
Introduction to Abstraction
and Static Analysis

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Escuela I / 1

Outline

1. What is abstraction?

2. Abstraction and concretization:

Galois-connection-based abstract interpretation

3. Examples of static analyses

4. Logics and static analysis

Escuela I / 2

An abstraction is a property from some domain

brown
(color)

.

Escuela I / 3

An abstraction is a property (cont.)

.

brown
(color)

heavy
(weight)

Escuela I / 4

An abstraction is a property (cont.)

brown (color)

heavy (weight)

4000..6000 kg..

Escuela I / 5

An abstraction is a property (concl.)

.

brown(color)

heavy (weight)

4000..6000 kg.

elephant (species)

Escuela I / 6

Value abstractions are classic to computing

rational

int

nonnegative

0..9

even−int2 ∋
{ 2 }

> 1

{ 2, 5 }

...

...

All the properties listed on the right are abstractions of 2; the upwards

lines denote v, a loss of precision.

Escuela I / 7

Abstract values name sets of concrete values

{ ...,−1,0,1,... }

{ −1,2 }

{ 0,1,...,9 }

{ 2 }
{ }

{ 2,5 }
{ t,f }

{ t }
{ f }

int

0..9

nonneg

concrete value sets

γ abstract values

{ 2,5 }

{ 0,1,2,... }
...

...

{ t,f,2 }

AllData

Function γ maps each abstract value to the set of concrete values it

represents.

Escuela I / 8

Sets of concrete values are abstracted
imprecisely

empty

negative
nonneg

bool
int

any

AllData

{ ...,−1,0,1,... }

{ −1,2 }

{ 0,1,...,9 }

{ 2 }
{ }

{ 2,5 }

{ t,f,2 }

{ t,f }

{ t }
{ f }

α

concrete
data

abstract properties
of interest

{ 0,1,2,... }

...

...

Function α maps each set to the abstract value that best describes it.

Escuela I / 9

Abstraction followed by concretization
demonstrates that α is sound but not exact

empty

negative
nonneg

bool
int

any

αγ

AllData

{ ...,−1,0,1,... }

{ −1,2 }

{ 0,1,...,9 }

{ 2 }
{ }

{ 2,5 }

{ t,f,2 }

{ t,f }

{ t }
{ f }

{ 0,1,2,... }
...

...

Nonetheless, the α given here is as precise as it possibly can be,
given the abstract value domain and γ.

Escuela I / 10

A Galois connection formalizes the situation

α (S)

a

P(ConcreteData)

UI

γ

S

iff

AbstractProperties
(a)

That is, for all S ∈ P(ConcreteData), a ∈ AbstractProperties,

S ⊆ γ(a) iff α(S) v a

When α and γ are monotone, this is equivalent to

S ⊆ γ ◦ α(S) and α ◦ γ(a) v a

For practical reasons, the second inequality is usually restricted to
α ◦ γ(a) = a, meaning that all abstract properties are “exact.”

Escuela I / 11

Perhaps the oldest application of abstract
interpretation is to data-type checking

int x;

int[] a = new int[10];

...

a[0] = x + 2; // Whatever x’s run-time value might

... // be, we know it is an int.

a[1] = (!x); // Erroneous --- an int cannot be

// negated, nor can a bool be

// saved in an int cell.

Escuela I / 12

But compilers employ imprecise abstractions

int x;

int[] a = new int[10];

... // Because x’s value is described

a[2 * x] = 3; // imprecisely, we cannot decide

// whether 2 * x falls in the

// interval, [0,9].

We might address array-indexing calculation by

1. making the abstraction more precise, e.g., declaring x with the
abstract value (“data type”) [0, 9];

2. computing a “symbolic execution” of the program with the abstract
values

These extensions underlie data-¤ow analyses and many
sophisticated program analysis techniques.

