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Data sets are complete lattices

A complete lattice is a partially ordered set, with unique minimal and

maximal elements, and with greatest-lower-bound and

least-upper-bound operations:

neg poszero

all

notpos notneg

nonebottom

top

u{notpos, notneg} = zero

t{zero, notpos, notneg} = all

u{ } = all

t{ } = none
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Here is a more precise definition: A complete lattice,

L = 〈D,v,⊥,>,t,u〉, consists of

¨ a set, D, and a partial ordering, v, on D

¨ a smallest element, ⊥ (such that ⊥ v d, for all d ∈ D) and a

greatest element, > (such that d v >, for all d ∈ D)

¨ a least upper bound operation, t, such that, for all S ⊆ D, d v tS,

for all d ∈ S, and for all other upper bounds, c ∈ D, such that

d v c, for all d ∈ S, we have that tS v c

¨ a greatest lower bound operation, u, defined dually to the above:

uS v d, for all d ∈ S, and when c v d, for all d ∈ S, we have that

c v uS
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The first example is the complete lattice, 〈℘(Int),⊆, { }, Int,
⋃
,
⋂
〉; the

next two are abstractions of it:

{ }

{ −1 }

{ −1,0 }

{ ...,−1,0 }

{ 0 } { 1 }

{ 1,3,5,... }

{ 1, 3 }{ −1,1 }

{ 0,1,3,6,10,... }

...

...

{ ...,−1,0,1,2,... }

{ −2,−1,0,1,2,3 }
neg poszero

all

notpos notneg

none

any

even
odd

none
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Monotonic and chain-continuous functions

Given complete lattices, A and B, we say that a function, f : A → B, is

monotonic iff

for all a, a ′ ∈ A,a vA a ′implies f(a) vB f(a ′)

A monotonic function preserves the “precision of information” in its

argument.

Say that we have an ω-chain, a0 vA a1 vA ... vA ai vA ai+1 vA ....

A function, f : A → B, is ω-continuous iff
⊔

i≥0

f(ai) = f(
⊔

i≥0

ai)

An ω-continuous function preserves the “limit of information” in a

chain. Conventional computation employs monotonic and

ω-continuous functions, so it is no restriction to use only them.
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Galois connections

Given a complete lattice of “concrete” (execution) data, C, and a

simpler complete lattice of “abstract” data, A, we relate the two by

α : C → A that will act like a homomorphism when we study the

operations on C.

It will be useful that α have an “inverse,”, γ:

Definition: For complete lattices C and A, and monotonic functions,

α : C → A, γ : A → C, the pair, 〈α, γ〉 form a Galois connection,

written C〈α, γ〉A, iff c vC γ ◦ α(c) and α ◦ γ(a) vA a.

γ
α
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The maps α and γ are inverse maps on each other’s image:

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 0,1,...,9 }
{ 1,3,5,... }

{ 1, 3 }{ 0, 1 }

...

...
none

even

any

{ 0,2,4,... }
odd

{ 0,1,2,... }

{ 0,1,3,6,10,... }
α

γ

That is, for all c ∈ γ[A], c = γ ◦ α(c); for all a ∈ α[C], a = α ◦ γ(a).

α is ω-continuous (and even preserves t for arbitrary sets in C); γ

preserves u for arbitrary sets in A. Each map uniquely defines the

other:

γ(a) = t{c | α(c) vA a} and α(c) = u{a | c vC γ(a)}
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The previous fact suggests this alternative characterization of Galois

connection:

Proposition: For complete lattices C and A, the pair,

〈α : C → A,γ : A → C〉, is a Galois connection when, for all c ∈ C and

a ∈ A, c vC γ(a) iff α(c) vA a.

α (c)

aγ

c

iff

( a )

From this definition, we can prove that both α and γ are monotonic,

that c vC γ ◦ α(c), and that α ◦ γ(a) vA a.
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Galois connections are closed under composition, product, and so on:

If C〈α, γ〉D and D〈α ′, γ ′〉E are Galois connections, then so is

C〈α ′ ◦ α, γ ◦ γ ′〉E

If Ci〈αi, γi〉Di is a Galois connection, for all i ∈ I, then so is

Πi∈ICi〈Πi∈Iαi, Πi∈Iγi〉Πi∈IDi.

