Information flow analysis

Language, Semantics

```
x := E \mid C_1; C_2 \mid \text{if } E \text{ then } C_1 \text{ else } C_2 \mid \text{while } E \text{ do } C
```

For expressions, we assume there exists a semantic function If for all $x \in fv(E)$ we have $s_1 x = s_2 x$, with $s_1, s_2 \in Sto$, then $\llbracket \mathbf{E} \rrbracket \mathbf{s}_1 = \llbracket \mathbf{E} \rrbracket \mathbf{s}_2.$ $\llbracket \mathsf{E}
rbracket : \mathbf{Sto}
ightarrow \mathbf{Val}$ which satisfies the following property:

- The definition of [E] would contain the clause [x]s = s x.
- The semantics of a command has functionality $[C]: Trc \rightarrow Trc$
- ordering, $\mathbf{Trc} \to \mathbf{Trc}$ is a CPO: $f_1 \sqsubseteq f_2$ iff $f_1(T) \sqsubseteq f_2(T)$ for all Because Trc is a CPO, therefore, with the following pointwise $T \in \mathbf{Trc}$

Semantics, contd.

$$\lambda T.\lambda s.$$
 let $s' = T s in [s' | x \mapsto [E]s']$

$$\llbracket \mathsf{C}_1\;;\mathsf{C}_2 \rrbracket$$

$$= \lambda T. \llbracket C_2 \rrbracket (\llbracket C_1 \rrbracket T)$$

[if E then
$$C_1$$
 else C_2]

$$= \lambda T.\lambda s.let s' = T s in$$

if
$$true?([[E]]s')$$
 then $[[C_1]]T$ s else $[[C_2]]T$ s

[while E do
$$C_0$$
]

$$= lfp(\mathcal{F})$$
 where

$$\mathcal{F}: (\mathbf{Trc} o \mathbf{Trc}) o (\mathbf{Trc} o \mathbf{Trc})$$
 is

$$\mathcal{F}(f) = \lambda T.\lambda s.let s' = T s in$$

if
$$true?([E]s')$$
 then $f([C_0]T)s$ else s'

Independences

- We will be interested in a finite abstraction of the pre-traces and the post-traces relevant to the execution of a command.
- The abstract traces are termed independences: an independence $\frac{1}{2}$ $\mathsf{T}^\# \in \mathsf{Independ} = \mathcal{P}((\mathbf{Var} \cup \{ot\}) imes \mathbf{Var})$ is a set of pairs of the form
- If x is a variable, then $[x \times w]$ denotes that the *current* value of x is independent of the *initial* value of w.
- when an independence correctly describes a set of traces. If x is \perp , then the nontermination behavior of the command is independent of w. This is formalized by the following definition of

independences Definition of independences, ordering on

- For all $T \in \mathbf{Trc}$, for all $x \in \mathbf{Var} \cup \{\bot\}$, for all $w \in \mathbf{Var}$, $T \models [x \times w]$ $T \models T^{\#}$ holds iff for all $[x \ltimes w] \in T^{\#}$ it holds that $T \models [x \ltimes w]$. holds iff for all $s_1, s_2 \in \mathbf{Sto}_{\perp}$: $s_1 = s_2$ implies $T s_1 \stackrel{\times}{=} T s_2$.
- The ordering $T_1^\# \preceq T_2^\#$ holds iff $T_2^\# \subseteq T_1^\#$.
- **Independ** forms a complete lattice wrt. the ordering \leq ; let $\sqcap_i T^{\#}_i$ denote the greatest lower bound (which is the set union).

Some facts

- If $T \models T_1^\#$ and $T_1^\# \preceq T_2^\#$ then $T \models T_2^\#$.
- lacktriangle If for all $i \in I$ it holds that $T \models T_i^\#$, then $T \models \sqcap_{i \in I} T_i^\#$.

Do we have an abstract interpretation?

- If $[x \times w]$ belongs to $\bigcap_i T_i^\#$ then it also belongs to some $T_i^\#$.
- Let $\gamma : \mathbf{Independ} \to \mathcal{P}(\mathbf{Trc})$ be defined as:

$$\gamma(T^\#) = \{T \in \mathbf{Trc} \mid T \ \models T^\#\}$$

- We can show that γ is completely multiplicative.
- Therefore, with $\alpha : \mathcal{P}(\mathbf{Trc}) \to \mathbf{Independ}$ defined as: $\alpha(T) = \bigcup \{T^{\#} \mid T \subseteq \gamma(T^{\#})\}$, we have $(\mathcal{P}(\mathbf{Trc}), \alpha, \gamma, \mathbf{Independ})$ is a Galois connection.