Escuela I / 13

A starting point: Trace-based operational
semantics

p0 :
p1 :

p2 :
p3 :

x = x div 2;
}
x = 4 * x;
exit

while isEven(x) {

The operational semantics updates a program-point, storage-cell pair,
pp, x, using these four transition rules:

p0, 2n −→ p1, 2n

p0, 2n+ 1 −→ p2, 2n+ 1

p1, n −→ p0, n/2

p2, n −→ p3, 4n

A program’s operational semantics is written as a trace:

p0, 12 −→ p1, 12 −→ p0, 6 −→ p1, 6 −→ p0, 3 −→ p2, 3 −→ p3, 12

Escuela I / 14

We can abstractly interpret, say, for parity

p0 :
p1 :

p2 :
p3 :

x = x div 2;
}
x = 4 * x;
exit

while isEven(x) { p0, even −→ p1, even

p0, odd −→ p2, odd

p1, even −→ p0, even

p1, even −→ p0, odd

p2, a −→ p3, even

Two trace trees cover the full range of inputs:

p0, odd
p2, odd
p3, even

p0, even
p1, even

p0, odd
p2, odd
p3, even

.

Escuela I / 15

The interpretation of the program’s semantics with the abstract values
is an abstract interpretation:

p0, odd
p2, odd
p3, even

p0, even
p1, even

p0, odd
p2, odd
p3, even

.

We conclude that

¨ if the program terminates, x is even-valued

¨ if the input is odd-valued, the loop body, p1, will not be entered

Due to the loss of precision, we can not decide termination for almost
all the even-valued inputs. (Indeed, only 0 causes nontermination.)

Escuela I / 16

The underlying abstract-interpretation semantics

even odd

Parity
γ : Parity → P(Int)

γ(even) = {...,−2, 0, 2, ...}

γ(odd) = {...,−1, 1, 3, ...}

γ(>) = Int, γ(⊥) = { }

α : P(Int) → Parity

α(S) = t{β(v)|v ∈ S}, where β(2n) = even and β(2n+ 1) = odd

The abstract transition rules are synthesized from the orginals:

pi, a −→ pj, α(v ′), if v ∈ γ(a) and pi, v −→ pj, v
′

This recipe ensures that every transition in the original, “concrete”

semantics is simulated by one in the abstract semantics.

Escuela I / 17

To elaborate, remember that an abstract state, pi, a, represents

(abstracts) the set of concrete states,

γState(pi, a) = {pi, c | c ∈ γ(a)}

So, if some pi, c in the above set can transit to pj, c
′, then its

abstraction must make a similar move:

pi, c −→ pj, c
′ implies pi, a −→ pj, a

′, where pj, c
′ ∈ γState(pj, a

′).

Thus, the abstract semantics simulates all computation traces of the

concrete semantics (and due to imprecision, produces more traces

than are concretely possible).

Given a Galois connection, α, γ, we synthesize the most precise

abstract semantics that simulates the concrete one as de£ned on the

previous slide.

Escuela I / 18

Abstract interpretation underlies most static
analyses

A static analysis of a program is a sound, £nite, and approximate

calculation of the program’s executions. The trace trees we just

generated for the loop program is an example of a static analysis.

We will survey static analyses for

¨ data-type inference

¨ code improvement

¨ debugging

¨ assertion synthesis and program proving

¨ model-checking temporal logic formulas

Escuela I / 19

Data-type compatibility inference

p1 :
p2 :

p3 :

p0 :

p4 :

x = (x > 0);
}

while ... {

x = x % 2;

x = 4;

exit

Object { }

Rational { +, −, > }

Int { +, −, >, % }

Bool { &&, || }

Class Hierarchy

p0, τ −→ p1, Int

p1, τ −→ p2, τ

p1, τ −→ p3, τ

p2, τ −→ p1, Bool, if τ v Rational

p3, Int −→ p4, Int

p0, Object

p1, Int

p3, Int

p4, Int

p2, Int

p1, Bool

p3, Boolp2, Bool

error error

Abstract trace:

Escuela I / 20

Constant propagation analysis

p1 :
p2 :

p3 :

p0 :

x = x + 1;
}

while (x < y + z) {
x = 1; y = 2;

exit

0 1−1 2 ...
var holds

var holds

...