If C〈αC, γC〉C
′ and D〈αD, γD〉D ′ are Galois connections, then so is

C → D〈(λf.αD ◦ f ◦ γC), (λf ′.γD ◦ f ′ ◦ αC)〉C ′ → D ′.

all

notpos notneg

zeroneg

none

pos
neg notneg

all

none

{ }

{ −1 }

{ 0, −1 }

{ 1 }

{ −1,0,1,...,9 }

{ 1, 3 }{ 0, 1 }

...

...

... { 0 }

{ ...,−2,−1,0 }

{ ...,−1,0,1,2,... }

......

{ 0,1,2,3,... }

Composition of Galois connections
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Why do we require the elaborate structure of a Galois connection?

1. If we are certain about the precise definition of γ : A → C, we can

mechanically synthesize the its adjoint, α(c) = u{a|c vC γ(a)}.

(Or, dually, if we are certain about α, we can synthesize γ as

γ(a) = t{c|α(c) vA a}. )

2. We obtain many mathematical properties about α, expressed in

terms of its adjoint, γ (and vice versa).

3. Since we intend to use α : C → A as a “homomorphism” from C

to A, we can use α and its adjoint γ to synthesize abstract

operations: For each f : C → C, we can synthesize f# : A → A,

such that α is a “homomorphism” with respect to f and f#. (We

will see that f# = α ◦ f ◦ γ.)
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Closure maps

For C〈α, γ〉A, it is common that α is onto. This means A embeds into

C as a sublattice:

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 0,1,...,9 }
{ 1,3,5,... }

{ 1, 3 }{ 0, 1 }

...

...
none

even

any

{ 0,2,4,... }
odd

{ 0,1,2,... }

{ 0,1,3,6,10,... }

A’s elements are mere “tokens” that name distinguished sets in C.

Definition: ρ : C → C is a closure map if it is (i)monotonic;

(ii)extensive: c vC ρ(c), for all c ∈ C; (iii)idempotent: ρ ◦ ρ = ρ.
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A closure map defines the embedding:

{0,2} = {0,2,4,...}

{0,2,4,...} = {0,2,4,...}

{0,1,...,9} = {0,1,2,...}

ρ

ρ

ρ

{ }

{ 0 }

{ 0, 2 }

{ 2 } { 1 }

{ 1,3,5,... }

{ 1, 3 }

...

...

{ 0,2,4,... }

{ 0,1,2,... }

{ 0,1,3,6,10,... }

{ 0,1,...,9 }

{ 0, 1 }

Every Galois connection, C〈α, γ〉A, defines a closure map, γ ◦ α.

Every closure map, ρ : C → C, defines the Galois connection,
C〈ρ, id〉ρ[C].

Escuela’03 II / 13



Moore families

Given C, can we define a closure map on it by choosing some

elements of C? The answer is yes, if the elements of C we select are

closed under greatest-lower-bounds:

Definition: M ⊆ C is a Moore family iff for all S ⊆ M, (uS) ∈ M.

We can define a closure map as ρ(c) = u{c ′ ∈ M | c vC c ′}.

For a closure map, ρ : C → C, its image, ρ[C], is a Moore family.

Given C, we can define an abstract interpretation by selecting some

M ⊆ C that is a Moore family!
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Closed binary relations

Often a Galois connection uses a powerset for its concrete domain,
that is, ℘(D)〈α, γ〉A. This format yields a simple characterization:

Given unordered set D and complete lattice A, it is natural to relate
the elements in D to those in A by a binary relation, R ⊆ D×A,
such that (d, a) ∈ R means “d has property a.” We write this as
d R a or as d |=R a.

Example: D = Int, and
A = {none, neg, pos, zero, nonneg, nonpos, any}.

Then, 2 R nonneg, 2 R pos, and 2 R any. (Or we write,
2 |=R nonneg, 2 |=R pos, and 2 |=R any.)

We immediately define the function, γ : A → ℘(D), as

γ(a) = {d ∈ D | d R a}

For example, γ(nonneg) = {0, 1, 2, ...}.
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We can check if γ is the upper adjoint of a Galois connection, say, by

showing that γ[A] defines a Moore family. But we can check for this

directly upon R:

Proposition: R ⊆ D×A defines a Galois connection between ℘(D)

and A iff (i) R is U-closed: c R a and a vA a ′ imply c R a ′; (ii) R is

G-closed: c R u {a | c R a}.

If R defines a Galois connection, then we have this crucial property:

¨ for all a ∈ A and C ∈ ℘(D), C ⊆ γ(a) iff α(C) vA a iff (c R a, for

all c ∈ C).

