
Behavioural equivalences

1

dComparing behaviours

• terms and their meaning:

a syntactic
object

its ≡-equivalence
class

its evolutions

(νv) (a〈v〉 | v〈t〉) (νv) (v〈t〉 | a〈v〉) (νv)a〈v〉.v〈t〉

2

dComparing behaviours

• terms and their meaning:

a syntactic
object

its ≡-equivalence
class

its evolutions

(νv) (a〈v〉 | v〈t〉) (νv) (v〈t〉 | a〈v〉) (νv)a〈v〉.v〈t〉

• equate terms that exhibit the same behaviour
. replace a component by another one (specif. vs implem.)
. program a particular construct
. encode a language in another language

2

dComparing behaviours

• terms and their meaning:

a syntactic
object

its ≡-equivalence
class

its evolutions

(νv) (a〈v〉 | v〈t〉) (νv) (v〈t〉 | a〈v〉) (νv)a〈v〉.v〈t〉

• equate terms that exhibit the same behaviour
. replace a component by another one (specif. vs implem.)
. program a particular construct
. encode a language in another language

• compositionality is crucial
two equivalent systems should be undistinguishable,
in any context (we are in a concurrent setting)

2

dWhen are two terms behaviourally equivalent?

• when they “act the same” (?!?) ?

a〈v〉 | a(x).
(
c〈x〉 | d〈x〉

)
↓

c〈v〉 | d〈v〉
6 ↓

(νc) (c〈c〉 | c(x).0)
↓
0
6 ↓

3

dWhen are two terms behaviourally equivalent?

• when they “act the same” (?!?) ?

a〈v〉 | a(x).
(
c〈x〉 | d〈x〉

)
↓

c〈v〉 | d〈v〉
6 ↓

(νc) (c〈c〉 | c(x).0)
↓
0
6 ↓

- looks dodgy
- does not look

very compositional

3

dWhen are two terms behaviourally equivalent?

• when they “act the same” (?!?) ?

a〈v〉 | a(x).
(
c〈x〉 | d〈x〉

)
↓

c〈v〉 | d〈v〉
6 ↓

(νc) (c〈c〉 | c(x).0)
↓
0
6 ↓

- looks dodgy
- does not look

very compositional

• what is behaviour?
. 6= functions: no notion of a result of computation

3

dWhen are two terms behaviourally equivalent?

• when they “act the same” (?!?) ?

a〈v〉 | a(x).
(
c〈x〉 | d〈x〉

)
↓

c〈v〉 | d〈v〉
6 ↓

(νc) (c〈c〉 | c(x).0)
↓
0
6 ↓

- looks dodgy
- does not look

very compositional

• what is behaviour?
. 6= functions: no notion of a result of computation
. observation: ∃ context in which the process performs

some action

3

dWhen are two terms behaviourally equivalent?

• when they “act the same” (?!?) ?

a〈v〉 | a(x).
(
c〈x〉 | d〈x〉

)
↓

c〈v〉 | d〈v〉
6 ↓

(νc) (c〈c〉 | c(x).0)
↓
0
6 ↓

- looks dodgy
- does not look

very compositional

• what is behaviour?
. 6= functions: no notion of a result of computation
. observation: ∃ context in which the process performs

some action

let us first concentrate on CCS

3

dLabelled transitions

a.P
a−→ P

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

P
µ−→ P ′

P |Q µ−→ P ′|Q

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

P
µ−→ P ′

P |Q µ−→ P ′|Q
. . . P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

P
µ−→ P ′

P |Q µ−→ P ′|Q
. . . P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

• P
µ−→ P ′: there exists a context in which P may “do” µ

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

P
µ−→ P ′

P |Q µ−→ P ′|Q
. . . P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

• P
µ−→ P ′: there exists a context in which P may “do” µ

• P, P ′ processes (P), µ action (A)

labelled transition system (LTS) ⊆ (P ×A× P)

4

dLabelled transitions

a.P
a−→ P a.P

a−→ P τ.P
τ−→ P

P
µ−→ P ′

P |Q µ−→ P ′|Q
. . . P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

• P
µ−→ P ′: there exists a context in which P may “do” µ

• P, P ′ processes (P), µ action (A)

labelled transition system (LTS) ⊆ (P ×A× P)

N.B.: a chemical semantics for CCS? →rather straightforward

4

dTraces

• a process P is liable to exhibit traces: P
µ1−−→ P1

µ2−−→ P2 . . .

