFN,Ap>B: T, and
H,CED:T

This definition says that for a machine state to be type correct, each
component must be well typed and the Betf privileges statically
deduced by the type system must be contained in thié e&privi-

leges the block has at runtime. We also define the rel&ti@g : &
denoting the fact that dynamic class environm@gt of existing
classes satisfies static class environm@nof existing classes as
follows.

FQ:(C =
for anyc, m, the following conditions hold.

Let PreChecked(f) = Q.c.mandA N t=c.cm For
any S h, if there is someH such that=h:H andH =
S: A then the applicatiorf (S h) computes(h’,v) such
thatl=h : H” andH’ |= v: T for some extensiohl’ of H
using only the privileges ifl .

Let CO,QO_,O be a given sta?ic class environmeqt, a giv_en _dyqamic EU{(t,1)},9 — (E,S
class environment, and a given class specification satisfyidg :
Co. Also letCP be a given class namecsuch that there is soné (EU{t,D},§ = (TEA{(t, D} U[T/1]S
satisfyingCo,© F CP: M. (if K(t) = =)
EuU{(t,c)},S) = ([c/t]E,{(t,c)} U[c/t]S

We can now prove the following. Lef = GU{c=M}, Q= (({if(é<)? ‘K)(t)) (le/E {0y Lle/tS
Qou{c=CP}.

ou{e=C (Bu{(t,t0)},S) = ([to/ta]E. {(ta, 12) } U [t2/1]§)
THEOREM1 (TYPE SOUNDNESS. For any methodMP in CP, (if K(t2) <t K(t2))
ifH7CF(RSMP{B},D),htheneither(lB:returnandD:Q) EU{(t .t S t1 /tolE. { (to.t Ultr /to]1S
or (2) there are somé&, S, M/, p/, B, D/, i, H' such that (({if(;&&B%? 7?(;2()[)1/ 2B Al 1)} V/b]S)

p / o rp! N W X
€008 (RSB} DLI (7S MTHE SO0 8 Se (ED 0

andH’,C+ (P,S,M'P{B'},D'),h for some extensioH’ of H. failure (otherwisg

PROOF This is proved by the case analysis of the first instruction Figure 4. Unification algorithm

of B, using the following simple lemma.[]

. 5 H / .
LEMMA 1. IfH |=v:TandHis an extension dfl thenH' [=v: . A unification algorithmunify accepts a bound environmeft and

a setE of pairs of types, and returns substituti§nhat respect.

The th implies the following desired ty.
© theorem Implies the Toflowing cesired property. Algorithm Unify is given in Figure 4. It is easily checked thatify

COROLLARY 1. Let® be a given class specificatiogy, Qg be a is a unification algorithm if the subclass relatianhas the property
static class environment and a dynamic class environment of exist-that if two classes are incomparable then they have no common
ing classes satisfying Qg : (p; let CP be a class such thaf, O - subclass. The set of JVM classes satisfies this property. However,
CP: 1. Also letpr be the principal of the user. M C 4(p7) for if we extend JAVA-style interfaces, then a more refined algorithm

any[l such thatM . m= A T T theniif pT,Co,©,QF MP | vthenv will become necessary.

IS notsecfail. In what follows, we identifyS with its homomorphic extension

This is a direct consequence of the definition of top-level execution O @ny syntactic structures containing type variables and sequence
and our type soundness theorem. variables.

