
Foundations of Abstract
Interpretation

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Escuela’03 II / 1

Outline

1. Lattices and continuous functions

2. Galois connections, closures, and Moore families

3. Soundness and completeness of operations on

abstract data

4. Soundness and completeness of execution trace

computation

Escuela’03 II / 2

Data sets are complete lattices

A complete lattice is a partially ordered set, with unique minimal and

maximal elements, and with greatest-lower-bound and

least-upper-bound operations:

neg poszero

all

notpos notneg

nonebottom

top

u{notpos, notneg} = zero

t{zero, notpos, notneg} = all

u{ } = all

t{ } = none

Escuela’03 II / 3

Here is a more precise definition: A complete lattice,

L = 〈D,v,⊥,>,t,u〉, consists of

¨ a set, D, and a partial ordering, v, on D

¨ a smallest element, ⊥ (such that ⊥ v d, for all d ∈ D) and a

greatest element, > (such that d v >, for all d ∈ D)

¨ a least upper bound operation, t, such that, for all S ⊆ D, d v tS,

for all d ∈ S, and for all other upper bounds, c ∈ D, such that

d v c, for all d ∈ S, we have that tS v c

¨ a greatest lower bound operation, u, defined dually to the above:

uS v d, for all d ∈ S, and when c v d, for all d ∈ S, we have that

c v uS

Escuela’03 II / 4

The first example is the complete lattice, 〈℘(Int),⊆, { }, Int,
⋃
,
⋂
〉; the

next two are abstractions of it:

{ }

{ −1 }

{ −1,0 }

{ ...,−1,0 }

{ 0 } { 1 }

{ 1,3,5,... }

{ 1, 3 }{ −1,1 }

{ 0,1,3,6,10,... }

...

...

{ ...,−1,0,1,2,... }

{ −2,−1,0,1,2,3 }
neg poszero

all

notpos notneg

none

any

even
odd

none

Escuela’03 II / 5

Monotonic and chain-continuous functions

Given complete lattices, A and B, we say that a function, f : A → B, is

monotonic iff

for all a, a ′ ∈ A,a vA a ′implies f(a) vB f(a ′)

A monotonic function preserves the “precision of information” in its

argument.

Say that we have an ω-chain, a0 vA a1 vA ... vA ai vA ai+1 vA

A function, f : A → B, is ω-continuous iff
⊔

i≥0

f(ai) = f(
⊔

i≥0

ai)

An ω-continuous function preserves the “limit of information” in a

chain. Conventional computation employs monotonic and

ω-continuous functions, so it is no restriction to use only them.

Escuela’03 II / 6

Galois connections

Given a complete lattice of “concrete” (execution) data, C, and a

simpler complete lattice of “abstract” data, A, we relate the two by

α : C → A that will act like a homomorphism when we study the

operations on C.

It will be useful that α have an “inverse,”, γ:

Definition: For complete lattices C and A, and monotonic functions,

α : C → A, γ : A → C, the pair, 〈α, γ〉 form a Galois connection,

written C〈α, γ〉A, iff c vC γ ◦ α(c) and α ◦ γ(a) vA a.

γ
α

Escuela’03 II / 7

The maps α and γ are inverse maps on each other’s image:

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 0,1,...,9 }
{ 1,3,5,... }

{ 1, 3 }{ 0, 1 }

...

...
none

even

any

{ 0,2,4,... }
odd

{ 0,1,2,... }

{ 0,1,3,6,10,... }
α

γ

That is, for all c ∈ γ[A], c = γ ◦ α(c); for all a ∈ α[C], a = α ◦ γ(a).

α is ω-continuous (and even preserves t for arbitrary sets in C); γ

preserves u for arbitrary sets in A. Each map uniquely defines the

other:

γ(a) = t{c | α(c) vA a} and α(c) = u{a | c vC γ(a)}

Escuela’03 II / 8

The previous fact suggests this alternative characterization of Galois

connection:

Proposition: For complete lattices C and A, the pair,

〈α : C → A,γ : A → C〉, is a Galois connection when, for all c ∈ C and

a ∈ A, c vC γ(a) iff α(c) vA a.