5

dTraces

• a process P is liable to exhibit traces: P
µ1−−→ P1

µ2−−→ P2 . . .

• should we compare traces?

Definition [trace equivalence] P and Q are trace equivalent iff

they have the same set of traces.

5

dMilner’s coffe machines

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

6

dMilner’s coffe machines

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

C

2 euros

coffee

6

dMilner’s coffe machines

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

C

2 euros

coffee

P ′ | C may exhibit
a deadlock

6

dMilner’s coffe machines

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

C

2 euros

coffee

P ′ | C may exhibit
a deadlock

Trace equivalence is not compositional

6

dMilner’s coffe machines

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

C

2 euros

coffee

P ′ | C may exhibit
a deadlock

Trace equivalence is not compositional

one should be less “factual” (see “Marignan: 1515”)

(linear vs branching time)

6

dTowards compositionality

Definition [bisimulation]: A symmetrical relation R on pro-
cesses is a bisimulation iff, whenever P RQ, P

µ−→ P ′ implies that
there exists Q s.t. Q

µ−→ Q′ and P ′RQ′.

Definition [bisimilarity]: Bisimilarity (∼) is the union of all
bisimulations.

Remarks: ∼ is an equivalence relation
∼ is included in trace equivalence

7

dTowards compositionality

Definition [bisimulation]: A symmetrical relation R on pro-
cesses is a bisimulation iff, whenever P RQ, P

µ−→ P ′ implies that
there exists Q s.t. Q

µ−→ Q′ and P ′RQ′.

Definition [bisimilarity]: Bisimilarity (∼) is the union of all
bisimulations.

Remarks: ∼ is an equivalence relation
∼ is included in trace equivalence

Theorem: in CCS, bisimilarity is a congruence.
(and hence it is compositional w.r.t. parallel composition)

7

dExercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation R s.t. P RQ

and P
µ−→ P ′, there exists Q′ s.t. Q

µ−→ Q′ and P ′RQ′.
P � Q if Q simulates P and P simulates Q.

8

dExercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation R s.t. P RQ

and P
µ−→ P ′, there exists Q′ s.t. Q

µ−→ Q′ and P ′RQ′.
P � Q if Q simulates P and P simulates Q.

what is the relationship between P ∼ Q and P � Q?

8

dExercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation R s.t. P RQ

and P
µ−→ P ′, there exists Q′ s.t. Q

µ−→ Q′ and P ′RQ′.
P � Q if Q simulates P and P simulates Q.

what is the relationship between P ∼ Q and P � Q?

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

8

dExercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation R s.t. P RQ

and P
µ−→ P ′, there exists Q′ s.t. Q

µ−→ Q′ and P ′RQ′.
P � Q if Q simulates P and P simulates Q.

what is the relationship between P ∼ Q and P � Q?

P P’

2 euros
2 euros 2 euros

tea coffee
tea coffee

�
�

��

�

�

� �

� � �

8

dBisimulation and up-to bisimulation

• bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

9

dBisimulation and up-to bisimulation

• bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

• a framework for bisimulation proof techniques:

up-to bisimulation

let F be a function from relations to relations

P R Q
µ ↓ ↓ µ
P ′ F(R) Q′

if F gives a valid proof technique, then R ⊆∼

9

dExercise – an up-to technique

• R is a bisimulation up to bisimilarity if

P R Q
µ ↓ ↓ µ
P ′ ∼ R ∼ Q′

10

dExercise – an up-to technique

• R is a bisimulation up to bisimilarity if

P R Q
µ ↓ ↓ µ
P ′ ∼ R ∼ Q′

Theorem: if R is a bisimulation up to ∼, then R ⊆∼.

• prove it

10

dExercise – an up-to technique

• R is a bisimulation up to bisimilarity if

P R Q
µ ↓ ↓ µ
P ′ ∼ R ∼ Q′

Theorem: if R is a bisimulation up to ∼, then R ⊆∼.