This result says that a well typed program will never cause security VW& also extend the language of privilege sets to inclsetevari-
violation when executed with the privileges specified in its type. We 2abPlesp as follows.
can therefore safely use a type-checked code without monitoring its o .
f n:=°rP|Pp
resource access at runtime.
P is a (closed) set of privilegesP-p is an open set of privileges
5 Type Inference denoting the set consisting of privilegesfnand those in the set
denoted by set variabje We sometimes writ€ UT to denote the

In JVM, each method is explicitly typed but the privilege Bets element of this language, i.e., lf = P’ thenPUMN = PUF and

not given. In order to use a type system defined in Section 3 we if M =P"-p thenPUM = (PUP')-p. A set variable substitution
need to develop a type inference algorithm. (ranged over by) is a function from a finite set of set variables to

sets.
5.1 The type inference algonthm The role of the type inference algorithm is twofold. It infers a most
general typing usingnify for each method body and to verify that
it satisfies the type specification. It also infers the minimal set of
privileges required to execute each method. To perform the latter,
the algorithm generates a setin€tlusion constraintsof the form
M C I, and then solves the constraint sets to compute the mini-
mal set of privileges. We ugeC as a meta variable for a finite set
e Ai=0[d[TA of inclusion constraints. We say that a set variable substitution
satisfiesPCif ¢(M) C ¢(MN’) foranyM C N’ € PC.

In order to define a type inference algorithm, we extend types and
stack types by introducingype variables(ranged over byt) and
sequence variablgganged over by) respectively as follows.

e T:=t|int|cC

Type variables are bounded by a bound environn#&ntvhich is

a mapping from a finite set of type variables to class names or
X (t) = c indicates that ranges only over subclasses @fand
X (t) = * indicates that has no bound. We writé{ I 1 <: c if

T is a subclass of under bound environmerk. This relation is
given as follows.

Figure 5 shows the main algorithf# C performing these steps us-

ing a sub-algorithmW M for inferring method typing. The main

algorithm takes a static class environmehfor existing classes,

class definitiorCP, and class name and infers the set of method

typesM of the class. It first generates a type skeleton containing

KX +F d<ic (fd<:c a prri]vileg?] s(tjat vargﬁ)gf{for r:eaﬁh method. It th?n infers a type of
. . . each method usin , which returns a set of constrain®C.

K b ot<ce ([if XM <o Its definition is given in Figure 6 WM first sets up a skeleton of

A (type variable)substitution(ranged over byp) is a function from each code block and makes a label environment. It then infers a

a finite subset of type variables to types. We say that a substitutiontype of each code block using another sub-algoritiB, which

S respectsX if for all t in Dom(X), K F S(t) <: K(t). infers a typing of a code block usingnify. Figure 7 gives its defini-

WC(C'{ml = M]’:_)7 ,Mh = Ml?}c) =

0- 0-pn
let M:{ml:Al _p’lTl>"'7rrh:An _F’) Tn}

(if ©.c.my = Aj — T1; for eachi)
PCo={p1CA(p),---,pn EA(p)}
C=cumM
foreachido

P(Cj;- = WM(C', M (m),MP PG_1)
en

¢ = Solve(PGy)

in ¢(M)

Figure 5. Type inference algorithm for classes

wM(C, (b2 1),MP,PC) =

|et {l]_:Bl77|n:Bn}:Mp

Q;entry:n,A.,pDT
B =0i,8,p>T (1<i<n)
L:{|1:$17"'7|n:$n}
50:03 %:0
PCo=PCU{p1 C A(p),---,pn C A(P)}
foreachido

(S, %,PG) = WB(C,5-1(£).51(B),Bi, K 1,PG 1)
Si=S80S8i-1
end

in PG,

Figure 6. Type inference algorithm for methods

tion. After obtaining a constraint set for all the methodsiia/,

WB(C,L,(N,A pr>1),return, X, PC) =
let % = K U{t =}
S= Umfy(%?{(Avté)v(th)})
in (S, %,PC)

‘I/I/EE(C,L,(I—I,A,pl>T),goto(|),i7(,PC) =
let M, A p>1 = L(I)
PC; =PCU{N’ C T}
S = Unify (X, {(A,4'), (1,T')})
in (S, %,PC)

WB(C,L,(N,A pr>T1),acc(n)-B, X,PC) =
let K1 = KU{ty =x,--- ,th =%}
S1= Umfy(?ﬁv {(A7tl Tl tné)})
(527?(27PC,) = WB(C,S]_(L),
51(r|7tn'A7 pI>T)787?G.7PC)
in (S2051, %2, PC)