α (c)

aγ

c

iff

(a)

From this definition, we can prove that both α and γ are monotonic,

that c vC γ ◦ α(c), and that α ◦ γ(a) vA a.

Escuela’03 II / 9

Galois connections are closed under composition, product, and so on:

If C〈α, γ〉D and D〈α ′, γ ′〉E are Galois connections, then so is

C〈α ′ ◦ α, γ ◦ γ ′〉E

If Ci〈αi, γi〉Di is a Galois connection, for all i ∈ I, then so is

Πi∈ICi〈Πi∈Iαi, Πi∈Iγi〉Πi∈IDi.

If C〈αC, γC〉C
′ and D〈αD, γD〉D ′ are Galois connections, then so is

C → D〈(λf.αD ◦ f ◦ γC), (λf ′.γD ◦ f ′ ◦ αC)〉C ′ → D ′.

all

notpos notneg

zeroneg

none

pos
neg notneg

all

none

{ }

{ −1 }

{ 0, −1 }

{ 1 }

{ −1,0,1,...,9 }

{ 1, 3 }{ 0, 1 }

...

...

... { 0 }

{ ...,−2,−1,0 }

{ ...,−1,0,1,2,... }

......

{ 0,1,2,3,... }

Composition of Galois connections

Escuela’03 II / 10

Why do we require the elaborate structure of a Galois connection?

1. If we are certain about the precise definition of γ : A → C, we can

mechanically synthesize the its adjoint, α(c) = u{a|c vC γ(a)}.

(Or, dually, if we are certain about α, we can synthesize γ as

γ(a) = t{c|α(c) vA a}.)

2. We obtain many mathematical properties about α, expressed in

terms of its adjoint, γ (and vice versa).

3. Since we intend to use α : C → A as a “homomorphism” from C

to A, we can use α and its adjoint γ to synthesize abstract

operations: For each f : C → C, we can synthesize f# : A → A,

such that α is a “homomorphism” with respect to f and f#. (We

will see that f# = α ◦ f ◦ γ.)

Escuela’03 II / 11

Closure maps

For C〈α, γ〉A, it is common that α is onto. This means A embeds into

C as a sublattice:

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 0,1,...,9 }
{ 1,3,5,... }

{ 1, 3 }{ 0, 1 }

...

...
none

even

any

{ 0,2,4,... }
odd

{ 0,1,2,... }

{ 0,1,3,6,10,... }

A’s elements are mere “tokens” that name distinguished sets in C.

Definition: ρ : C → C is a closure map if it is (i)monotonic;

(ii)extensive: c vC ρ(c), for all c ∈ C; (iii)idempotent: ρ ◦ ρ = ρ.

Escuela’03 II / 12

A closure map defines the embedding:

{0,2} = {0,2,4,...}

{0,2,4,...} = {0,2,4,...}

{0,1,...,9} = {0,1,2,...}

ρ

ρ

ρ

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 1,3,5,... }

{ 1, 3 }

...

...

{ 0,2,4,... }

{ 0,1,2,... }

{ 0,1,3,6,10,... }

{ 0,1,...,9 }

{ 0, 1 }

Every Galois connection, C〈α, γ〉A, defines a closure map, γ ◦ α.

Every closure map, ρ : C → C, defines the Galois connection,
C〈ρ, id〉ρ[C].

Escuela’03 II / 13

Moore families

Given C, can we define a closure map on it by choosing some

elements of C? The answer is yes, if the elements of C we select are

closed under greatest-lower-bounds:

Definition: M ⊆ C is a Moore family iff for all S ⊆ M, (uS) ∈ M.

We can define a closure map as ρ(c) = u{c ′ ∈ M | c vC c ′}.

For a closure map, ρ : C → C, its image, ρ[C], is a Moore family.

Given C, we can define an abstract interpretation by selecting some

M ⊆ C that is a Moore family!

