
CIS 301: Lecture Notes on Program Verification

Torben Amtoft

Department of Computing and Information Sciences

Kansas State University

September 30, 2005

These notes are written as a supplement to [1, Sect. 16.5], but can be read
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[4, Chap. 4]. Section 8 is inspired by [2].

Contents

1 Hoare Triples 3

2 Software Engineering 3

3 Specifications 4

3.1 Square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 A Simple Language 6

5 Loop Invariants 7

5.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Proof Principles for Loop Invariants . . . . . . . . . . . . . . 9

1



6 Developing a Correct Program 9

6.1 Deleting a Conjunct . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Replacing an Expression By an Identifier . . . . . . . . . . . . 11

7 Well-Annotated Programs and Valid Assertions 13

8 Secure Information Flow 19

8.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.3 Examples Revisited . . . . . . . . . . . . . . . . . . . . . . . . 21

8.4 Declassification . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.5 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Procedures 23

9.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9.2 Rule for Procedure Calls . . . . . . . . . . . . . . . . . . . . . 27

10 Arrays 29

10.1 Verifying Programs Reading Arrays . . . . . . . . . . . . . . . 30

10.2 Verifying Programs Updating Arrays . . . . . . . . . . . . . . 33

A Some Previous Exam Questions 37

2



1 Hoare Triples

To reason about correctness we shall consider Hoare triples, of the form

{φ}
P

{ψ}

saying that if φ (the precondition) holds prior to executing program code P
then ψ (the postcondition) holds afterwards. Here φ and ψ are assertions,
written in First Order Logic.

Actually, the above description is ambiguous: what if P does not terminate?
Therefore we shall distinguish between

partial correctness: if P terminates then ψ holds;

total correctness: P does terminate and then ψ holds.

In these notes, we shall interpret a Hoare triple as denoting partial correct-
ness, unless stated otherwise.

2 Software Engineering

In light of the notion of Hoare triples, one can think of software engineering
as a 3-stage process:

1. Translate the demands D of the user into a specification (φD, ψD).

2. Write a program P that satisfies the specification constructed in 1.

3. Prove that in fact it holds that

{φD}
P

{ψD}

When it comes to software practice, 1 is a huge task (involving numerous dis-
cussions with the users) and hardly ever done completely. While 2 obviously
has to be done, 3 is almost never carried out.
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When it comes to academic discourse, 1 is an interesting task but only
briefly touched upon (Section 3) in CIS 301. Instead, we shall focus on 3
(Sections 5 and 7), but also give a few basic heuristics for how to do 2 and
3 simultaneously (Section 6).

3 Specifications

3.1 Square root

Suppose the user demands

Compute the square root of x and store the result in y.

As a first attempt, we may write the specification

P
{y2 = x}

We now remember that we cannot compute the square root of negative
numbers and therefore add a precondition:

{x ≥ 0}
P

{y2 = x}

Then we realize that if x is not a perfect square then we have to settle for
an approximation (since we are working with integers):

{x ≥ 0}
P

{y2 ≤ x}

On the other hand, this is too liberal: we could just pick y to be zero. Thus,
we must also specify that y is the largest number that does the job:

{x ≥ 0}
P

{y2 ≤ x ∧ (y + 1)2 > x}

which seems a sensible specification of the square root program. (Which
entails that y has to be non-negative. Why?)
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3.2 Factorial

Now assume that the user demands

Ensure that y contains the factorial1 of x.

This might give rise to the specification

{x ≥ 0}
P

{y = fac(x)}

Well, it’s not hard to write a program satisfying this specification:

{x ≥ 0}
x := 4;
y := 24

{y = fac(x)}

The user may respond:

Hey, that’s cheating! You were not allowed to change x.

Well, if not, that better has to be part of the specification! But how to
incorporate such demands?

The answer is that we shall allow our specifications to contain logical vari-
ables2: using the logical variable x0 to denote the initial (and un-changed)
value of the identifier x, a program computing factorials can be specified as
follows:

{x = x0 ≥ 0}
P

{y = fac(x0) ∧ x = x0}

Likewise, the specification of the square root program can be modified.

1Remember that the factorial function is defined by
fac(0) = 1

fac(n + 1) = (n + 1)fac(n) for n ≥ 0

and thus fac(0) = 1, fac(1) = 1, fac(2) = 2, fac(3) = 6, fac(4) = 24, etc.
2We shall write logical variables with a subscript, so as to emphasize that they do not

occur in programs.
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4 A Simple Language

For the next sections, we consider programs P written in a simple language,
omitting3 many desirable language features—such as procedures, considered
in Section 9, and arrays, considered in Section 10.

A program P is (so far) just a command, with the syntax of commands
given by

C ::= x := E

| C1; C2

| if B then C1 else C2 fi

| while B do C od

We have employed some auxiliary syntactic constructs:

• x stands for identifiers4 like x, y, z, etc;

• E stands for integer expressions of the form n (a constant), x (an
identifier), E1 +E2, E1 −E2, etc;

• B stands for boolean tests of the form E1 < E2, E1 ≤ E2, E1 6= E2,
etc.

Programs are thus constructed from assignments, sequential composition,
conditionals, and while-loops5.

Next, we shall discuss how to verify a claim that

{φ}
P

{ψ}

3Still, our language is “Turing-complete” in that it can encode all other features one
can imagine!