WB(C,L,(N,A, pr>T),iconst(c)-B, X,PC) =
WB(C, L, (M, int-A, pr>1),B, X, PC)

Wﬁ(C,L, (M,A,p>1),dup-B, X,PC) =
let K4 = KU{t:*}
S1= Unify(%1,{(A,1-3)})
(82, %2,PC1) = WB(C,51(L),
51(n7t’t'67 pl> T)v Ba ?G.v PC)
in ($20581, %,PC1)

WB(C,L,(N,A pr>1),ifeq(l)-B, X,PC) =
let N',A p>1 = L(l)
$1= Unify(X, {(A,int-3)})

the main algorithm solves the constraintsSsjve, which returns a
substitutiond that satisfies>C. The definition ofSolve is given in
Figure 8.

52 = Umfy(K’ {(Sl(A)7A,)7 (51(-[)71—/)})
S3=52051
(82, %1,PC) = WB(C,53(L),
S$3(M, 3, pr>1),B, X,PC)
PG, = PClu{ﬂ’ cng
in (820583, %3,PC)

Note thatP appearing in inclusion constraints is a set not contain-
ing set variable, and expressioRs\ P, andP; UP, used in this
algorithm are ordinary set-theoretic operations. In contrast to the
constrained type system of [13], introduction of expressions corre- WB(C,L,(M,A, p>1),new(c) B, X,PC) =
sponding to these set operations in set inclusion constraints is not WB(C, L,(N,cA, pr>1),B, K, PC)
required in our formalism due to the simpler naturgwflseccom-
pared to the lambda calculus. WB(C, L,(M,A pr>1),invoke (c,m)-B, X,PC) =
let A - 17 =0.cm
1= KU{t1 =4£(), - th=4A(n),tp =c}
(if o] = n)

S1 = Unify(%, {(tz- ... tatg-8,A)}

{C1,"*+,Cn} = lookupAll(c,m)

LE c.c.m
which writes a string to a file and has typer-str =~ — ~ void. PCL=PCU{Mi CN} (for eachi)

- ~ - (82, %2,PG) = WB(C, 81(L),
;Ii'lrét.a following program reads a file and writes the contents to other S1(M,7-3>1),B, %, PCy)

in ($0581,%,PG)

5.2 Example of type inference

We show how the algorithm computes typing using a simple exam-
ple. LetwriteFile be a native method defined in the cld€x
{FWrite}

class SomeClass {

updateFoo() : str,str -> str { WB(C,L,(N,A, pr>1),priv(m B, X, PC) =
new(I0) let M’ =if me 4(p) then{m} UN elsen
sconst ("/protect/foo.txt") in WB(C,L,(N',A,pr>1),B, K, PC)
new(SafeClass)

invoke (SafeClass,readPublicFile)
invoke (I0,writeFile)

Figure 7. Type inference algorithm for blocks

Solve(PC) =

if isSolved(s) for all s€ PC then¢
whereVp € PC.¢(p) =0

else let{MN; C My} UPCy =PC

such thaisSolved (M1 C M) is false
(¢1,|_|€L C |_|/2) = Solvel({M1 CMNy})

2= Solve({M} M3} U$1(PC))
in ¢2001

Solvel(P; C P;) = Failure
Solvel(PLC Py-p) =letP3 =P\ P
o =[Psp'/p] (p'isafresh
in (¢,P1C (P2UPs)-ps3)
Solvel(Py-p C P») = Failure
SO|Vel(P1~p1 C P2~p2) =letP; = Pj_\Pz
¢ = [Psp3/p2] (psisaflesh
in (¢,P1 C (P2UP3)-p3)

isSolved(PLCEP) =P, C P,
isSolved(PLC Po-p) =P C P,
isSolved(PL-pCP) =P, C P,
isSolved(Py-p1 C Po-p2) =P C P>

Figure 8. Algorithm Solve

Assume thaBomeClass is owned by principasomebodynd 4 is
set up such thatwrite € 4(somebody.