Escuela’03 II / 14

Closed binary relations

Often a Galois connection uses a powerset for its concrete domain,
that is, ℘(D)〈α, γ〉A. This format yields a simple characterization:

Given unordered set D and complete lattice A, it is natural to relate
the elements in D to those in A by a binary relation, R ⊆ D×A,
such that (d, a) ∈ R means “d has property a.” We write this as
d R a or as d |=R a.

Example: D = Int, and
A = {none, neg, pos, zero, nonneg, nonpos, any}.

Then, 2 R nonneg, 2 R pos, and 2 R any. (Or we write,
2 |=R nonneg, 2 |=R pos, and 2 |=R any.)

We immediately define the function, γ : A → ℘(D), as

γ(a) = {d ∈ D | d R a}

For example, γ(nonneg) = {0, 1, 2, ...}.

Escuela’03 II / 15

We can check if γ is the upper adjoint of a Galois connection, say, by

showing that γ[A] defines a Moore family. But we can check for this

directly upon R:

Proposition: R ⊆ D×A defines a Galois connection between ℘(D)

and A iff (i) R is U-closed: c R a and a vA a ′ imply c R a ′; (ii) R is

G-closed: c R u {a | c R a}.

If R defines a Galois connection, then we have this crucial property:

¨ for all a ∈ A and C ∈ ℘(D), C ⊆ γ(a) iff α(C) vA a iff (c R a, for

all c ∈ C).

This is of course the definition of a Galois connection, and in this

sense, R “is” a Galois connection.

Escuela’03 II / 16

A recipe for abstract-domain building

Given an unordered set, D, of concrete data values, we might ask,

“What are the properties about D that I wish to calculate? Can I relate

these properties, a ∈ A, to elements d ∈ D via a UG-closed binary

relation, RD ⊆ D×A?” Given a set, A, and relation, RD ⊆ D×A,

1. Define γ : A → ℘(D) as γ(a) = {d | d RD a}.

2. Define this partial ordering on A: a v a ′ iff γ(a) ⊆ γ(a ′). (If there

are distinct a, a ′ ∈ A such that γ(a) = γ(a ′), then merge them.)

This forces U-closure.

3. Ensure that γ[A] is a Moore family by adding

greatest-lower-bound elements to A as needed. This forces

G-closure.

4. Use the existing machinery to define the Galois connection

between ℘(D) and A.

Escuela’03 II / 17

Example: Abstracting the Program State

The concrete storage vector is a product,

Store = Πi∈IdentifierData

and the concrete program state is a ProgramPoint× Store pair.

Example: p1, 〈x : 3, y : 4〉 is a program state.

Say that we have the relation, RData ⊆ Data×AbsData, and we
have the induced Galois connection,
℘(Data)〈αData, γData〉AbsData. Now, we can build Galois
connections that abstract the store and the state.

A concrete store is related to an abstract store:

〈xi : vi〉i∈Id RStore 〈xi : ai〉i∈Id, iff, for all i ∈ Id, vi RData ai

Example: 〈x : 3, y : 4〉 RStore 〈x : any, y : even〉.

This produces a Galois connection, ℘(Store)〈αStore, γStore〉AbsStore,

Escuela’03 II / 18

where AbsStore = Πi∈IdentifierAbsData and

γ〈xi : ai〉i∈Id = {〈xi : vi〉i∈Id | vi ∈ γData(ai), for all i ∈ Id}

αStore(S) = 〈
⊔

s∈S α(s(i))〉i∈Id

For example,

γStore〈x : even, y : odd〉 = {〈x : 0, y : 1〉, 〈x : 0, y : 3〉, 〈x : 2, y : 1〉, ...}

A program point is abstracted to itself: p RPP p, suggesting that the

abstract domain of program points might be merely

AbsPP = ProgramPoint ∪ {⊥,>}. (> and ⊥ are needed to make

AbsPP a complete lattice.)

Finally, we can relate a concrete state to an abstract one:

p, s RState p
′, σ iff p RPP p

′ and s RStore σ

Hence, γState(pi, σ) = {pi, s | s ∈ γStore(σ)}.