4We shall use the term “identifier” for what is often called a “program variable”, so
as to avoid confusion with the variables of First Order Logic. To further facilitate that
distinction, we shall always write identifiers in typewriter font.

5Note that we use the symbol od to end while-loops, rather than a curly bracket as that
symbol is used for writing pre- and post-conditions. Similarly, we use fi as a delimiter
for conditionals.
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5 Loop Invariants

For the purpose of verification, the notion of loop invariants is crucial.

5.1 Motivating Example

We look at the following program for computing the factorial function6 (cf.
Section 3).

{x ≥ 0}
y := 1;
z := 0;
while z 6= x do

z := z + 1;
y := y ∗ z

od

{y = fac(x)}

There are many mistakes we could have made when writing that program:
for instance we could have reversed the two lines in the loop body (in which
case y would be assigned zero and keep that value forever), or we could have
written the loop test as z ≤ x (in which case y would end up containing
fac(x+ 1)).

Let us now convince ourselves that what we wrote is correct. We might first
try a simulation: if say x = 4, the situation at the entry of the loop is:

x y z

After 0 iterations 4 1 0
After 1 iterations 4 1 1
After 2 iterations 4 2 2
After 3 iterations 4 6 3
After 4 iterations 4 24 4

and then z = x so that the loop terminates, with y containing the desired
result 24 = fac(x). This may boost our confidence in the program, but still
a general proof is needed. Fortunately, the table above may help us in that
endeavor. For it suggests that it is always the case that y = fac(z).

6Since the program does not change the value of x, we can safely write its specification
without employing a logical variable x0.
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Definition 5.1. A property which holds each time the loop test is evaluated
is called an invariant for the loop.

We now annotate the program with our prospective loop invariant:

{x ≥ 0}
y := 1;
z := 0;

{y = fac(z)}
while z 6= x do

z := z + 1;
y := y ∗ z

{y = fac(z)}
od

{y = fac(x)}

Of course, we must prove that what we have found is indeed a loop invariant:

Proposition 5.2. Whenever the loop entry is reached, it holds that y =
fac(z).

The proof has two parts:

• Establishing the invariant;

• Maintaining the invariant.

Establishing the invariant. We must check that when the loop entry
is first reached, it holds that y = fac(z). But since the preamble assigns y

the value 1 and assigns z the value 0, the claim follows from the fact that
fac(0) = 1.

Maintaining the invariant. Next we must check that if y = fac(z) holds
before an iteration then it also holds after the iteration. With y′ denoting
the value of y after the iteration, and z′ denoting the value of z after the
iteration, this follows from the following calculation:

y′ = yz′ = y(z + 1) = fac(z)(z + 1) = fac(z + 1) = fac(z′).

For the third equality we have used the assumption that the invariant holds
before the iteration, and for the fourth equality we have used the definition
of the factorial function.
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Completing the correctness proof. We have shown that every time the
loop test is evaluated, it holds that y = fac(z). If (when!) we eventually exit
the loop then the loop test is false, that is z = x. Therefore, if (when) the
program terminates it holds that y = fac(x). This shows that our program
satisfies its specification, in that partial correctness holds (cf. Section 1).
Moreover, in this case total correctness is not hard to prove: since x is
initially7 non-negative, and since z is initialized to zero and incremented by
one at each iteration, eventually z will equal x, causing the loop to terminate.

5.2 Proof Principles for Loop Invariants

From the previous subsection we see that three steps are involved when
proving that a certain property ψ is indeed a useful invariant for a loop:

1. we must show that the code before the loop establishes ψ;

2. we must show that ψ is maintained after each iteration;

3. we must show that if the loop test evaluates to false, ψ is sufficient
to establish the desired postcondition.

6 Developing a Correct Program

In Section 5, we considered the situation where we must prove the correctness
of a program which has already been written for a given specification. This
two-step approach has some drawbacks:

• it gives us no clue about how actually to construct programs;

• if the program in question has been developed in an unsystematic
way, perhaps by someone else, it may be hard to detect the proper
loop invariant(s).

In this section, we shall illustrate that it is often possible to write a program
together with the proof of its correctness.

For that purpose, we look at the square root specification8 from Section 3:

7It is interesting that the proof of partial correctness does not use the precondition
x ≥ 0.

8We shall not bother to employ the device of logical variables, and must therefore
solemnly promise that the program to be constructed will not modify the value of x.
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{x ≥ 0}
P

{y2 ≤ x ∧ (y + 1)2 > x}

It seems reasonable to assume that P should be a loop, possibly with some
preamble. With φ the (yet unknown) invariant of that loop, and with B the
(yet unknown) test of the loop, we have the skeleton

{x ≥ 0}
???

{φ}
while B do

???
{φ}

od

{y2 ≤ x ∧ (y + 1)2 > x}

We now face the main challenge: to come up with a suitable invariant φ,
the form of which will direct the remaining construction process. In order
to justify the postcondition, we must ensure that

y2 ≤ x ∧ (y + 1)2 > x is a logical consequence of φ ∧ ¬B. (1)

There are at least two ways to achieve that, to be described in the next two
subsections.

6.1 Deleting a Conjunct

A simple way to satisfy (1) is to define

φ = y2 ≤ x

B = (y + 1)2 ≤ x

That is, we follow the following general recipe:

• let the loop test be the negation of one of the conjuncts of the post-
condition;

• let the loop invariant be the remaining conjuncts of the postcondition.