For this class, W C performs the following computation. It first

creates method type®/ = {updateFoo = str- str Ue void}
and the inclusion constraintBCy = {p C A(somebody}. It
then obtains inclusion constrain®C = {FWrite C p,0 C p,p C
A4(somebody} by invoking the functionWa/. Next, it calls
Solve for PC. Solve first obtains the substitutiofFwrite-p’/p]
fromFiwrite C p and transform®Cto {FWrite C Fiirite-p/,0 C
FWrite-p/,FWrite-p’ C FWrite}. It then returns the substitution
¢ = [FWrite-p’/p,0/p']. Finally, W appliesp to M and returns

FWrit
method typedupdateFoo = str-str {FWrite) void}.

The constraintsFWrite C p and 0 C p in PC represent the
necessary conditions for invoking the methediteFile and
readFooFile respectively. The substitutiap satisfies these con-
straints ang C 4(somebody. If FWrite ¢ 4(somebody, PC has
no solution, andsolve reports failure.

5.3 Correctness of type inference

only consider the second aspect which has significant impact on the
usefulness of our method. The interested reader is referred to [5]
which deals with type inference with polymorphic subroutines.

The soundness of the type inference algorithm is established by the
combination of soundness results of the components of the type
inference algorithm.

We first verify that the unification algorithm correctly computes a
unifier.

LEMMA 2. LetE be a set of equations under a bound environment
K. If Unify(E, K) = S thenSrespectsk andSis a unifier forE.

This is verified by simple inspection of each transformation rule.
Using this property, we prove the soundnes13f3, which is the
main lemma for establishing the soundness of the type inference
algorithm.

LEMMA 3. If WB(C,L,(N,A pr>1),B, %,PC) = (S, %’,PC)
then for all Sy, do such thatdg ground for PC, ¢q satisfies
PC, S ground for ' and Sp respects¥k, the following is deriv-
able: ¢o(So(S(C))), Po(So(S(L))) F do(M),So(S(A)),p >B:
So(S(1)).

PrRoOF This is proved by induction oB. The proof proceeds by
cases in terms of the first instruction®f Here we only show some
of them.

CaseB = return. By the definition of WB, X/ = XU {t = x},
S = Unify(%1,{(A,t-3),(t,1)}), andPC = PC. Let Sp, §o be such
that ¢g ground forPC, ¢ satisfiesPC’, So ground for X’ and So
respectsk. By Lemma 2,51(A) = $1(t-0) and $1(1) = S1(t).
Then by the typing rule, we hauy(So 0 S51(C)), $o(Soo S1(L))
F (M), SpoS1(A), pr> B: SpoS51(T).

CaseB = priv(m)-B;. We only show the case fate 4(p). The
other case is similar. By the definition 68, N’ = {m} UM and
(S, %',PC') = WB(C,L,(N',A, pr>1),B, X, PC). Let bedo,So
such thatdg ground forPC', ¢ satisfiesPC, So ground for &,
and Sp respectsX. By the induction hypothesigho(So o S(C)),
d0(So0S(L)) F do(M'),So0S5(B), p > B : Soo.5(1). By the def-
inition of the type systemo(So0.5(C)), do(SooS(L)) F do(M),
SooS(A), pr>B:SpoS(1).

CaseB = invoke(c,m)-B;. By the definition of W3, A —
T =0cm % = KXU{tyg =41, ,th =4}, 51 =
unify (%, {(t1-- .. ta-to - 8,A)}, {c1,---,Cn} = lookupAll(c,m),

N v = com PCL=PCUIM C N}, (S, %,PC) =

Wg(Sl(C),51(L),51(A7T/'6, p>T, BL 7(17 PCl): and § = 52 o
S1, K = %3,PC = PC,. Let be¢g,So such thatdy ground for
PG, ¢ satisfiesPCy, Sp ground for X3, and.Sp respectski. By
induction hypothesisho(Soo S(C)), Po(SooS(L)) F do(MM),Sp 0

For the type inference algorithm just defined to serve as a static S(T'-3),p >B : Sp0.5(1). By Lemma 2,5 (t1-,...,-8) = S1(8).
verification system for code level access control, it must be sound Then by the typing rulego(So o S(C)), do(So o S(L)) F do(M),

with respect to the type system dfMses Which we shall establish
in this section.