Escuela’03 II / 19

Concrete and abstract operations

Now that we know how to model c ∈ C by α(c) ∈ A, we must model
concrete computation steps, f : C → C, by abstract computation
steps, f# : A → A.

Example: We have concrete domain, Nat, and concrete operation,
succ : Nat → Nat, defined as succ(n) = n+ 1.

We have abstract domain, Parity, and abstract operation,
succ# : Parity → Parity, defined as

succ#(even) = odd, succ#(odd) = even

succ#(any) = any, succ#(none) = none

succ# must be consistent (sound) with respect to succ:

if n RNat a, then succ(n) RNat succ
#(a)

where R ⊆ Nat× Parity relates numbers to their parities (e.g.,
2 RNat even, 5 RNat odd, etc.).

Escuela’03 II / 20

We want soundness: n RNat a implies succ(n) RNat succ
#(a), for

all n ∈ Nat and a ∈ Parity.

Since we have the Galois connection, ℘(Nat)〈α, γ〉Parity, we know

that γ(a) = {n | n RNat a}.

So, soundness is stated equivalently as

for all a ∈ A, for all n ∈ γ(a), succ(n) ∈ γ(succ#(a))

and this is equivalent to saying,

for all a ∈ A, succ∗(γ(a)) ⊆Nat γ(succ#(a))

that is,

for all a ∈ A, (succ∗ ◦ γ)(a) ⊆Nat (γ ◦ succ#)(a)

where succ∗ : ℘(Nat) → ℘(Nat) is succ∗(S) = {succ(n) | n ∈ S}.

This is interesting, because it states a commutative,

“semi-homorphism” property....

Escuela’03 II / 21

Definition: For Galois connection, C〈α, γ〉A, and functions f : C → C,

f# : A → A, f# is a sound approximation of f iff

(α ◦ f)(c) vA (f# ◦ α)(c), for all c ∈ C

iff

(f ◦ γ)(a) vC (γ ◦ f#)(a), for all a ∈ A

This slightly abstract presentation exposes that α is a

“semi-homomorphism” with respect to f and f#:

f(c) f # α (c)()f(c)()α

f #

α (c)

α

f

c
α

Escuela’03 II / 22

Example 1: n RNat a implies succ(n) RNat succ
#(a)

Galois connection: ℘(Nat)〈α, γ〉Parity

succ∗ : ℘(Nat) → ℘(Nat)

succ∗(S) = {succ(n) | n ∈ S}

where succ(n) = n+ 1

succ# : Parity → Parity

succ#(even) = odd, succ#(odd) = even

succ#(any) = any, succ#(none) = none

We have that α ◦ succ∗ = succ# ◦ α:

succ #succ *

{2,6}

α

α

{3,7} odd

even

odd

Escuela’03 II / 23

Example 2: n RNat a implies div2(n) RNat div2
#(a)

Galois connection: ℘(Nat)〈α, γ〉Parity

div2∗ : ℘(Nat) → ℘(Nat)

div2∗(S) = {div2(n) | n ∈ S}

where div2(2n+ 1) = div2(2n) = n

div2# : Parity → Parity

div2#(even) = div2#(odd) = any

div2#(any) = any, div2#(none) = none

We have that α ◦ div2∗ vParity div2
◦ α:

{3} any

even

div2 #div2 *

odd

{6}

α

α

Escuela’03 II / 24

Synthesizing f# from f

The previous slides show how α acts as a “semi-homomorphism”
between f and f#.

Given the Galois connection, C〈α, γ〉A, and operation, f : C → C, the
most precise f

#
best : A → A that is sound with respect to f is

f
#
best = α ◦ f ◦ γ

Proposition: f# is sound with respect to f iff f#best vA→A f#.

(Note: f vA→A g iff for all a ∈ A, f(a) vA g(a).)