• prove it

. R itself is not necessarily a bisimulation

. useful to “plug” known bisimilarity laws into bisimulation

proofs – other such techniques exist

10

Weak bisimilarity

11

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations

12

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations
µ̂−→:

τ−→ or = if α = τ ,
µ−→ otherwise; P

µ
=⇒ P ′: P ⇒ µ̂−→⇒ P ′.

12

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations
µ̂−→:

τ−→ or = if α = τ ,
µ−→ otherwise; P

µ
=⇒ P ′: P ⇒ µ̂−→⇒ P ′.

Definition [weak bisimilarity]
A symmetrical relation R is a weak bisimulation iff,

whenever P RQ and P
µ−→ P ′, there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′.

Weak bisimilarity (≈), is the greatest weak bisimulation.

Proposition: ≈ is an equivalence relation.

12

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations
µ̂−→:

τ−→ or = if α = τ ,
µ−→ otherwise; P

µ
=⇒ P ′: P ⇒ µ̂−→⇒ P ′.

Definition [weak bisimilarity]
A symmetrical relation R is a weak bisimulation iff,

whenever P RQ and P
µ−→ P ′, there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′.

Weak bisimilarity (≈), is the greatest weak bisimulation.

Proposition: ≈ is an equivalence relation.

. ∼⊆≈

12

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations
µ̂−→:

τ−→ or = if α = τ ,
µ−→ otherwise; P

µ
=⇒ P ′: P ⇒ µ̂−→⇒ P ′.

Definition [weak bisimilarity]
A symmetrical relation R is a weak bisimulation iff,

whenever P RQ and P
µ−→ P ′, there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′.

Weak bisimilarity (≈), is the greatest weak bisimulation.

Proposition: ≈ is an equivalence relation.

. ∼⊆≈

. why take τ moves into account for the bisimulation game?

12

dBisimulation – weak case

Definition [weak transitions] ⇒: refl. trans. closure of
τ−→;

abstract from internal computations
µ̂−→:

τ−→ or = if α = τ ,
µ−→ otherwise; P

µ
=⇒ P ′: P ⇒ µ̂−→⇒ P ′.

Definition [weak bisimilarity]
A symmetrical relation R is a weak bisimulation iff,

whenever P RQ and P
µ−→ P ′, there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′.

Weak bisimilarity (≈), is the greatest weak bisimulation.

Proposition: ≈ is an equivalence relation.

. ∼⊆≈

. why take τ moves into account for the bisimulation game?
consider a + τ.(b|c) and a + (b|c)

12

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

. α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

. α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

. P ≈ τ.P? this would imply e.g. a + τ.(u|v) ≈ a + (u|v)

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

. α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

. P ≈ τ.P? this would imply e.g. a + τ.(u|v) ≈ a + (u|v)
N.B.: ok in π with some restrictions on +

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

. α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

. P ≈ τ.P? this would imply e.g. a + τ.(u|v) ≈ a + (u|v)
N.B.: ok in π with some restrictions on +

• weak bisimilarity and divergences

. !τ.0 ≈ 0

13

d≈ and τ

• some laws: let α be any prefix,

. α.τ.P ≈ α.P

. P + τ.P ≈ τ.P

. α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

. P ≈ τ.P? this would imply e.g. a + τ.(u|v) ≈ a + (u|v)
N.B.: ok in π with some restrictions on +

• weak bisimilarity and divergences

. !τ.0 ≈ 0

. let A
def
= a + τ.A, A ≈ a.0

13

dWeak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation

up to ∼ in the weak case:
P R Q

µ ↓ ⇓ µ
P ′ ≈ R ≈ Q′

and symmetrically, then R ⊆≈?

