Introduction to Abstraction
and Static Analysis

David Schmidt
Kansas State University

Wwww.cis.ksu.edu/ “schmidt

Outline

1. What iIs abstraction?

2. Abstraction and concretization:
Galois-connection-based abstract interpretation

3. Examples of static analyses

4. Logics and static analysis

An abstraction is a property from some domain

= prown
(color)

An abstraction Is a property (cont.)

= prown
(color)

\ heavy

(weight)

An abstraction Is a property (cont.)

= Pprown (color)

\

heavy (weight)

l

4000..6000 kg.

An abstraction Is a property (concl.)

. . elephant species)

— brown(CoI or)

heavy (weight)
L]

4000..6000 kg.

Value abstractions are classic to computing

rational
/ int
2 even-int nonnegative
/ \
\ / (2,5)
{ 2}

All the properties listed on the right are abstractions of 2; the upwards
lines denote C, a loss of precision.

Abstract values name sets of concrete values

s abstract values
{ y 15051|5'" T Int
(01,2 |
) nonneg

{0,1,...,9 -

N 0.9
{ 2! RN

(-12) / {25]
{2}

concrete value set

Function y maps each abstract value to the set of concrete values it
represents.

Sets of concrete values are abstracted
Imprecisely

concrete .- AllData - T
data .- \
{-.-,_170515--- e ,/,”:/,— = any
S e e
01,9} - ;' /" \ _, bool
{ \} ; ; negatlvg/\7
] . __---T77 ™>nonneg
{-1,2) |

of interest

Function « maps each set to the abstract value that best describes it.

Abstraction followed by concretization
demonstrates that « I1Is sound but not exact

l' { lll,_1, , ,

\

\

\

! \
\
’ \
‘ .
’ .
’ .
.
N
N
~
N

Nonetheless, the o given here is as precise as it possibly can be,
given the abstract value domain and .

A Galois connection formalizes the situation

P(Cl,on’c”retéDa\t?) AbstractProperties
CY(a) <= R
u iUl

That is, for all S € P(ConcreteData), a € AbstractProperties,
SCvy(a)iff x(S)E a
When « and y are monotone, this is equivalent to
SCyoux(S) and woxovy(a)T a

For practical reasons, the second inequality is usually restricted to
x ovy(a) = a, meaning that all abstract properties are “exact.”

Perhaps the oldest application of abstract
Interpretation is to data-type checking

int x;
int[] a

al0]

all]

= new int[10];

X + 2;

(1x);

// Whatever x’s run-time value might
// be, we know it is an int.

// Erroneous --- an int cannot be
// negated, nor can a bool be

// saved in an int cell.

But compilers employ imprecise abstractions

int x;
int[] a = new int[10];
.. // Because x’s value is described
al2 * x] = 3; // imprecisely, we cannot decide
// whether 2 * x falls in the
// interval, [0,9].

We might address array-indexing calculation by

1. making the abstraction more precise, e.g., declaring x with the
abstract value (“data type”) [0, 9];

2. computing a “symbolic execution” of the program with the abstract
values

These extensions underlie data-cow analyses and many
sophisticated program analysis techniques.

A starting point: Trace-based operational
semantics

y: while isEven(x) {
o X = x div 2;

}
D! X =4 * X;
P exit

The operational semantics updates a program-point, storage-cell pair,
PP, X, using these four transition rules:

Po,2n — p1,2n p1, N — po,n/2

po,2n+1 — p2,2n+ 1 p2,m — p3,4n
A program’s operational semantics is written as a trace:

po, 12 — p1,12 — po,6 — P1,6 — po,3 — P2,3 — p3, 12

We can abstractly interpret, say, for parity

Rp: while isEven(x) { Po, €VvENn — p1, even
P x =xdiv 2
) Po,odd — p,,0dd
B X =4 * X
0y exit pP1,even — po, even