Our prospective program now looks like
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{x ≥ 0}
???

{y2 ≤ x}
while (y + 1)2 ≤ x do

???
{y2 ≤ x}

od

{y2 ≤ x ∧ (y + 1)2 > x}

Thanks to the precondition x ≥ 0, initializing y to zero will establish the
loop invariant. Thanks to the loop test (y+ 1)2 ≤ x, incrementing y by one
will maintain the loop invariant. We end up with the program

{x ≥ 0}
y := 0

{y2 ≤ x}
while (y + 1)2 ≤ x do

y := y + 1
{y2 ≤ x}

od

{y2 ≤ x ∧ (y + 1)2 > x}

This program will clearly always terminate, but is rather inefficient. We
shall now describe a method which in this case results in a more efficient
program.

6.2 Replacing an Expression By an Identifier

Let us consider another way of satisfying (1). First observe that the post-
condition involves the expression y as well as the expression y+ 1. It might
be beneficial to loosen the connection between these two entities, by intro-
ducing a new identifier w which eventually should equal y + 1 but in the
meantime may roam more freely. Note that the postcondition is implied by
the formula

y2 ≤ x ∧ w2 > x ∧ w = y + 1

containing three conjuncts. It is thus tempting to apply the previous tech-
nique of “deleting a conjunct”, resulting in

φ = y2 ≤ x ∧ w2 > x

B = w 6= y + 1
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Our prospective program now looks like

{x ≥ 0}
???

{y2 ≤ x ∧ w2 > x}
while w 6= y + 1 do

???
{y2 ≤ x ∧ w2 > x}

od

{y2 ≤ x ∧ (y + 1)2 > x}

To establish the loop invariant, we must not only initialize y to zero but also
initialize w so that w2 > x: clearly, x + 1 will do the job.

For the loop body, it seems a sensible choice to modify either y or w. This
can be expressed as a conditional of the form

if B′ then

y := E1

else

w := E2

fi

We must check that each branch maintains the invariant, and therefore
perform a case analysis:

• if B′ is true, we must require that E1
2 ≤ x;

• if B′ is false, we must require that E2
2 > x.

Let E be an arbitrary expression; then these demands can be satisfied by
stipulating

E1 = E

E2 = E

B′ = E2 ≤ x

We have thus constructed the program

{x ≥ 0}
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y := 0;
w := x + 1;

{y2 ≤ x ∧ w2 > x}
while w 6= y + 1 do

if E2 ≤ x

then

y := E
else

w := E
fi

{y2 ≤ x ∧ w2 > x}
od

{y2 ≤ x ∧ (y + 1)2 > x}

which is partially correct, no matter how E is chosen! But of course, we also
want to ensure termination, and hopefully a quick such! For that purpose,
we pick

E = (y + w) div 2

where a div b (for positive b) is the largest integer c such that bc ≤ a. With
that choice, it is not difficult to see that y and w will get closer to each other
for each iteration, until eventually w = y + 1. This shows total correctness.
Even more, the program runs much faster than our first attempt!

7 Well-Annotated Programs and Valid Assertions

We have argued that annotating a program with loop invariants is essential
for the purpose of verification (and also to understand how the program
works!) It is often beneficial to provide more fine-grained annotations.

Example 7.1. For the factorial program from Sect. 5.1, a fully annotated
version looks like

{x ≥ 0} (A)
{1 = fac(0)} (B)

y := 1;
{y = fac(0)} (C)

z := 0;
{y = fac(z)} (D)
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while z 6= x do

{y = fac(z) ∧ z 6= x} (E)
{y(z + 1) = fac(z + 1)} (F)

z := z + 1;
{yz = fac(z)} (G)

y := y ∗ z
{y = fac(z)} (H)

od

{y = fac(z) ∧ z = x} (I)
{y = fac(x)} (J)

We shall soon see that this program is in fact well-annotated.

We first define what it means for an assertion to be valid. There are several
cases:

Logical consequence. If the assertion {ψ} immediately follows the as-
sertion {φ}, and ψ is a logical consequence of φ, then ψ is valid.

Trying to conform with the notation used in [1], we can write this rule as

{φ}
. {ψ} Implies (if ψ logical consequence of φ)

saying that the marked assertion is valid.

Of course, in order to trust that ψ holds, we must at some point also establish
that φ is valid!

Example 7.2. Referring back to Example 7.1, note that thanks to this rule

• assertion (B) is valid, since it is a mathematical fact and therefore
surely a logical consequence of assertion (A);

• assertion (F) is valid, since if by assertion (E) we have y = fac(z) then
y(z + 1) = fac(z)(z + 1) = fac(z + 1);

• assertion (J) is valid, since it is a logical consequence of assertion
(I).

Rule for While loops. We have the rule
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{ψ}
while B do

. {ψ ∧B} WhileTrue

. . .
{ψ}

od

. {ψ ∧ ¬B} WhileFalse

saying that if ψ is a loop invariant then

• at the beginning of the loop body, the loop test has just evaluated to
true and therefore ψ ∧B will hold;

• immediately after the loop, the loop test has just evaluated to false

and therefore ψ ∧ ¬B will hold.

Note that we are still left with the obligation to show that the two ψ as-
sertions (one before the loop, the other at the end of the loop body) are
valid.