Of course, f#best has a mathematical definition — not an algorithmic
one — f

#
best might not be finitely computable !

Parity example continued:

succ
#
best(even) = α ◦ succ∗(γ even)

= α(succ∗{2n | n ≥ 0})

= α{2n+ 1 | n ≥ 0} = odd

Escuela’03 II / 25

One more example:

Given ℘(Nat)〈α, γ〉Parity and div2 : Nat → Nat, we have

div2∗ : ℘(Nat) → ℘(Nat)

div2∗(S) = div2[S] = {div2(n) | n ∈ S}

Hence, div2#
best = α ◦ div2∗ ◦ γ. The operation loses precision:

α(div2∗{4}) = α{2} = even, but

div2
#
best(even) = α(div2∗(γ(even)))

= α(div2∗{0, 2, 4, ...})

= α{1, 2, 3, ...} = any

Nonetheless, this is the best we can do, given the crude structure of

the abstract domain, Parity.

Escuela’03 II / 26

Completeness

Given C〈α, γ〉A, we state soundness of f# with respect to f as

α ◦ f vA→A f# ◦ α iff f ◦ γ vC→C γ ◦ f#

Definition: f# is forwards (γ) complete with respect to f iff

f ◦ γ =C→C γ ◦ f#

Definition: f# is backwards (α) complete with respect to f iff

α ◦ f =A→A f# ◦ α

The two completeness notions are not equivalent!

For an f# to be (forwards or backwards) complete, it must equal

f
#
best = α ◦ f ◦ γ. Indeed, the structure of the Galois connection and

f : C → C determines whether f#best is complete.

Escuela’03 II / 27

Forwards (γ) completeness: f#best is forwards-complete iff f maps
image points of γ to image points of γ — f(γ[A]) ⊆ γ[A].

f

f

Backwards (α) completeness: f#best is backwards-complete iff f
maps all points in the same α-equivalence class to points in the same
α-equivalence class — α(c) = α(c ′) implies α(f(c)) = α(f(c ′)).

f

Escuela’03 II / 28

Transfer functions generate computation steps

Each program transition from program point pi to pj has an

associated transfer function, fij : C → C (or f#ij : A → A), which

describes the associated computation.

This defines a computation step of the form, pi, s → pj, fij(s).

Example: Assignment p0 : x = x + 1; p1 : · · · has the transfer

function, f01〈...x : n...〉 = 〈...x : n+ 1...〉. For example,

p0, 〈x : 3〉 → p1, f01〈x : 3〉 = p1, 〈x : 4〉.

For modelling multiple transitions in conditional/nondeterministic

choice, we attach a transfer function to each possible transition.

Example: For

p0 : cases

x ≤ y: p1 : y = y - x;

y ≤ x: p2 : x = x - y;

end

Escuela’03 II / 29

For

p0 : cases

x ≤ y: p1 : y = y - x;

y ≤ x: p2 : x = x - y;

end

we have these functions:

f01(s) =






s if s.x ≤ s.y

⊥ otherwise

f02(s) =






s if s.y ≤ s.x

⊥ otherwise

For example, p0, 〈x : 5, y : 3〉 → p1,⊥, because x 6≤ y, but

p0, 〈x : 5, y : 3〉 → p2, 〈x : 5, y : 3〉, because y ≤ x. The transfer

functions “filter” the data that arrives at a program point.

We ignore computation steps, p, s → p ′,⊥, that produce “no data” (⊥).

An execution trace is a (possibly infinite) sequence,

p0, s0 → p1, s1 → · · · → pj, sj → · · ·, such that, for all i ≥ 0:

¨ pi, si → psucc(i), fi,succ(i)(si)

¨ no si equals ⊥.

Escuela’03 II / 30

Using the f#s to build sound, abstract trace trees

p2 :

p0 :

p4 :

p1 :

p3 :

exit

while (x != 1) {
if Even(x)

then x = x div2;
else x = 3*x + 1;

}

p0, 4
p1, 4
p2, 4

p0, 2
p1, 2
p2, 2

p0, 1
p4, 1

p0, 6
p1, 6
p2, 6

p0, 3
p1, 3
p2, 3

p0, 10

p4, 1

· · ·

Two concrete traces:

Note: pi, v abbreviates pi, 〈x : v〉

p1, even

p2, even

p0, any

p4, odd p1, any

p3, odd

p0, even

Abstract overapproximating trace:

Each concrete transition is gen-

erated by an fij; each abstract

transition is generated by the

corresponding f
#
ij .