P1,even — po,odd

p2,a — P3, even

Two trace trees cover the full range of inputs:

(\ ¢ ¢
Po, even Do, 0dd

p1, even p,,0dd
\ D3, even
Po, 0dd
P2, odd

p3, even

The interpretation of the program’s semantics with the abstract values
IS an abstract interpretation:

O ¢
Po, even po,0dd

p1, even p,, 0dd
\ D3, even
Po, 0dd
P2, odd
D3, even

We conclude that

¢ if the program terminates, x Is even-valued

¢ if the input is odd-valued, the loop body, p4, will not be entered

Due to the loss of precision, we can not decide termination for almost
all the even-valued inputs. (Indeed, only 0 causes nontermination.)

The underlying abstract-interpretation semantics

Parlty T T :

) v :Parity — P(Int)

”l / \ “

. even odd v(even) ={...,—2,0,2,...}

\J_/ 0 ylodd) = [y —1,1,3,.0)

e Y(T) =Int, y(1)={}
« : P(Int) — Parity
x(S) = LH{B(v)lve S}, where 3(2n) =evenand p(2n+ 1) = odd

The abstract transition rules are synthesized from the orginals:
Pi, @ — Pj, (X(V,), if v e 'Y((l) and P,V — pj,\),

This recipe ensures that every transition in the original, “concrete”
semantics is simulated by one in the abstract semantics.

To elaborate, remember that an abstract state, pi, a, represents
(abstracts) the set of concrete states,

Ystate(Pi, @) =1{pi,clc €yla);

So, if some py, c in the above set can transit to p;, c’, then its
abstraction must make a similar move:

Pi,C — Pj, C/ ImplleS Pi,a — Pi) (1/, where Pj, C/ S YState(pj> (l/).

Thus, the abstract semantics simulates all computation traces of the
concrete semantics (and due to imprecision, produces more traces
than are concretely possible).

Given a Galois connection, «, vy, we synthesize the most precise
abstract semantics that simulates the concrete one as de£ned on the
previous slide.

Abstract interpretation underlies most static
analyses

A static analysis of a program is a sound, £nite, and approximate
calculation of the program’s executions. The trace trees we just
generated for the loop program is an example of a static analysis.

We will survey static analyses for

¢ data-type inference

¢ code improvement

¢ debugging

¢ assertion synthesis and program proving

¢ model-checking temporal logic formulas

Data-type compatibility inference

B X =4 Ob ect
o : while ... { / \ Class Hierarchy
R x =(x>0) Rational ,, .,
} Bool (88, II} ‘ T '.
P3: X =X %2
p4 eX|t }Tt ‘V}
Po, T — p1, Int Abstract trace: Po»Object
| | p1, Int
z N\
pP1, T— P2, 7T pz,ITLt p3,Int
P1, T — P3,T P1,Bool P4, Int
p2,T — p1, Bool, iIf T C Rational p2,Bool p3, Bool
error error

P3, Int — py, Int

Constant propagation analysis

. x =1, y = 2; CanSt —l_ -var holds

b : while (x <y + z)) \ multiple values

P x =x + 1 'x\ o1 0 ~~~var holds
} \\ // ~thisvalue only
et T _-.---*Var(h%dscg(é(\e/)alue

. Abstract trace: po, (T, T, T)
where m + n is interpreted p1,{(1,2,T)
k] —|—k2 — Sum(k1,k2), \L \p3><1>2)—|_>

T4k#Liel.2 P2, (1,2, T)

1# i p1><2>2)—|_>
T—Fk_ﬁ—r \L \p3><2)2)—|_>
k—|—TH—|— p2)<2>2)—|_>

) 3)2)—|_
Let (u,v,w) abbreviate . J \>...