14

dWeak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation

up to ∼ in the weak case:
P R Q

µ ↓ ⇓ µ
P ′ ≈ R ≈ Q′

and symmetrically, then R ⊆≈?

consider τ.a.0 and 0: the game allows us to “go back in time”

14

dWeak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation

up to ∼ in the weak case:
P R Q

µ ↓ ⇓ µ
P ′ ≈ R ≈ Q′

and symmetrically, then R ⊆≈?

consider τ.a.0 and 0: the game allows us to “go back in time”

P R Q
µ ↓ ⇓ µ
P ′ ∼ R ∼ Q′

is ok,

14

dWeak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation

up to ∼ in the weak case:
P R Q

µ ↓ ⇓ µ
P ′ ≈ R ≈ Q′

and symmetrically, then R ⊆≈?

consider τ.a.0 and 0: the game allows us to “go back in time”

P R Q
µ ↓ ⇓ µ
P ′ ∼ R ∼ Q′

is ok,
P R Q

µ ↓ ⇓ µ
P ′ & R . Q′

is also ok

Definition [expansion]: R is an expansion iff whenever P RQ:

- if P
µ−→ P ′ there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′

- if Q
µ−→ Q′ there exists P ′ s.t. P

µ̂−→ P ′ and P ′RQ′.

. is the greatest expansion, & is .−1.

14

Behavioural equivalences for π

15

dLabelled Transition System for the π-calculus

what are the (labelled) transitions of the following term?

(νx)(νy)
(

a〈w〉.P | b(t).Q | y〈v〉.0 | b〈x〉.R
)

what are the possible actions in π?

16

dLTS for the π-calculus

three (+1) kinds of actions:


P

a(b)−−−→ Q

P
a〈b〉−−→ Q, P

a(b)ν−−−−→ Q

P
τ−→ Q

names: n(µ)

bound names: bn(a(b)) = {b}, bn(µ) = ∅ otherwise

17

dLTS for the π-calculus

three (+1) kinds of actions:


P

a(b)−−−→ Q

P
a〈b〉−−→ Q, P

a(b)ν−−−−→ Q

P
τ−→ Q

names: n(µ)

bound names: bn(a(b)) = {b}, bn(µ) = ∅ otherwise

N.B.: in a polyadic setting, bound outputs are of the form (νx̃) a〈ỹ〉,
with x̃ ⊆ ỹ and x̃ is a set rather than a tuple

→ a precise, rigorous definition is really tedious

17

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Bang

!P |P µ−→ P ′

!P
µ−→ P ′

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Bang

!P |P µ−→ P ′

!P
µ−→ P ′

Res
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ n(µ)

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Bang

!P |P µ−→ P ′

!P
µ−→ P ′

Res
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ n(µ)

Open
P

a〈n〉−−→ P ′

(νn)P
a(n)ν−−−→ P ′

n 6= a

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Bang

!P |P µ−→ P ′

!P
µ−→ P ′

Res
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ n(µ)

Open
P

a〈n〉−−→ P ′

(νn)P
a(n)ν−−−→ P ′

n 6= a Closel
P

a(n)−−→ P ′ Q
a(n)ν−−−→ Q′

P |Q τ−→ (νn) (P ′ |Q′)
n /∈ fn(P ′)

18

dLabelled transitions for the π-calculus, the rules

Inp a(m).P
a(n)−−→ P{m←n} Out a〈n〉.P a〈n〉−−→ P

Comml
P

a(n)−−→ P ′ Q
a〈n〉−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Bang

!P |P µ−→ P ′

!P
µ−→ P ′

Res
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ n(µ)

Open
P

a〈n〉−−→ P ′

(νn)P
a(n)ν−−−→ P ′

n 6= a Closel
P

a(n)−−→ P ′ Q
a(n)ν−−−→ Q′

P |Q τ−→ (νn) (P ′ |Q′)
n /∈ fn(P ′)

symmetrical versions of rules Comml, Parl and Closel have been omitted

18

dLabelled transitions: a derivation

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

P | a〈c〉.Q a〈c〉−−→ P | Q

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

P | a〈c〉.Q a〈c〉−−→ P | Q

(νc) (P | a〈c〉.Q)
a(c)−−→ P | Q

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

P | a〈c〉.Q a〈c〉−−→ P | Q

(νc) (P | a〈c〉.Q)
a(c)−−→ P | Q

(νc) (P | a〈c〉.Q) | R
a(c)−−→ P | Q | R

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

P | a〈c〉.Q a〈c〉−−→ P | Q

(νc) (P | a〈c〉.Q)
a(c)−−→ P | Q

(νc) (P | a〈c〉.Q) | R
a(c)−−→ P | Q | R

def
= ∆

(νc) (P | a〈c〉.Q) | R | a(x).S −→

19

dLabelled transitions: a derivation

Par

Open

Par
Out a〈c〉.Q a〈c〉−−→ Q

P | a〈c〉.Q a〈c〉−−→ P | Q

(νc) (P | a〈c〉.Q)
a(c)−−→ P | Q

(νc) (P | a〈c〉.Q) | R
a(c)−−→ P | Q | R

def
= ∆

Close
∆ Inp a(x).S

a(c)−−→ S{x←c}

(νc) (P | a〈c〉.Q) | R | a(x).S
τ−→ (νc)