SooS(A), pr> B:SooS(t). Apparently,So respectsX and $o
satisfiePC. [

Another customary criteria of correctness of a type inference algo- WWe next show the soundness of the inference algoriittf/ for
rithm is its completeness. For our type system, this has two aspectsmethod.

One is on typings of methods of the foln— 1 and the other is on

accuracy of inferred privilege sef$. The first aspect is sensitive

to the language constructs. Sind&Msec only contains explicitly

LEMMA 4. If WHM(C, (A1), MP, PC) = PC' then(|= MP:

A ¢@> T forall ¢¢ thatis ground folPC and satisfie$C.

typed methods and does not contain those mechanisms such as sub-

routines and object initialization which have subtle interaction with Since WM simply calls W3 for each block in the method, this
type inference, the first aspect does not involve much significant follows from Lemma 3 with the following additional property of
issues. For this reason, in this paper, we omit its discussion and WB: if WB(---, K,---) = (5, X') thens respectsk (underk’).

The following lemma shows th&olve computes the minimal so- set of all possible objectw is ordered by set inclusion with the

lution of a given constraint set. largest element. Koved et. al. [9] have used a similar mechanism in
.) their data flow analysis.

LEMMA 5. 1. Solve terminates on all inputs.

The type system can be extended to incorporate these refined notion

2. If Solve(PC) = ¢ then¢ satisfiesPC. of privileges. We assume that the language contains string values
o of typestr with a set of operations such asonst (s). The set of
3. If ¢ satisfiesPC then Solve(PC) = ¢’ such that for eaclp types is extended as follows.

occurring inPC, ¢'(p) C ¢(p).
T:=int|C|str(v)

PROOF The first property follows from the facts th&blve mono-
tonically increases the size of constraints and that there are only
finitely many privilege atoms. The second and the third properties
can then be shown by induction on the number of recursive calls of

str(Vv) represents the subset of strings denoted.tyor example,
str({s}) represents the singleton set ard (L) represents the set
of all strings. For this refined string types, the subsumption relation
is extended to include the relation generated by the rule:

Solve. [
Vi Vo
By combining Lemma 4 and Lemma 5, we can show the following. str(vy) <:str(vp)
THEOREM2 (SOUNDNESS OFW(). If W(C((o,CP,c) = M The type system is refined to keep track of possible runtime values
then(,© FCP: 1. of stack entries. For example, the typing ruledepbnst instruction

is given as follows.
The following minimality result with respect to privilege set follows

from the definition of the algorithni?’8 and Lemma 5. N,str({s})Ap>B:1

IM,A;p >sconst(s)-B: 1

THEOREM 3. If W(C((,CP,c) = M and (,© F CP: M’ such
that M’ is equal toM except for privilege set annotations, then
each privilege sefl in 2 is included in the corresponding’ in

!

The possible set of target objects) in the above example) will
be promoted through the subsumption relation above when control
flow merges.

. . . The another necessary refinement is to consider a method as poly-
6 Extensions and discussions morphic with respect to the object set variabteappearing in its
)] typing, and to give a polymorphic type in the style of ML’s let-
The calculus we have considered so far can be extended in severaholymorphism. Since method is not a first-class object, this treat-
ways to include practically useful features. This section discusses ment is compatible with our type system. We can adopt the tech-

some of them. nique of introducing let-polymorphism in the JVM we have devel-
oped [5] for JVM subroutines. For example, a method which re-

6.1 Inclusion of target objects ceives a file name and opens the file is given the following poly-
morphic type.

One simplification we have made in the previous development is (FOpen(a)}

that a privilegertis an atom, representing some privileged opera- va.(str(a) — " Void)

tion. In the Java access control architecture, a permission consistiN
of a target and an action to be performed on the target. This allows
finer access control.

hen this method is invoked with a parametgeFOpen (s) privi-
lege is generated through ML-style type instantiation.