(x:u,y:v,z:w)

An acceleration Is needed for £nite convergence

Po, (T, T,T) Drawn as a data—flow analysis:
P, <] y 2) T>
\l/ \p3,<1,2,—|_> %5 ’
P2, <],2,—|_> \L
p1><2>2>—|_> L <1>2>—|—> F)_L_1’_2’___ p3_1y_2;__:
:p1,<_|_,2,—|_> (—/\ 22T 1,2, T
(i/ ~ P3, <—|—>2> T> > 10T 1,21
P2, <T>2>—|—> T,Z,T

The analysis tells us to replace y at p; by 2:

p: x =1, y = 2

P while (X <)€\+\\z) {
Box =x + 17 -
) 2

Py exit

Array bounds (pre)checking uses intervals

Integer variables receive values from the interval domain,

[={li,jl|1,j € IntU{—o00,+oo}}.
We defne [a,b] Ll [a’,b’] = [min(a, a’), max(b, b’)].

int a =newint[10]; __ _. i=[0,0]

i =0 =---""""

while (i ;[il?) L __ P =0 ®,9 =[00]
o, 1 . S i=[001] |[11]]][- 0,9 =[0,1]

} D L IR (R

~i=[11]| | [22]=[1,2]

atpq : 10..9]
At convergence, i'sranges are atp, : [1..10]

at loop exit: [1..10] 11 [10, +o0] = [10, 10]

Examples of relations between variables’ values

These Figures are from Abstract Interpretation: Achievements and
Perspectives by Patrick Cousot, Proc. SSGRR 2000.

{ r e [3, 27]
v e [4, 32

Fig. 2 Fig. 3
SIGNS INTERVALS

Tr 4+ 3ly < 325
21247y = 0

Fig. 1 Fig. 5
OCTACONS POLYHEDRA

FEscuela I / 24

Program veri£cation via predicate abstraction

We wish to prove that z > x Az > y at p3:

| po, (2,2,7)
1f x <y
then z =y P, (1,2,7) P2, (f,2,7)
D, else z =X ¢
03 L exit P3, <t> t, t> P3, <f>t>t>

P11 =x<y

We choose three predicates, ¢, =z > x

Gr=z2>y

and compute their values at the program’s points. The predicates
values come from the domain, {t, f, ?}. (Read ?as t V f.)

At all occurrences of p3 in the abstract trace, ¢, /A ¢3 holds.

When a goal is undecided, reEnement Is
necessary

Prove ¢o=x > y at pa:

B I1f (x >=y) Po,<?>\

P then_{ i f x 191,{ Pa, (t)
& X = Y’ P2, <f>
iy =i p3, (t)

p4: } P4, <?>

To decide the goal, we must reEne the state by adding a needed
auxiliary predicate: wp(y =i, x> y) = (x> i) = ¢;.

Po, <?,\?>
p1,(f,?) P4 (t)

—_

(f, 1) _---because x 2 yand x > i
D3 <t,t>*’// imply y > i implies Xnew > 1
P4, (t,t)- "o because x > i implies Xnew > ¥

But incremental predicate reEnement cannot synthesize many
Interesting loop invariants. For this example:

B 1 =n; x = 0;

P while 1 =0 {
B X =X + 13 1 =1 - 1;
¥

We £nd that the initial predicate set, Po = {i = 0,x = n}, does not
validate the loop body.

The £rst reEnement suggests we addP; ={i =1,x =n — 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Ref£nement stage j adds predicates P; = {i =j,x =n —j}; the
reEnement process continues forever!

The loop invariantisx =n — i

An abstract domain de£nes a “logic”

For abstract domain A, a € A is a “property/predicate,” and y(a) C C
de£nes a subset of concrete states that make a “true.” For s € C,

s has a ,written s =4 q, iff s € y(a) iff «{s} C a

Example: We might abstract Nat by EqZero:

o Equ,ro""—_—'|:N‘\“x\
/A{Oj 1’f’j"_} E._— —’ ger/g,) ;ero |
= T
.\\ T {3} /I," el

PN . 1)

We have, for example, that 3 = —zero; we also have that 3 = T; and
we have that 3 = —zero 1 T.