Example 7.3. Referring back to Example 7.1, note that assertions (E) and
(I) are valid, thanks to this rule.

Rule for Conditionals. We have the rule

{φ}
if B
then

. {φ ∧B} IfTrue

. . .
{ψ}

else

. {φ ∧ ¬B} IfFalse

. . .
{ψ}

fi

. {ψ} IfEnd

saying that if φ holds before a conditional command then

• at the beginning of the then branch, φ ∧B will hold;
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• at the beginning of the else branch, φ ∧ ¬B will hold;

and also saying that ψ holds after the conditional command if ψ holds at
the end of both branches.

Again, we are left with the obligation to show that the initial φ assertion is
valid, and that the ψ assertions concluding each branch are valid.

Observe that this rule is quite similar to the rule ∨ Elim from propositional
logic!

Rule for Assignments We would surely expect that for instance it holds
that

{y = 5}
x := y + 2

{x = 7 ∧ y = 5}

and it seems straightforward to go from precondition to postcondition. But
now consider

{y + 2z ≤ 3 ∧ z ≥ 1}
x := y + z

{???}

where it is by no means a simple mechanical procedure to fill in the question
marks: what does the precondition imply concerning the value of y + z?

It turns out that we shall formulate the proper rule backwards: if we assign x

the expression E, and we want ψ(x) to hold after the assignment, we better
demand that ψ(E) holds before the assignment! This motivates the rule9

{ψ(E)}
x := E

. {ψ(x)} Assignment

Referring back to our first example, we have

9We let ψ(x) denote a formula where x is possibly free, and let ψ(E) denote the result
of substituting E for all free occurrences of x.
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{y = 5}
{y + 2 = 7 ∧ y = 5} Implies

x := y + 2
{x = 7 ∧ y = 5} Assignment

And referring back to our second example, we have

{y + 2z ≤ 3 ∧ z ≥ 1}
{y + z ≤ 2} Implies

x := y + z

{x ≤ 2} Assignment

since it is easy to check that if y + 2z ≤ 3 and z ≥ 1 then y + z ≤ 2.

Example 7.4. Referring back to Example 7.1, note that assertions (C), (D),
(G), and (H) are valid, thanks to this rule.

Well-annotation. We are now done with all the rules for validity. Note
that there is no need for a rule for sequential composition C1;C2, since in

{φ}
C1;

{φ1}
C2

{φ2}

the validity of each φi (i = 1, 2) must be established using the form of Ci.
But there is a rule for all other language constructs, and also a rule Implies

that is not related to any specific language construct.

We are now ready to assemble the pieces:

Definition 7.5. We say that an annotated program

{φ}
. . .

{ψ}

is well-annotated iff all assertions, except for the precondition φ, are valid.
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Theorem 7.6. Assume that the annotated program

{φ}
. . .

{ψ}

is in fact well-annotated. Then the program is partially correct wrt. the
specification (φ,ψ).

Example 7.7. The program in Example 7.1 is well-annotated. This follows
from Examples 7.2, 7.3, and 7.4. We can write

{x ≥ 0}
{1 = fac(0)} Implies

y := 1;
{y = fac(0)} Assignment

z := 0;
{y = fac(z)} Assignment

while z 6= x do

{y = fac(z) ∧ z 6= x} WhileTrue

{y(z + 1) = fac(z + 1)} Implies

z := z + 1;
{yz = fac(z)} Assignment

y := y ∗ z
{y = fac(z)} Assignment

od

{y = fac(z) ∧ z = x} WhileFalse

{y = fac(x)} Implies

Example 7.8. The program developed in Section 6.1 can be well-annotated:

{x ≥ 0}
{02 ≤ x} Implies

y := 0
{y2 ≤ x} Assignment

while (y + 1)2 ≤ x do

{y2 ≤ x ∧ (y + 1)2 ≤ x} WhileTrue

{(y + 1)2 ≤ x} Implies

y := y + 1

18



{y2 ≤ x} Assignment

od

{y2 ≤ x ∧ (y + 1)2 > x} WhileFalse

Example 7.9. The program developed in Section 6.2 can be well-annotated:

{x ≥ 0}
{02 ≤ x ∧ (x + 1)2 > x} Implies

y := 0;
{y2 ≤ x ∧ (x + 1)2 > x} Assignment

w := x + 1;
{y2 ≤ x ∧ w2 > x} Assignment

while w 6= y + 1 do

{y2 ≤ x ∧ w2 > x ∧ w 6= y + 1} WhileTrue

if E2 ≤ x

then

{y2 ≤ x ∧ w2 > x ∧ w 6= y + 1 ∧ E2 ≤ x} IfTrue

{E2 ≤ x ∧ w2 > x} Implies

y := E
{y2 ≤ x ∧ w2 > x} Assignment

else

{y2 ≤ x ∧ w2 > x ∧ w 6= y + 1 ∧ E2 > x} IfFalse

{y2 ≤ x ∧ E2 > x} Implies

w := E
{y2 ≤ x ∧ w2 > x} Assignment

fi

{y2 ≤ x ∧ w2 > x} IfEnd

od

{y2 ≤ x ∧ w2 > x ∧ w = y + 1} WhileFalse

{y2 ≤ x ∧ (y + 1)2 > x} Implies

8 Secure Information Flow

Assume we are dealing with two kinds of identifiers: those of high security
(classified); and those of low security (non-classified). Our goal is that users
with low clearance should not be able to gain information about the values
of the classified identifiers. In the following, this notion will be made precise.
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For the sake of simplicity, let us assume that there are only two identifiers
in play: l (for low) and h (for high). We want to protect ourselves against
an attacker (spy) who

• knows the initial value of l;

• knows the program that is running;

• can observe the final value of l;

• can not observe intermediate states of program execution.