Const
multiple values

this value only

(dead code)
var holds no value

where m+ n is interpreted

k1 + k2 −→ sum(k1, k2),

> 6= ki 6= ⊥, i ∈ 1..2

>+ k −→ >

k+> −→ >

Let 〈u, v,w〉 abbreviate

〈x : u, y : v, z : w〉

p0, 〈>,>,>〉
p1, 〈1, 2,>〉

p2, 〈1, 2,>〉
p1, 〈2, 2,>〉

p2, 〈2, 2,>〉
p1, 〈3, 2,>〉

p3, 〈1, 2,>〉

p3, 〈2, 2,>〉

...
...

Abstract trace:

Escuela I / 21

An acceleration is needed for £nite convergence

p0, 〈>,>,>〉
p1, 〈1, 2,>〉

p2, 〈1, 2,>〉
p1, 〈2, 2,>〉 t 〈1, 2,>〉

= p1, 〈>, 2,>〉

p3, 〈1, 2,>〉

p3, 〈>, 2,>〉

p2, 〈>, 2,>〉

p0

p1 p3

, ,

1,2,
2,2,

p2

1,2,

1,2,
,2,

,2,

,2,

Drawn as a data−flow analysis:

The analysis tells us to replace y at p1 by 2:

p1 :
p2 :

p3 :

p0 :

}
exit

x = x + 1;
while (x < y + z) {
x = 1; y = 2;

2

Escuela I / 22

Array bounds (pre)checking uses intervals

Integer variables receive values from the interval domain,

I = {[i, j] | i, j ∈ Int ∪ {−∞,+∞}}.

We de£ne [a, b] t [a ′, b ′] = [min(a, a ′),max(b, b ′)].

oo[− ,9]
oo[− ,9]

i = [0,0] = [0,0]
i = [0,0] [1,1] = [0,1]

i = [1,1]
i = [1,1] [2,2] = [1,2]

1p

p2

... a[i] ...
while (i < 10) {
i = 0;
int a = new int[10];

i = i + 1;
}

i = [0,0]

...

...

At convergence, i’s ranges are

at p1 : [0..9]

at p2 : [1..10]

at loop exit : [1..10] u [10, +∞] = [10, 10]

Escuela I / 23

Examples of relations between variables’ values

These Figures are from Abstract Interpretation: Achievements and
Perspectives by Patrick Cousot, Proc. SSGRR 2000.

Escuela I / 24

Program veri£cation via predicate abstraction

We wish to prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

We choose three predicates,

φ1 = x < y

φ2 = z ≥ x

φ2 = z ≥ y

and compute their values at the program’s points. The predicates’

values come from the domain, {t, f, ?}. (Read ? as t∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.

Escuela I / 25

When a goal is undecided, re£nement is
necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we must re£ne the state by adding a needed

auxiliary predicate: wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1.

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉

because x ≥ i implies xnew ≥ y

because x 6≥ y and x ≥ i
imply y > i implies xnew ≥ i

Escuela I / 26

But incremental predicate re£nement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while i != 0 {

x = x + 1; i = i − 1;

}
goal: x = n

We £nd that the initial predicate set, P0 ≡ {i = 0, x = n}, does not
validate the loop body.

The £rst re£nement suggests we addP1 ≡ {i = 1, x = n− 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Re£nement stage j adds predicates Pj ≡ {i = j, x = n− j}; the
re£nement process continues forever!

The loop invariant is x = n − i :-)

Escuela I / 27

An abstract domain de£nes a “logic”

For abstract domain A, a ∈ A is a “property/predicate,” and γ(a) ⊆ C

de£nes a subset of concrete states that make a “true.” For s ∈ C,

s has a , written s |=A a, iff s ∈ γ(a) iff α{s} v a

Example: We might abstract Nat by EqZero:

{0,1,2,...}

{ }

{3}
{0} ...

...
{1,2,3,...}

zero zero

EqZero

P(Nat)

We have, for example, that 3 |= ¬zero; we also have that 3 |= >; and

we have that 3 |= ¬zero u >.

Escuela I / 28

In one sense, every analysis based on

abstract interpretation is a “predicate ab-

straction.” But the “logic” is weak — it

supports conjunction (u) but not neces-

sarily disjunction (t).