(
P | Q | R | S{x←c}

)

19

dSame computation in chemical version

(νc) (P | a〈c〉.Q) | R | a(x).S ≡ (νc) (P | a〈c〉.Q | R) | a(x).S
≡ (νc) (P | a〈c〉.Q | R | a(x).S)
≡ (νc) (a(x).S | a〈c〉.Q | P | R) ∆1

(νc) (S{x←c} | Q | P | R) ≡ (νc) (P | Q | R | S{x←c}) ∆2

∆1

∆2

a(x).S | a〈c〉.Q −→ S{x←c} | Q

a(x).S | a〈c〉.Q | P | R −→ S{x←c} | Q | P | R

(νc) (a(x).S | a〈c〉.Q | P | R) −→ (νc) (S{x←c} | Q | P | R)

(νc) (P | a〈c〉.Q) | R | a(x).S −→ (νc) (P | Q | R | S{x←c})

20

dReduction semantics and labelled semantics

Proposition: P → P ′ iff P
τ−→≡ P ′

21

dReduction semantics and labelled semantics

Proposition: P → P ′ iff P
τ−→≡ P ′

→ : is easier to read;
work modulo α-conversion, AC properties of |,+
and moving ν around

21

dReduction semantics and labelled semantics

Proposition: P → P ′ iff P
τ−→≡ P ′

→ : is easier to read;
work modulo α-conversion, AC properties of |,+
and moving ν around

µ−→ : manipulate syntax trees; the “redex” is read “on the term”

progressively construct the interaction between a term
and its context

21

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

22

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

• BUT

22

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

• BUT ∼ is not a congruence

a | b ∼ a.b + b.a

22

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

• BUT ∼ is not a congruence

a | b ∼ a.b + b.a
c(b).(a | b) 6∼ c(b).(a.b + b.a) (b← a . . .)

22

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

• BUT ∼ is not a congruence

a | b ∼ a.b + b.a
c(b).(a | b) 6∼ c(b).(a.b + b.a) (b← a . . .)

. why this does not happen in CCS?

22

dPorting the definition of bisimilarity in the π-calculus

• same thing as before:

bisimulation:
P R Q

µ ↓ ↓ µ
P ′ R Q′

∼ is the greatest bisimulation

• BUT ∼ is not a congruence

a | b ∼ a.b + b.a
c(b).(a | b) 6∼ c(b).(a.b + b.a) (b← a . . .)

. why this does not happen in CCS?

. we have though: (νb) (a | b) ∼c (νb) (a.b + b.a),

∼c being the greatest congruence included in ∼
22

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c !P
!α.P

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c !P
!α.P 6∼c α.!P , for α a prefix
!(P + Q)

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c !P
!α.P 6∼c α.!P , for α a prefix
!(P + Q) ∼c !(P |Q)
![a = b]P

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c !P
!α.P 6∼c α.!P , for α a prefix
!(P + Q) ∼c !(P |Q)
![a = b]P ∼c [a = b] !P
!(νx)P

23

dBisimliarity – some example laws

• example above: b | a ∼c b.a + a.b + [b = a] τ

• restriction

(νa) (a(x).P) ∼c 0

(νx) (x(y).P | w〈z〉.Q) ∼c w〈z〉.(νx) (x(y).P | Q) if x 6= w, x 6= z

• replication !(P |Q) ∼c !P | !Q
!!P ∼c !P
!α.P 6∼c α.!P , for α a prefix
!(P + Q) ∼c !(P |Q)
![a = b]P ∼c [a = b] !P
!(νx)P 6∼c (νx) !P

23

dExpansion lemma

Lemma [expansion]: if M = α1.P1 + · · · + αn.Pn and N =
β1.Q1 + · · ·+ βm.Qm then

M | N ∼ Σiαi.(Pi|N) + Σjβj.(M |Qj) + Σ〈αi comp βj〉τ.Rij

with αi comp βj (αi is the “dual” of βj):
αi = x〈y〉 and βj = x(z), in which case Rij = Pi|Qj{y←z}, or

symmetrically.