With these refinements, the type systendwfiseccan be extended
to incorporate possible target objects of privileged accesses. Some
more efforts are needed to extend the type inference algorithm.

One way to incorporate this feature is to refine a privilege be

a term of the fornF (v) whereF denotes an operation name as be-
fore andv represents the target object. Integration of those privilege
terms in our type system requires several refinements. Firstly, since .
v denotes a possible runtime value which the static type system can6.2 ~ Adding other JVM features

only approximate, we need to introduce a type attribute denoting a

set of possible values. Secondly, in order to propagate this attribute To develop a static verification system for the JVM bytecode lan-
information across method invocation boundary, some mechanismguage based on our method, we must extend our type system to
for abstraction over those sets of possible values is necessary. Ainclude various other instructions of JVM. Since the type system
complete access control system including these features is beyonds based on the logical presentation of the JVM bytecode language
the scope of the current paper. In the following, we describe the [5], we believe that the set of instructions considered there can be
necessary refinement to the type system to incorporate these feaadded without much difficulty. These include instructions for lo-

tures. cal variable access, and for object field manipulation. Furthermore,
the type system developed in [5] supports polymorphic subroutines,
The syntax of the refined set of privileges is given below whose treatment is orthogonal to typing mechanism for access con-
trol presented here. So, our type system should extend smoothly to
moi= F(V) JVM subroutines without any additional machinery.
v = {s,...,s}|a|vuv]|L

In Java,checkPermission can be used to protect object fields.
This feature is easily added by extending field types to include priv-
ilege annotation similar to method types as in

sis an address of an object represented by a string such as an URL
and{s,...,sn} denotes a set of (possible) target objects identified
by the address,,...,s,. O is a variable ranging over sets of target
objects, and;; UV, denotes the union ofy andv,. L denotes the {f1:(M1,712),..., fn: (Mn,Tn)}

and define a typing rule for field manipulation as follows.

ntvAp>B:T
M,co-A, p >getfield(c,f)-B: 1
(if co<:c, (N',7) =0.c.f andM’ C N)

The rule forputfiled can similarly be defined.

6.3 Implementation issues
In order to develop a practical access control system based on our
static method, we have to consider a number of implementation
issues. We briefly discuss some of them below.

Compatibility with existing programsAs we have explained ear-
lier, the current practice in Java access control is to dynamically in-
voking static methodsheckPermission anddoPrivileged sup-

plied as a JDK security package. A static access control system
should work for existing programs using these methods. One ap-
proach is to replace these two methods with those whose intended
effect is represented by their types but whose runtime effect is nil,
and to considedoPrivileged invocation agpriv instruction.

Relationship with JVM runtime systein.JVM, a bytecode verifier
checks the type consistency of a class file. A security verification
is static type-checking similar to bytecode verification, so it is de-
sirable to unite these two verification systems. Since our security
verification system is based on a type theory [5] for bytecode veri-
fication, it is not hard to develop a static system which checks type
consistency and security violation simultaneously. However, since
the JVM bytecode verifier is closely related to a complicated fea-
ture such a dynamic class loading, development of such a integrated
system requires us to modify a major part of JVM runtime system.
A simpler strategy is to check all the class files in a program inde-
pendently of JVM before executing the program. Adopting this ap-
proach, we plan to design a verifier as a stand alone system which
reads an access policy file, a target class file, and infers types of
methods in the class, and reports a security violation if it is detected.