A program is said to be secure if such an attacker cannot detect anything
about the initial value of h.

8.1 Examples

The program below is not secure.

l := h + 7 (2)

For by subtracting 7 from the final value of l, the attacker gets the initial
value of h. On the other hand, the program below is clearly secure.

l := l + 47 (3)

One rotten apple does not always spoil the whole barrel; having the insecure
program in (2) as a preamble may still yield a secure program as in

l := h + 7; l := 27 (4)

since we assumed that the attacker cannot observe intermediate values of l.
Also the following program is secure:

h := l (5)

For even though the attacker learns the final value of h (as it equals the
initial value of l which is known), he is still clueless about the initial value
of h.

The following program is just a fancy way of writing l := h + 7 (since we
do not care about the final value of h)

l := 7; while h > 0 do h := h− 1; l := l + 1 od (6)
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and is therefore insecure. Also, the following program is insecure

if h = 6789 then l := 0 else l := 1 fi (7)

since if the final value of l is zero, we know that h was initially 6789.

8.2 Specification

By putting quantifiers in front of Hoare triples, we can express security
formally:

Definition: The program P is secure iff

∀l0 ∃l1 ∀h0 ∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

To put it another way, the final value (l1) of l must depend only on the
initial value (l0) of l and not on the initial value (h0) of h.

By negating this definition (and applying de Morgan’s laws repeatedly), we
arrive at:

Observation: The program P is insecure iff

∃l0 ∀l1 ∃h0 ¬∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

To put it another way, a program is insecure if for all possible final values
of l, there exists an initial value of h that produces a different final value
for l.

8.3 Examples Revisited

We first address the programs that are secure, and show that they do indeed
meet the requirement stated in our Definition. In each case, we are given
some l0 and must find l1 such that
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∀h0 ∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

For the program in (3), we choose l1 as l0 + 47; this does the job since

∀h0 ∃h1

{l = l0 ∧ h = h0}
l := l + 47

{l = l0 + 47 ∧ h = h1}

For the program in (4), we can choose l1 as 27; for the program in (5), we
simply choose l1 as l0.

We next address the programs that are not secure, and show (cf. our Ob-
servation) that no matter how l1 has been chosen, we can find h0 such that
it does not hold that

{l = l0 ∧ h = h0}
P

{l = l1}

For the programs in (2) and (6), we can just pick an h0 different from l1−7,
say h0 = l1. For clearly it does not hold that

{l = l0 ∧ h = l1}
l := h + 7

{l = l1}

For the program in (7), we proceed by cases on l1: if l1 is zero, then we can
choose (among many possibilities) h0 to be 2345 since it does not hold that

{l = l0 ∧ h = 2345}
if h = 6789 then l := 0 else l := 1 fi

{l = 0}

Alternatively, if l1 is one, then we choose h0 to be 6789 since it does not
hold that

22



{l = l0 ∧ h = 6789}
if h = 6789 then l := 0 else l := 1 fi

{l = 1}

(If l1 is neither zero nor one, we can choose any value for h0.)

8.4 Declassification

A severe limitation of our theory is exposed by the last example (7) which
is considered insecure even though very little information may actually be
leaked to the attacker. Think of h as denoting a PIN code, with the at-
tacker testing whether it happens to be 6789; if the PIN codes were selected
randomly, the chance of the test revealing the PIN code is very small (1
to 10,000). It is currently an important challenge for research in (language
based) security to formalize these considerations!

8.5 Data Integrity

We might consider an alternative interpretation of the identifiers l and h: l
denotes a licensed entity, whereas h denotes a hacked (untrustworthy) entity.
The integrity requirement is now:

Licensed data should not depend on hacked data.

It is interesting to notice that the framework described on the preceding
pages covers also that situation! In particular, a program satisfies the above
integrity requirement if and only if it is considered secure (according to
our Definition). For example, (4) is safe as the licensed identifier l will
eventually contain 27 which does not depend on hacked data, whereas (7)
is unsafe as the value of the hacked identifier h influences the value of the
licensed identifier.

9 Procedures

A convenient feature, present in almost all programming languages, is the
ability to define procedures; these are “named abstractions” of commonly
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used command sequences. In these notes, we shall consider procedure dec-
larations of the form10

proc p (var x, y)
local . . .
begin

C
end

where the procedure p has body C and formal parameters x and y; the
body may refer to these parameters and possibly also to the local identifiers
(declared after local) but not to any other (“global”) identifiers.

A program P is now a sequence of procedure declarations, followed by a
command (running the program amounts to executing that command). The
syntax of commands was defined in Section 4 and is now extended to include
procedure calls:

C ::= . . .

| call p(x1, x2)

Here x1 and x2 are the actual parameters; note that they must be identifiers
and we shall even require them to be distinct.

As an example, consider the procedure swap with declaration

proc swap (var x, y)
local t

begin

t := x;
x := y;
y := t

end

The following code segment contains a call of swap; after the call, we would
expect that z = 7 and that w = 3.

z := 3;
w := 7;
call swap(z, w)

10The generalization to an arbitrary number of formal parameters is immediate.