This is of course the definition of a Galois connection, and in this

sense, R “is” a Galois connection.
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A recipe for abstract-domain building

Given an unordered set, D, of concrete data values, we might ask,

“What are the properties about D that I wish to calculate? Can I relate

these properties, a ∈ A, to elements d ∈ D via a UG-closed binary

relation, RD ⊆ D×A?” Given a set, A, and relation, RD ⊆ D×A,

1. Define γ : A → ℘(D) as γ(a) = {d | d RD a}.

2. Define this partial ordering on A: a v a ′ iff γ(a) ⊆ γ(a ′). (If there

are distinct a, a ′ ∈ A such that γ(a) = γ(a ′), then merge them.)

This forces U-closure.

3. Ensure that γ[A] is a Moore family by adding

greatest-lower-bound elements to A as needed. This forces

G-closure.

4. Use the existing machinery to define the Galois connection

between ℘(D) and A.
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Example: Abstracting the Program State

The concrete storage vector is a product,

Store = Πi∈IdentifierData

and the concrete program state is a ProgramPoint× Store pair.

Example: p1, 〈x : 3, y : 4〉 is a program state.

Say that we have the relation, RData ⊆ Data×AbsData, and we
have the induced Galois connection,
℘(Data)〈αData, γData〉AbsData. Now, we can build Galois
connections that abstract the store and the state.

A concrete store is related to an abstract store:

〈xi : vi〉i∈Id RStore 〈xi : ai〉i∈Id, iff, for all i ∈ Id, vi RData ai

Example: 〈x : 3, y : 4〉 RStore 〈x : any, y : even〉.

This produces a Galois connection, ℘(Store)〈αStore, γStore〉AbsStore,
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where AbsStore = Πi∈IdentifierAbsData and

γ〈xi : ai〉i∈Id = {〈xi : vi〉i∈Id | vi ∈ γData(ai), for all i ∈ Id}

αStore(S) = 〈
⊔

s∈S α(s(i))〉i∈Id

For example,

γStore〈x : even, y : odd〉 = {〈x : 0, y : 1〉, 〈x : 0, y : 3〉, 〈x : 2, y : 1〉, ...}

A program point is abstracted to itself: p RPP p, suggesting that the

abstract domain of program points might be merely

AbsPP = ProgramPoint ∪ {⊥,>}. (> and ⊥ are needed to make

AbsPP a complete lattice.)

Finally, we can relate a concrete state to an abstract one:

p, s RState p
′, σ iff p RPP p

′ and s RStore σ

Hence, γState(pi, σ) = {pi, s | s ∈ γStore(σ)}.
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Concrete and abstract operations

Now that we know how to model c ∈ C by α(c) ∈ A, we must model
concrete computation steps, f : C → C, by abstract computation
steps, f# : A → A.

Example: We have concrete domain, Nat, and concrete operation,
succ : Nat → Nat, defined as succ(n) = n+ 1.

We have abstract domain, Parity, and abstract operation,
succ# : Parity → Parity, defined as

succ#(even) = odd, succ#(odd) = even

succ#(any) = any, succ#(none) = none

succ# must be consistent (sound) with respect to succ:

if n RNat a, then succ(n) RNat succ
#(a)

where R ⊆ Nat× Parity relates numbers to their parities (e.g.,
2 RNat even, 5 RNat odd, etc.).
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We want soundness: n RNat a implies succ(n) RNat succ
#(a), for

all n ∈ Nat and a ∈ Parity.

Since we have the Galois connection, ℘(Nat)〈α, γ〉Parity, we know

that γ(a) = {n | n RNat a}.

So, soundness is stated equivalently as

for all a ∈ A, for all n ∈ γ(a), succ(n) ∈ γ(succ#(a))

and this is equivalent to saying,

for all a ∈ A, succ∗(γ(a)) ⊆Nat γ(succ#(a))

that is,

for all a ∈ A, (succ∗ ◦ γ)(a) ⊆Nat (γ ◦ succ#)(a)

where succ∗ : ℘(Nat) → ℘(Nat) is succ∗(S) = {succ(n) | n ∈ S}.