24

dExpansion lemma

Lemma [expansion]: if M = α1.P1 + · · · + αn.Pn and N =
β1.Q1 + · · ·+ βm.Qm then

M | N ∼ Σiαi.(Pi|N) + Σjβj.(M |Qj) + Σ〈αi comp βj〉τ.Rij

with αi comp βj (αi is the “dual” of βj):
αi = x〈y〉 and βj = x(z), in which case Rij = Pi|Qj{y←z}, or

symmetrically.

. replace | s with +s
towards a kind of “normal form” – see also models for π,

as well as automated techniques

24

dExpansion lemma

Lemma [expansion]: if M = α1.P1 + · · · + αn.Pn and N =
β1.Q1 + · · ·+ βm.Qm then

M | N ∼ Σiαi.(Pi|N) + Σjβj.(M |Qj) + Σ〈αi comp βj〉τ.Rij

with αi comp βj (αi is the “dual” of βj):
αi = x〈y〉 and βj = x(z), in which case Rij = Pi|Qj{y←z}, or

symmetrically.

. replace | s with +s
towards a kind of “normal form” – see also models for π,

as well as automated techniques
. the term blows up

24

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

25

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

consider R def
= {(T |U, U |T), T, U processes}

P R Q
µ ↓ ↓ µ
P ′ R Q′

25

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

consider R def
= {(T |U, U |T), T, U processes}

P R Q
µ ↓ ↓ µ
P ′ R Q′

. rules Par, Comm: ok

25

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

consider R def
= {(T |U, U |T), T, U processes}

P R Q
µ ↓ ↓ µ
P ′ R Q′

. rules Par, Comm: ok

. rule Close

P
a(b)−−→ P ′ Q

a(b)−−→ Q′

P |Q τ−→ (νb) (P ′|Q′)

25

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

consider R def
= {(T |U, U |T), T, U processes}

P R Q
µ ↓ ↓ µ
P ′ R Q′

. rules Par, Comm: ok

. rule Close

P
a(b)−−→ P ′ Q

a(b)−−→ Q′

P |Q τ−→ (νb) (P ′|Q′)

↪→ replace R with R∪ {
(
(νx) (P |Q), (νx) (Q|P)

)
}

25

dA bisimulation proof

let us prove that in the π-calculus, T |U ∼ U |T for all T, U

consider R def
= {(T |U, U |T), T, U processes}

P R Q
µ ↓ ↓ µ
P ′ R Q′

. rules Par, Comm: ok

. rule Close

P
a(b)−−→ P ′ Q

a(b)−−→ Q′

P |Q τ−→ (νb) (P ′|Q′)

↪→ replace R with R∪ {
(
(νx) (P |Q), (νx) (Q|P)

)
}

. . . no, with {
(
(νx̃) (P |Q), (νx̃) (Q|P)

)
} (x̃: set of names)

25

dUp-to techniques for the π-calculus

• parallel compositions may evolve into restricted processes

26

dUp-to techniques for the π-calculus

• parallel compositions may evolve into restricted processes

• up-to restriction proof technique
P R Q

µ ↓ ↓ µ
(νx)P ′ R (νx)Q′

implies R ⊆∼

26

dUp-to techniques for the π-calculus

• parallel compositions may evolve into restricted processes

• up-to restriction proof technique
P R Q

µ ↓ ↓ µ
(νx)P ′ R (νx)Q′

implies R ⊆∼

• we are allowed to erase common restrictions

useful with parallel composition

26

dUp-to techniques for the π-calculus

• parallel compositions may evolve into restricted processes

• up-to restriction proof technique
P R Q

µ ↓ ↓ µ
(νx)P ′ R (νx)Q′

implies R ⊆∼

• we are allowed to erase common restrictions

useful with parallel composition

• we are also allowed to erase common parallel components

(up to parallel composition)