24



This example shows that our parameter-passing mechanism11 is “call-by-
reference” (as indicated by the keyword var): what is passed to the proce-
dure is the “location” of the actual parameter, not just its value.

The body of a procedure may contain calls to other procedures. A procedure
may even call itself (directly or indirectly), in which case we say that it
is recursive. In Section 5.1 we implemented the factorial function using
iteration (that is, while loops); below is an implementation which uses
recursion and which thus more closely matches the recursive definition (given
in Footnote 1) of the factorial function.

proc fact (var x, y)
local t,r
begin

if x = 0
then

y := 1
else

t := x− 1;
call fact(t, r);
y := x ∗ r

fi

end

9.1 Contracts

As is the case for a program, also a procedure should come with a specifi-
cation, which can be viewed as a “contract” for its use. For example, we
might want a procedure twice with the contract12

proc twice (var x, y)
∀a, b
{x = a ∧ y = b}

C
{x = 2a ∧ y = 2b}

This contract promises that for a call to twice, the following property holds
for the identifiers provided as actual parameters: no matter what their values

11It is not difficult to extend our theory to other parameter passing mechanisms.
12Alternatively, one often uses the term “summary”.
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were before the call, their values after the call will be twice as big.

The natural way to implement twice is

proc twice (var x, y)
begin

x := 2 ∗ x;
y := 2 ∗ y

end

Note that this would not work if we had not required the actual parameters
to be distinct identifiers, as the command call twice(w, w) would in effect
multiply w by 4.

The contract for swap is as follows:

proc swap (var x, y)
∀a, b
{x = a ∧ y = b}

C
{x = b ∧ y = a}

and we can easily verify that its implementation fulfills that contract: for
arbitrary a and b, we have

{x = a ∧ y = b}
{y = b ∧ x = a} Implies

t := x;
{y = b ∧ t = a} Assignment

x := y;
{x = b ∧ t = a} Assignment

y := t

{x = b ∧ y = a} Assignment

The contract for fact is as follows:

proc fact (var x, y)
∀a
{x = a ∧ x ≥ 0}

C
{y = fac(a)}
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To verify that the implementation of fact satisfies that specification, we
must first address how to reason about procedure calls.

9.2 Rule for Procedure Calls

Given a procedure p with contract

proc p (var x, y)
∀a1, a2

{φ1(x, y, a1, a2)}
C

{φ2(x, y, a1, a2)}

We might expect that for calls of p, we have the rule

{φ1(x1, x2, c1, c2)}
call p(x1,x2)

. {φ2(x1, x2, c1, c2)}

While this rule is sound (since x1 and x2 denote distinct identifiers), it is
not immediately useful, in that assertions unrelated to the procedure call
are forgotten afterwards. To allow such an assertion ψ to be remembered,
we propose the rule

{φ1(x1, x2, c1, c2) ∧ ψ}
call p(x1, x2)

. {φ2(x1, x2, c1, c2) ∧ ψ}

We must require that ψ is indeed unrelated to the procedure call; due to our
assumption that the body C manipulates no global identifiers, it is sufficient
to demand that the identifiers denoted by x1 and x2 do not occur in ψ. To
see the need for this restriction, consider the purported annotation below
(where the role of ψ is played by the assertion 2w = 14):

{z = 3 ∧ w = 7 ∧ 2w = 14}
call swap(z, w)

{z = 7 ∧ w = 3 ∧ 2w = 14}

Clearly, this annotation is not correct, since after the call, 2w equals 6 rather
than 14.
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As an extra twist, it is convenient (as we shall see in our examples) to allow
c1 and c2 to be existentially quantified. We are now ready for

Definition 9.1. Assuming that x1 and x2 denote distinct identifiers which
are not free in ψ, we have the following proof rule for procedure calls:

{∃c1∃c2(φ1(x1, x2, c1, c2) ∧ ψ)}
call p(x1, x2)

. {∃c1∃c2(φ2(x1, x2, c1, c2) ∧ ψ)} Call

Example 9.2. Calling twice with arguments z and w satisfying z ≤ 4 and
w ≥ 7, establishes z ≤ 8 and w ≥ 14. This is formally verified by the
following well-annotation, where in the application of Call, the role of ψ is
played by the assertion c1 ≤ 4 ∧ c2 ≥ 7.

{z ≤ 4 ∧ w ≥ 7}
{∃c1∃c2(z = c1 ∧ w = c2 ∧ c1 ≤ 4 ∧ c2 ≥ 7)} Implies

call twice(z, w)
{∃c1∃c2(z = 2c1 ∧ w = 2c2 ∧ c1 ≤ 4 ∧ c2 ≥ 7)} Call

{z ≤ 8 ∧ w ≥ 14} Implies

Example 9.3. Calling swap with arguments z and w such that z > w, es-
tablishes w > z. This is formally verified by the following well-annotation,
where in the application of Call, the role of ψ is played by the assertion
c1 > c2.