0 1−1 2

Const

For Const, we have that

2 |=Const 2 u > iff 2 |=Const 2 and 2 |=Const >.

In general, n |=Const a u a
′ iff n |=Const a and n |=Const a

′

But Const does not support disjunction: 2 |=Const >, and

> = 2 t 3 = 3 t 4 = 2 t 3 t 4, etc.

Hence 2 |=Const 3 t 4, but this does not imply that 2 |=Const 3 or

2 |=Const 4 !

Escuela I / 29

Abstract traces can be model checked

p0 :

p2 :

p1 :
while x > 0 {

sleep forever

}

use resource

x = x + 1;

0 :q

q1 :
x = 0;

use
resource
forever

p1, q0, ¬zero p0, q1, zero

p1, q1, zero

p0, q1, ¬zero

p1, q1, ¬zero

p0, q0, ¬zero

p2, q1, zero

Starting from p0, q0, k, for k > 0, will every execution
“Generally/Globally” avoid resource misuse ?

p0, q0, k |= G ¬(p1 ∧ q1) ?

Will every execution reach a Future state where x is permanently
(Generally/Globally) zero?

p0, q0, k |= FG zero ?

The logical operators, F and G, describe reachability properties in the
temporal logic, LTL.

Escuela I / 30

A state, s0, names the set of traces that begin with it. An LTL property,

φ, describes a pattern of states in a trace.

s0|=φ means that all traces, s0 → s1 → · · ·, contain pattern φ.

MiniLTL: φ ::= a | Gφ | Fφ Semantics: [[φ]] ⊆ P(Trace)

[[a]] = {π | π0 |=A a}

[[Gφ]] = {π | ∀i ≥ 0, π ↓ i ∈ [[φ]]}

[[Fφ]] = {π | ∃i ≥ 0, π ↓ i ∈ [[φ]]}

where, for π = s0 → s1 → · · ·, let π0=s0 and π ↓ i=si → si+1 → · · ·.

There is a Galois connection, (P(Trace),⊆) ↔ (P(MiniLTL),⊇),

where t = ∩ in P(MiniLTL):

γ(P) =
⋂

{[[φ]] | φ ∈ P} – the traces that have all the properties in P

α(S) = {φ | S ⊆ [[φ]]} – properties held by all traces in S

Escuela I / 31

But this is just the beginning of a long story about the relationship of

abstract interpretation to temporal-logic model checking!

Escuela I / 32

Every concrete value is the conjunction of its
abstractions (its “abstract-interpretation DNA”)

= elephantspecies ∧ browncolor ∧ heavyweight

∧ 4000..6000kgweight ∧ · · ·

There is even a pattern of Galois connection for this:

γ : AllPossibleProperties → P(RealWorldObjects)

γ(p) = {c ∈ RealWorldObjects | c has property p}

β : RealWorldObjects → AllPossibleProperties

β(c) = u{p ∈ AllPossibleProperties | c ∈ γ(p)}

α : P(RealWorldObjects) → AllPossibleProperties

α(S) = t{β(s) | s ∈ S}

Escuela I / 33

References

¨ The papers of Patrick and Radhia Cousot (www.di.ens.fr/~cousot), including

1. Abstract interpretation: a uni£ed lattice model for static analysis of programs
by construction or approximation of £xpoints. ACM POPL 1977.

2. Systematic design of program analysis frameworks. ACM POPL, 1979.

3. Abstract interpretation: achievements and perspectives. Proc. SSGRR
2000.

¨ Neil Jones and Flemming Nielson. Abstract Interpretation: a Semantics-Based
Tool for Program Analysis. In Handbook of Logic in Computer Science, Vol. 4,
Oxford University Press, 1994.

¨ Hanne Nielson, Flemming Nielson, and Chris Hankin. Principles of Program
Analysis. Springer 1999.

¨ A few of my papers, found at www.cis.ksu.edu/~schmidt/papers:

1. Trace-Based Abstract Interpretation of Operational Semantics. J. Lisp and
Symbolic Computation 10-3 (1998).

2. Data-¤ow analysis is model checking of abstract interpretations. ACM POPL
1998.

Escuela I / 34