This is interesting, because it states a commutative,

“semi-homorphism” property....
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Definition: For Galois connection, C〈α, γ〉A, and functions f : C → C,

f# : A → A, f# is a sound approximation of f iff

(α ◦ f)(c) vA (f# ◦ α)(c), for all c ∈ C

iff

(f ◦ γ)(a) vC (γ ◦ f#)(a), for all a ∈ A

This slightly abstract presentation exposes that α is a

“semi-homomorphism” with respect to f and f#:

f( c ) f # α ( c )( )f( c )( )α

f #

α ( c )

α

f

c
α
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Example 1: n RNat a implies succ(n) RNat succ
#(a)

Galois connection: ℘(Nat)〈α, γ〉Parity

succ∗ : ℘(Nat) → ℘(Nat)

succ∗(S) = {succ(n) | n ∈ S}

where succ(n) = n+ 1

succ# : Parity → Parity

succ#(even) = odd, succ#(odd) = even

succ#(any) = any, succ#(none) = none

We have that α ◦ succ∗ = succ# ◦ α:

succ #succ *

{2,6}

α

α

{3,7} odd

even

odd
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Example 2: n RNat a implies div2(n) RNat div2
#(a)

Galois connection: ℘(Nat)〈α, γ〉Parity

div2∗ : ℘(Nat) → ℘(Nat)

div2∗(S) = {div2(n) | n ∈ S}

where div2(2n+ 1) = div2(2n) = n

div2# : Parity → Parity

div2#(even) = div2#(odd) = any

div2#(any) = any, div2#(none) = none

We have that α ◦ div2∗ vParity div2
# ◦ α:

{3} any

even

div2 #div2 *

odd

{6}

α

α
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Synthesizing f# from f

The previous slides show how α acts as a “semi-homomorphism”
between f and f#.

Given the Galois connection, C〈α, γ〉A, and operation, f : C → C, the
most precise f

#
best : A → A that is sound with respect to f is

f
#
best = α ◦ f ◦ γ

Proposition: f# is sound with respect to f iff f#best vA→A f#.

(Note: f vA→A g iff for all a ∈ A, f(a) vA g(a).)

Of course, f#best has a mathematical definition — not an algorithmic
one — f

#
best might not be finitely computable !

Parity example continued:

succ
#
best(even) = α ◦ succ∗(γ even)

= α(succ∗{2n | n ≥ 0})

= α{2n+ 1 | n ≥ 0} = odd

Escuela’03 II / 25



One more example:

Given ℘(Nat)〈α, γ〉Parity and div2 : Nat → Nat, we have

div2∗ : ℘(Nat) → ℘(Nat)

div2∗(S) = div2[S] = {div2(n) | n ∈ S}

Hence, div2#
best = α ◦ div2∗ ◦ γ. The operation loses precision:

α(div2∗{4}) = α{2} = even, but

div2
#
best(even) = α(div2∗(γ(even)))

= α(div2∗{0, 2, 4, ...})

= α{1, 2, 3, ...} = any

Nonetheless, this is the best we can do, given the crude structure of

the abstract domain, Parity.
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Completeness

Given C〈α, γ〉A, we state soundness of f# with respect to f as

α ◦ f vA→A f# ◦ α iff f ◦ γ vC→C γ ◦ f#

Definition: f# is forwards (γ) complete with respect to f iff

f ◦ γ =C→C γ ◦ f#

Definition: f# is backwards (α) complete with respect to f iff

α ◦ f =A→A f# ◦ α

The two completeness notions are not equivalent!

For an f# to be (forwards or backwards) complete, it must equal

f
#
best = α ◦ f ◦ γ. Indeed, the structure of the Galois connection and

f : C → C determines whether f#best is complete.
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Forwards (γ) completeness: f#best is forwards-complete iff f maps
image points of γ to image points of γ — f(γ[A]) ⊆ γ[A].

f

f

Backwards (α) completeness: f#best is backwards-complete iff f
maps all points in the same α-equivalence class to points in the same
α-equivalence class — α(c) = α(c ′) implies α(f(c)) = α(f(c ′)).

f
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Transfer functions generate computation steps

Each program transition from program point pi to pj has an

associated transfer function, fij : C → C (or f#ij : A → A), which

describes the associated computation.

This defines a computation step of the form, pi, s → pj, fij(s).

Example: Assignment p0 : x = x + 1; p1 : · · · has the transfer

function, f01〈...x : n...〉 = 〈...x : n+ 1...〉. For example,

p0, 〈x : 3〉 → p1, f01〈x : 3〉 = p1, 〈x : 4〉.

For modelling multiple transitions in conditional/nondeterministic

choice, we attach a transfer function to each possible transition.