26

dUp-to techniques for the π-calculus

• parallel compositions may evolve into restricted processes

• up-to restriction proof technique
P R Q

µ ↓ ↓ µ
(νx)P ′ R (νx)Q′

implies R ⊆∼

• we are allowed to erase common restrictions

useful with parallel composition

• we are also allowed to erase common parallel components

(up to parallel composition) useful with replication

26

dAn important law about replications

processes of the form !a(x).P may be seen as resources

for example: R
def
= !c(r).(νn) rn.n(v).!nv

27

dAn important law about replications

processes of the form !a(x).P may be seen as resources

for example: R
def
= !c(r).(νn) rn.n(v).!nv

(νa) (!a(x).P | Q | R) ∼ (νa) (!a(x).P | Q) | (νa) (!a(x).P | R)

where a can only appear free in P1, P2, R in output subject position

(distributivity of private resources)

27

dAn important law about replications

processes of the form !a(x).P may be seen as resources

for example: R
def
= !c(r).(νn) rn.n(v).!nv

(νa) (!a(x).P | Q | R) ∼ (νa) (!a(x).P | Q) | (νa) (!a(x).P | R)

where a can only appear free in P1, P2, R in output subject position

(distributivity of private resources)

R def
= {((νa) (P1|P2|!a(x).R), (νa) (P1|!a(x).R) | (νa) (P2|!a(x).R))}

27

dAn important law about replications

processes of the form !a(x).P may be seen as resources

for example: R
def
= !c(r).(νn) rn.n(v).!nv

(νa) (!a(x).P | Q | R) ∼ (νa) (!a(x).P | Q) | (νa) (!a(x).P | R)

where a can only appear free in P1, P2, R in output subject position

(distributivity of private resources)

R def
= {((νa) (P1|P2|!a(x).R), (νa) (P1|!a(x).R) | (νa) (P2|!a(x).R))}

R is a bisimulation up to bisimilarity, up to restriction

and up to parallel composition

27

dBehavioural equivalence with reduction semantics

• in the chemical version −→ is not enough to define a sensible

notion of bisimulation

28

dBehavioural equivalence with reduction semantics

• in the chemical version −→ is not enough to define a sensible

notion of bisimulation

• one should observe possibilities of interaction: barbs

• P ↓a (resp. P ↓a): P may receive (resp. emit) on a

“I can offer coffee or tea”

Remark: P ↓a ⇔ P ≡ (νṽ) (a(x).R | T), a /∈ ṽ

28

dBarbed bisimilarity

Definition [barbed bisimulation]: R is a barbed bisimulation
iff, whenever P RQ:

1.
P R Q
↓ ↓

P ′ R Q′
2. for any η, P ↓η iff Q ↓η

.∼ is the greatest barbed bisimulation

29

dBarbed bisimilarity

Definition [barbed bisimulation]: R is a barbed bisimulation
iff, whenever P RQ:

1.
P R Q
↓ ↓

P ′ R Q′
2. for any η, P ↓η iff Q ↓η

.∼ is the greatest barbed bisimulation

.∼ is not very interesting: a〈u〉 .∼ a〈v〉 .∼ (νu) a〈u〉

29

dBarbed bisimilarity

Definition [barbed bisimulation]: R is a barbed bisimulation
iff, whenever P RQ:

1.
P R Q
↓ ↓

P ′ R Q′
2. for any η, P ↓η iff Q ↓η

.∼ is the greatest barbed bisimulation

.∼ is not very interesting: a〈u〉 .∼ a〈v〉 .∼ (νu) a〈u〉
BUT Theorem:

.∼c, the greatest congruence included in
.∼,

coincides with ∼c

∼ is “∀R. P |R .∼ Q |R”

29

dWhen labelled transitions coincide with barbs

Theorem:
.∼c =∼c.

Proof.

30

dWhen labelled transitions coincide with barbs

Theorem:
.∼c =∼c.

Proof.

the main idea is to establish that
.∼c is a bisimulation

30

dWhen labelled transitions coincide with barbs

Theorem:
.∼c =∼c.

Proof.

the main idea is to establish that
.∼c is a bisimulation

. take then P
.∼c Q, and P

µ−→ P ′

30

dWhen labelled transitions coincide with barbs

Theorem:
.∼c =∼c.