Escuela’03 II / 31

Each concrete transition, pi, s → pj, fij(s), is reproduced by a
corresponding abstract transition, pi, a → pj, f

#
ij (a), where s ∈ γ(a).

For example, p2 : x = x div2 is interpreted concretely by
f20(2n) = n = f20(2n+ 1) and is interpreted abstractly by
f
#
20(even) = any = f

#
20(odd) = f

#
20(any).

The traces embedded in the abstract trace tree “cover” (simulate) the
concrete traces, e.g., this concrete trace,

p0, 4 → p1, 4 → p2, 4 → p0, 2 → p1, 2 → p2, 2 → p0, 1 → p4, 1

is simulated by this abstract trace, which is extracted from the abstract
computation tree:

p0, even → p1, even → p2, even → p0, any → p1, any → p2, even →

p0, any → p4, odd

and indeed, all concrete traces starting with p0, 2n, n >= 0, are
simulated by the abstract tree in this manner.

Escuela’03 II / 32

Proof of soundness of trace construction

For S ∈ C and a ∈ A, say that S R a iff S vC γ(a) iff α(S) vA a.

Lemma: α ◦ f vA→A f# ◦ α iff f ◦ γ vC→C γ ◦ f# iff S R a implies
f(S) R f#(a).

Theorem: For every concrete trace, (pi, si)i≥0, there exists an
abstract trace, (pi, ai)i≥0, such that for all i ≥ 0, {si} R ai.

Proof: We use the Lemma and induction to assemble this diagram:

p0, s0−→ p1, f0(s0) = p1, s1 −→ p2, f1(s1) = p2, s2−→ · · · −→ pi, si −→ · · ·

p0, a0−→ p1, f
#

0 (a0) = p1, a1 −→ p2, f
#

1 (a1) = p2, a2 −→ · · · −→ pi, ai −→ · · ·

R R R R

(Note: each si in the diagram is more precisely stated as {si},
because C = ℘(Store).) Due to imprecision of the f#s, the abstract
trace tree may possess many traces that begin with p0, a0, but there
is always one trace in the tree that simulates the concrete trace.

Escuela’03 II / 33

When all the operations, f#ij , are complete with respect to the fijs, the

previous result is strengthened:

Say that S R a iff α(S) = a. (Similarly, say that S R a iff S = γ(a).)

In both cases, the lemma holds:

Lemma: α ◦ f =A→A f# ◦ α iff S R a implies f(S) R f#(a).

(Similarly, f ◦ γ =C→C γ ◦ f# iff S R a implies f(S) R f#(a).)

Theorem (α-completeness): When S R a iff α(S) = a, then for every

concrete trace, (pi, si)i≥0, there exists an abstract trace, (pi, ai)i≥0,

such that for all i ≥ 0, {si} R ai.

Theorem (γ-completeness): When S R a iff γ(a) = S, S ⊆ Store,

then for every trace on sets of stores, (pi, Si)i≥0, there exists an

abstract trace, (pi, ai)i≥0, such that for all i ≥ 0, Si R ai.

Escuela’03 II / 34

References

¨ P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. ACM
POPL 1977.

¨ P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
ACM POPL, 1979.

¨ P. Cousot. Slides for invited lecture at VMCAI 2003, New York City.
www.di.ens.fr/~cousot

¨ R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. Journal ACM 47(2) 2000.

¨ R. Giacobazzi and E. Quinterelli. Incompleteness, counterexamples, and
refinements in abstract model-checking. SAS 2001, Springer LNCS 2126.

¨ D. Schmidt. Structure-preserving binary relations for program abstraction. In
The Essence of Computation: Complexity, Analysis, Transformation. Springer
LNCS 2566, 2002.

Escuela’03 II / 35