{z > w}
{∃c1∃c2(z = c1 ∧ w = c2 ∧ c1 > c2)} Implies

call swap(z, w)
{∃c1∃c2(z = c2 ∧ w = c1 ∧ c1 > c2)} Call

{w > z} Implies

We are now ready to prove that fact fulfills its contracts. That is, given a,
we must prove

{x = a ∧ x ≥ 0}
if x = 0
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then

y := 1
else

t := x− 1;
call fact(t, r);
y := x ∗ r

fi

{y = fac(a)}

But this follows from the following well-annotation:

{x = a ∧ x ≥ 0}
if x = 0
then

{x = a ∧ x ≥ 0 ∧ x = 0} IfTrue

{1 = fac(a)} Implies

y := 1
{y = fac(a)} Assignment

else

{x = a ∧ x ≥ 0 ∧ x 6= 0} IfFalse

{∃c(x− 1 = c ∧ x− 1 ≥ 0 ∧ x = a ∧ x = c+ 1)} Implies

t := x− 1;
{∃c(t = c ∧ t ≥ 0 ∧ x = a ∧ x = c+ 1)} Assignment

call fact(t, r);
{∃c(r = fac(c) ∧ x = a ∧ x = c+ 1)} Call

{xr = fac(a)} Implies

y := x ∗ r
{y = fac(a)} Assignment

fi

{y = fac(a)} IfEnd

10 Arrays

Until now, we have only considered simple data structures like integers; in
this section we shall consider arrays. An array can hold a sequence of values
(just like a linked list can), where each element of that sequence can be
accessed, and mutated, directly (unlike what is the case for a linked list,
where one has to follow a chain of pointers).
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Below is depicted an array a with 5 elements: 7,3,9,5,2.

0 1 2 3 4

7 3 9 5 2

We thus have a[0] = 7, a[1] = 3, etc.

Individual elements of arrays can be updated; after issuing the command
a[3] := 8 the array a will now look like

0 1 2 3 4

7 3 9 8 2

We shall talk about two arrays being permutations of each other if they
contain the same elements, though perhaps in different order. This is, e.g.,
the case for the two arrays given below:

0 1 2 3 4

8 3 9 8 2

0 1 2 3 4

3 9 2 8 8

We shall write perm(a1, a2) if a1 and a2 are permutations of each other.

10.1 Verifying Programs Reading Arrays

Let us first consider programs which are read-only on arrays. For such pro-
grams, the verification principles from the previous sections carry through
unchanged13.

As an example, let us construct a program that stores in m the maximum of
the first k elements of the array a, that is the maximum of a[0], . . . , a[k− 1].
We assume that k ≥ 1, and that a indeed has at least k elements.

Assuming that all identifiers have non-negative values (greatly improving
readability, as otherwise assertions of the form j ≥ 0 would have to be
inserted numerous places), the desired postcondition can be expressed as

∀j(j < k → a[j] ≤ m) ∧ ∃j(j < k ∧ a[j] = m)

We shall need a loop, and it seems reasonable to guess that its test should
be i 6= k and its invariant should be

φ : ∀j(j < i → a[j] ≤ m) ∧ ∃j(j < i ∧ a[j] = m)

13For programs manipulating arrays, loop invariants and other properties will almost
certainly contain quantifiers, whereas for programs without arrays, invariants can often
be expressed in propositional logic.
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since then the loop invariant, together with the negation of the loop test,
will imply the postcondition. With the aim of establishing and maintaining
the invariant φ, we construct the following program:

i := 1;
m := a[0];
while i 6= k do

if a[i] > m

then

m := a[i];
i := i + 1

else

i := i + 1
fi

od

To prove the correctness of this program, we annotate it:

{k ≥ 1}

{∀j(j < 1 → a[j] ≤ a[0]) ∧
∃j(j < 1 ∧ a[j] = a[0])} Implies(A)

i := 1;

{∀j(j < i → a[j] ≤ a[0]) ∧
∃j(j < i ∧ a[j] = a[0])} Assignment

m := a[0];

{φ} Assignment

while i 6= k do

{φ ∧ i 6= k} WhileTrue

if a[i] > m

then

{φ ∧ i 6= k ∧ a[i] > m} IfTrue

{∀j(j < i + 1 → a[j] ≤ a[i]) ∧
∃j(j < i + 1 ∧ a[j] = a[i])} Implies(B)

m := a[i];

{∀j(j < i + 1 → a[j] ≤ m) ∧
∃j(j < i + 1 ∧ a[j] = m)} Assignment

i := i + 1
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{φ} Assignment

else

{φ ∧ i 6= k ∧ a[i] ≤ m} IfFalse

{∀j(j < i + 1 → a[j] ≤ m) ∧
∃j(j < i + 1 ∧ a[j] = m)} Implies(C)

i := i + 1

{φ} Assignment

fi

{φ} IfEnd

od

{φ ∧ i=k} WhileFalse

{∀j(j < k → a[j] ≤ m) ∧
∃j(j < k ∧ a[j] = m)} Implies

Below we shall show the validity of (A) and (B) and (C); it is then an easy
exercise to check the validity of the rest of the assertions.

To see that (A) is valid, observe that 0 is the only j such that j < 1.

To see that (B) is valid, we must prove that

∀j(j < i → a[j] ≤ m) and (1)

∃j(j < i ∧ a[j] = m) and (2)

a[i] > m (3)

implies

∀j(j < i + 1 → a[j] ≤ a[i]) and (4)

∃j(j < i + 1 ∧ a[j] = a[i]). (5)

To establish (4), let j be given such that j < i + 1: if j = i, the claim is
trivial; otherwise, j < i and the claim follows from (1) and (3). For (5), we
can use j = i.