Example: For

p0 : cases

x ≤ y: p1 : y = y - x;

y ≤ x: p2 : x = x - y;

end
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For

p0 : cases

x ≤ y: p1 : y = y - x;

y ≤ x: p2 : x = x - y;

end

we have these functions:

f01(s) =






s if s.x ≤ s.y

⊥ otherwise

f02(s) =






s if s.y ≤ s.x

⊥ otherwise

For example, p0, 〈x : 5, y : 3〉 → p1,⊥, because x 6≤ y, but

p0, 〈x : 5, y : 3〉 → p2, 〈x : 5, y : 3〉, because y ≤ x. The transfer

functions “filter” the data that arrives at a program point.

We ignore computation steps, p, s → p ′,⊥, that produce “no data” (⊥).

An execution trace is a (possibly infinite) sequence,

p0, s0 → p1, s1 → · · · → pj, sj → · · ·, such that, for all i ≥ 0:

¨ pi, si → psucc(i), fi,succ(i)(si)

¨ no si equals ⊥.
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Using the f#s to build sound, abstract trace trees

p2 :

p0 :

p4 :

p1 :

p3 :

exit

while (x != 1) {
if Even(x)

then  x = x div2;
else  x = 3*x + 1;

}

p0, 4
p1, 4
p2, 4

p0, 2
p1, 2
p2, 2

p0, 1
p4, 1

p0, 6
p1, 6
p2, 6

p0, 3
p1, 3
p2, 3

p0, 10

p4, 1

· · ·

Two concrete traces:

Note: pi, v abbreviates pi, 〈x : v〉

p1, even

p2, even

p0, any

p4, odd p1, any

p3, odd

p0, even

Abstract overapproximating trace:

Each concrete transition is gen-

erated by an fij; each abstract

transition is generated by the

corresponding f
#
ij .
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Each concrete transition, pi, s → pj, fij(s), is reproduced by a
corresponding abstract transition, pi, a → pj, f

#
ij (a), where s ∈ γ(a).

For example, p2 : x = x div2 is interpreted concretely by
f20(2n) = n = f20(2n+ 1) and is interpreted abstractly by
f
#
20(even) = any = f

#
20(odd) = f

#
20(any).

The traces embedded in the abstract trace tree “cover” (simulate) the
concrete traces, e.g., this concrete trace,

p0, 4 → p1, 4 → p2, 4 → p0, 2 → p1, 2 → p2, 2 → p0, 1 → p4, 1

is simulated by this abstract trace, which is extracted from the abstract
computation tree:

p0, even → p1, even → p2, even → p0, any → p1, any → p2, even →

p0, any → p4, odd

and indeed, all concrete traces starting with p0, 2n, n >= 0, are
simulated by the abstract tree in this manner.
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Proof of soundness of trace construction

For S ∈ C and a ∈ A, say that S R a iff S vC γ(a) iff α(S) vA a.

Lemma: α ◦ f vA→A f# ◦ α iff f ◦ γ vC→C γ ◦ f# iff S R a implies
f(S) R f#(a).

Theorem: For every concrete trace, (pi, si)i≥0, there exists an
abstract trace, (pi, ai)i≥0, such that for all i ≥ 0, {si} R ai.

Proof: We use the Lemma and induction to assemble this diagram:

p0, s0−→ p1, f0(s0) = p1, s1 −→ p2, f1(s1) = p2, s2−→ · · · −→ pi, si −→ · · ·

p0, a0−→ p1, f
#

0 (a0) = p1, a1 −→ p2, f
#

1 (a1) = p2, a2 −→ · · · −→ pi, ai −→ · · ·

R R R R

(Note: each si in the diagram is more precisely stated as {si},
because C = ℘(Store).) Due to imprecision of the f#s, the abstract
trace tree may possess many traces that begin with p0, a0, but there
is always one trace in the tree that simulates the concrete trace.
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When all the operations, f#ij , are complete with respect to the fijs, the

previous result is strengthened:

Say that S R a iff α(S) = a. (Similarly, say that S R a iff S = γ(a).)

In both cases, the lemma holds:

Lemma: α ◦ f =A→A f# ◦ α iff S R a implies f(S) R f#(a).

(Similarly, f ◦ γ =C→C γ ◦ f# iff S R a implies f(S) R f#(a).)

Theorem (α-completeness): When S R a iff α(S) = a, then for every

concrete trace, (pi, si)i≥0, there exists an abstract trace, (pi, ai)i≥0,

such that for all i ≥ 0, {si} R ai.

Theorem (γ-completeness): When S R a iff γ(a) = S, S ⊆ Store,

then for every trace on sets of stores, (pi, Si)i≥0, there exists an

abstract trace, (pi, ai)i≥0, such that for all i ≥ 0, Si R ai.
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