In one sense, every analysis based on .-

abstract interpretation is a “predicate ab- Const |
. ” 1 R | B 1 // \\
straction.” But the “logic” is weak — it .-' v 1 0

supports conjunction () but not neces- \\ / /
sarily disjunction (L).

For Const, we have that
2 |:Const 20T 1iff 2):Const 2 and 2):Const 1.
In general, n =const al a’ iff n Econst @ and n Econst @

But Const does not support disjunction: 2 =const |, and
T =20U3=30U4=2130U4, etc.

Hence 2 =const 3 U 4, but this does not imply that 2 =const 3 OF
2 |:Const 41

Abstract traces can be model checked

Po, o, z€ero

B while x >0 { G« - o PN
1

P, : useresource P1,do,"zero po,di,zero

_ . G- U V ze
X = X + 1; resource P1,d7,2Zero P2,41, @
P, . sleepforever forever V

Cpo,q1ﬁzero
V

P1,d1,7z€70

Starting from po, qo, k, for k > 0, will every execution
“Generally/Globally” avoid resource misuse ?

Po,do, k=G —(p1 /A qq)?

Will every execution reach a Future state where x is permanently
(Generally/Globally) zero?
Po, do, k = FG zero ?

The logical operators, F and G, describe reachability properties in the
temporal logic, LTL.

A state, sp, hames the set of traces that begin with it. An LTL property,
¢, describes a pattern of states in a trace.

so=® means that all traces, so — s — - - -, contain pattern ¢.

MiniLTL: ¢ == a| G | Fd Semantics: [¢] C P(Trace)
[a] = {mt| 7o FA a}

[Go] = {n|[Vi>=0,m 1€}

[Fol = {m|3Fi >0,] i€ [d]]

where, for t =sop — s1 — -+, let mp=spand 7t | i=s; — si41 — - - -.

There is a Galois connection, (P(Trace),C) « (P(MIniLTL), D),
where LI =N in P(MiniLTL):

v(P) =({ld] | & € P} —the traces that have all the properties in P
x(S)={d | S C [d]} — properties held by all traces in S

But this is just the beginning of a long story about the relationship of
abstract interpretation to temporal-logic model checking!

Every concrete value Is the conjunction of its
abstractions (its “abstract-interpretation DNA”)

— elephantsp601es /\ bTOWTlCOlOT /\ he a\)y welght

A 4000..6000K g weigne A - -

There Is even a pattern of Galois connection for this:

v : AllPossibleProperties — P(RealWorldObjects)
Y(p) ={c € RealWorldObjects | ¢ has property p}

3 : RealWorldObjects — AllPossibleProperties
B(c) =M{p € AllPossibleProperties | c € y(p)}

« : P(RealWorldObjects) — AllPossibleProperties
x(S) =LKB(s) | s €S

References

¢ The papers of Patrick and Radhia Cousot (www.di.ens.fr/~cousot), including

1. Abstract interpretation: a unifed lattice model for static analysis of programs
by construction or approximation of £xpoints. ACM POPL 1977.

2. Systematic design of program analysis frameworks. ACM POPL, 1979.
3. Abstract interpretation: achievements and perspectives. Proc. SSGRR
2000.

¢ Neil Jones and Flemming Nielson. Abstract Interpretation: a Semantics-Based
Tool for Program Analysis. In Handbook of Logic in Computer Science, Vol. 4,
Oxford University Press, 1994.

¢ Hanne Nielson, Flemming Nielson, and Chris Hankin. Principles of Program
Analysis. Springer 19909.

¢ A few of my papers, found at www.cis.ksu.edu/~schmidt/papers:

1. Trace-Based Abstract Interpretation of Operational Semantics. J. Lisp and
Symbolic Computation 10-3 (1998).

2. Data-oow analysis is model checking of abstract interpretations. ACM POPL
1998.