Proof.

the main idea is to establish that
.∼c is a bisimulation

. take then P
.∼c Q, and P

µ−→ P ′

. exhibit contexts C, C′ s.t. C[P]→ C′[P ′]

30

dWhen labelled transitions coincide with barbs

Theorem:
.∼c =∼c.

Proof.

the main idea is to establish that
.∼c is a bisimulation

. take then P
.∼c Q, and P

µ−→ P ′

. exhibit contexts C, C′ s.t. C[P]→ C′[P ′]

. C, C′s are chosen so that this entails that Q
µ−→ Q′

30

dBarbed equivalences – refining the spectrum

Definition [barbed equivalence]: P ' Q iff ∀R. P |R .∼ Q |R.

31

dBarbed equivalences – refining the spectrum

Definition [barbed equivalence]: P ' Q iff ∀R. P |R .∼ Q |R.

Theorem: ∼ = '
proof: relies on the fact that

µ−→ is image finite

(finite number of reachable states)

31

dBarbed equivalences – refining the spectrum

Definition [barbed equivalence]: P ' Q iff ∀R. P |R .∼ Q |R.

Theorem: ∼ = '
proof: relies on the fact that

µ−→ is image finite

(finite number of reachable states)

Lemma [Context lemma]:

P 'c Q iff for any R, σ, Pσ |R .∼ Qσ |R

31

dBarbed equivalences – refining the spectrum

Definition [barbed equivalence]: P ' Q iff ∀R. P |R .∼ Q |R.

Theorem: ∼ = '
proof: relies on the fact that

µ−→ is image finite

(finite number of reachable states)

Lemma [Context lemma]:

P 'c Q iff for any R, σ, Pσ |R .∼ Qσ |R

'c =
.∼c =∼c

31

dBarbed equivalences – refining the spectrum

Definition [barbed equivalence]: P ' Q iff ∀R. P |R .∼ Q |R.

Theorem: ∼ = '
proof: relies on the fact that

µ−→ is image finite

(finite number of reachable states)

Lemma [Context lemma]:

P 'c Q iff for any R, σ, Pσ |R .∼ Qσ |R

'c =
.∼c =∼c

. . . and other notions of bisimilarity, e.g. in asynchronous π

31

dVariants

Inp a(x).P
a(v)−−−→ P{x←v} blabla Comm

P
a(b)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′|Q′

this is the operational semantics in early style

32

dVariants

Inp a(x).P
a(v)−−−→ P{x←v} blabla Comm

P
a(b)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′|Q′

this is the operational semantics in early style

• one could consider

Inp a(x).P
a(x)−−−→ P Comm

P
a(x)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′{x←b}|Q
′

32

dVariants

Inp a(x).P
a(v)−−−→ P{x←v} blabla Comm

P
a(b)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′|Q′

this is the operational semantics in early style

• one could consider

Inp a(x).P
a(x)−−−→ P Comm

P
a(x)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′{x←b}|Q
′

Definition: R is a late bisimulation iff whenever (P, Q) ∈ R:

• if P
a(x)−−→ P ′, there is Q′ s.t. Q

a(x)−−→ Q′, and, for all a,(P{x←a}, Q{x←a}) ∈ R;

• if P
µ−→ P ′ and µ is not an input: as usual.

32

dVariants

Inp a(x).P
a(v)−−−→ P{x←v} blabla Comm

P
a(b)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′|Q′

this is the operational semantics in early style

• one could consider

Inp a(x).P
a(x)−−−→ P Comm

P
a(x)−−→ P ′ Q

a〈b〉−−→ Q′

P |Q τ−→ P ′{x←b}|Q
′

Definition: R is a late bisimulation iff whenever (P, Q) ∈ R:

• if P
a(x)−−→ P ′, there is Q′ s.t. Q

a(x)−−→ Q′, and, for all a,(P{x←a}, Q{x←a}) ∈ R;

• if P
µ−→ P ′ and µ is not an input: as usual.

Theorem: ∼late (∼. Proof:
P

def
= x(z) + x(z).z

Q
def
= x(z) + x(z).z + x(z).[z = y]z

32