Specifying privilege requirementé/e also need to declare the priv-
ilege set for each native method. One possible approach is to di-

rectly write it in a class file which declares a native method. An- [10]

other approach is to describe it in an external file corresponding to
the class file. In this approach, a coding technique such as digital

signature used in the current JDK to sign a code may be required t°[11]

guarantee credibility of the file.

7 Conclusions

We have developed a static access control system for the JVM byte-[13]

code language. We have extended our earlier work of presenting the
JVM code language as a typed term calculus to incorporate privi-

lege attributes in a method type. We have then defined an opera-14]

tional semantics that simulates JDK style runtime stack inspection,
and have shown that the type system is sound with respect to the
operational semantics. This result guarantees that we can safely
omit costly runtime stack inspection. All the possible access vi-
olation is statically detected. Another advantage of our approach
is that the user can verify whether a code conforms to a given ac-
cess policy or nor directly without relying on explicit insertion of

checkPermision. This approach can therefore be used as a se- [16]

curity verification system for foreign and possibly malicious code.
For this type system, we have develops a type inference algorithm,
which achieves automatic verification for code-level access control.

(12]

(15]

Acknowledgments

The authors would like to thank Yasuharu Oda, who have helped in
implementing the type inference algorithm and testing our methods
through examples. These results have been useful for better under-
standing our framework. The authors also thank the anonymous

referees for helpful comments.

8 References

[1] A. Banerjee and D. Naumann. A simple semantics and static
analysis for java security. CS Report Al-068-85, Stevens In-
stitute of Technology, 2001.

[2] A. Banerjee and D.A. Naumann. Representation indepen-
dence, confinement and access controlPioc. ACM POPL
Symposiumpages 166-177, 2002.

[3] C.Fournetand A. Gordon. Stack inspection: Theory and vari-
ants. InProc. ACM Symposium on Principles of Programming
Languagespages 307-318, 2002.

[4] F.Pottier, C.Skalka, and S.Smith. A systematic approach to
static access control. lim Proc. of the 10th European Sym-
posium on Programming (ESOP’01) Springer LNCS 2028

pages 30-45, 2001.

[5] T Higuchi and A Ohori. Java bytecode as a typed term cal-
culus. InProceedings of the conference on Principles and
practice of declarative programming002.

[6] A Ohori. The logical abstract machine: a Curry-Howard iso-
morphism for machine code. Proceedings of International
Symposium on Functional and Logic Programmih§99.

[7] Gunter Karjoth. An operational semantics of Java 2 access
control. InIn Proc. IEEE Computer Security Foundations
Workshop (CSFW’0Qpages 224-232, 2000.

L.Gong. Inside JavdM 2 Platform SecurityAddison-Wesley,
1999.

L. Koved, M. Pistoia, and A. Kershenbaum. Access Rights
Analysis for Java. IiProc. ACM OOPSLA Conferengeages
359-372, 2002.

U. Erlingsson and F. Shneider. IRM enforcement of Java stack
inspection. InProc. IEEE Symposium on Security and Pri-
vacy, pages 246-255, 2000.

X. Leroy. Polymorphic typing of an algorithmic language
PhD thesis, University of Paris VII, 1992.

T. Lindholm and F. Yellin.The Java virtual machine specifi-
cation Addison Wesley, second edition edition, 1999.

(8]
9]

Christian Skalka and Scott Smith. Static enforcement of se-
curity with types. InProc. International Conference on Func-
tional Programming(ICFP’00)pages 34-45, 2000.

R. Stata and M. Abadi. A type system for Java bytecode sub-
routines. InProc. ACM Symposium on Principles of Program-
ming Languagegages 149-160, 1998.

Dan S.Wallach, Andrew W.Appel, and Edrard W.Felten.
Safkasi:a security mechanism for language-based systems.
ACM Transactions on Software Engineering and Methodol-
ogy, 9:341-378, 2000.

D.S. Wallach and E.W. Felten. Understanding Java stack in-
spection. InProc. IEEE Symposium on Security and Privacy
pages 52-63, 1998.