To see that (C) is valid, we must prove that

∀j(j < i → a[j] ≤ m) and (6)

∃j(j < i ∧ a[j] = m) and (7)

a[i] ≤ m (8)
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implies

∀j(j < i + 1 → a[j] ≤ m) and (9)

∃j(j < i + 1 ∧ a[j] = m). (10)

To establish (9), let j be given such that j < i + 1. If j = i, the claim
follows from (8). Otherwise, j < i and the claim follows from (6). Finally,
(10) follows from (7).

10.2 Verifying Programs Updating Arrays

Next we consider programs which also write on arrays, that is, contain
commands of the form a[i] := E. For such assignments, we want to apply
the proof rule

{ψ(E)}
x := E

. {ψ(x)} Assignment

But if we apply that rule naively to the assignment a[2] := x and the post-
condition ∀j(j < 10 → a[j] > 5), substituting the right hand side of the
assignment for the left hand side, we would infer (since a[2] does not occur
in the postcondition) that the following program is well-annotated:

{∀j(j < 10 → a[j] > 5)}
a[2] := x

{∀j(j < 10 → a[j] > 5)}

This is clearly unsound, as can be seen by taking x = 3.

Instead, the proper treatment is to interpret an assignment a[i] := E as
being really the assignment

a := a{i 7→ E}

That is, we assign to a an array that is like a, except that in position i it
behaves like E. More formally, we have

a{i 7→ E}[j] = E if j = i

a{i 7→ E}[j] = a[j] if j 6= i

Then, in the above example, we get the well-annotated program
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{∀j(j < 10 → a{2 7→ x}[j] > 5)}
a[2] := x

{∀j(j < 10 → a[j] > 5)}

where the precondition can be simplified to

∀j((j < 10 ∧ j 6= 2) → a[j] > 5) ∧ x > 5

which is as expected.

As a larger example, let us construct a program that rearranges the first k
elements of an array a such that the highest element is placed in position
number 0.

The desired postcondition can be expressed as follows:

∀j(j < k → a[j] ≤ a[0]) ∧ perm(a, a0)

where the logical variable a0 denotes the initial value of a; the latter condi-
tion perm(a, a0) is also part of the precondition. We shall need a loop, and
it seems reasonable to guess that its test should be i 6= k and its invariant
should be

ψ : ∀j(j < i → a[j] ≤ a[0]) ∧ perm(a, a0)

since then the loop invariant, together with the negation of the loop test,
will imply the postcondition. With the aim of establishing and maintaining
the invariant ψ, we construct the following program:

i := 1;
while i 6= k do

if a[i] > a[0]
then

t := a[0];
a[0] := a[i];
a[i] := t;
i := i + 1

else

i := i + 1
fi

od
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To prove the correctness of this program, we annotate it, as done in Fig. 1.
Below we shall show the validity of (D); it is then an easy exercise to check
the validity of the rest of the assertions.

Let a′ = a{0 7→ a[i]}{i 7→ a[0]}; we must prove that

∀j(j < i → a[j] ≤ a[0]) and (11)
perm(a, a0) and (12)
a[i] > a[0] (13)

implies

∀j(j < i + 1 → a′[j] ≤ a′[0]) and (14)
perm(a′, a0) (15)

Clearly a′ is a permutation of a, so (15) follows from (12). To show (14), let
j < i+1 be given; we must show that a′[j] ≤ a′[0] which is trivial if j = 0 so
assume that 0 < j < i+ 1. Since a′[0] = a[i], our task can be accomplished
by showing that

a′[j] ≤ a[i].

We do so by a case analysis on the value of j. If j = i, the claim follows
from (13) since a′[j] = a[0]. Otherwise, 0 < j < i and therefore a′[j] = a[j];
the claim thus boils down to showing a[j] ≤ a[i] which follows from (11)
and (13).
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{perm(a, a0)}

{∀j(j < 1 → a[j] ≤ a[0]) ∧ perm(a, a0)} Implies

i := 1;

{ψ} Assignment

while i 6= k do

{ψ ∧ i 6= k} WhileTrue

if a[i] > a[0]

then

{ψ ∧ i 6= k ∧ a[i] > a[0]} IfTrue

{∀j(j < i + 1 → a{0 7→ a[i]}{i 7→ a[0]}[j] ≤ a{0 7→ a[i]}{i 7→ a[0]}[0])
∧ perm(a{0 7→ a[i]}{i 7→ a[0]}, a0)} Implies(D)

t := a[0];

{∀j(j < i + 1 → a{0 7→ a[i]}{i 7→ t}[j] ≤ a{0 7→ a[i]}{i 7→ t}[0])
∧ perm(a{0 7→ a[i]}{i 7→ t}, a0)} Assignment

a[0] := a[i];

{∀j(j < i + 1 → a{i 7→ t}[j] ≤ a{i 7→ t}[0])
∧ perm(a{i 7→ t}, a0)} Assignment

a[i] := t;

{∀j(j < i + 1 → a[j] ≤ a[0])
∧ perm(a, a0)} Assignment

i := i + 1

{ψ} Assignment

else

{ψ ∧ i 6= k ∧ a[i] ≤ a[0]} IfFalse

{∀j(j < i + 1 → a[j] ≤ a[0])
∧ perm(a, a0)} Implies

i := i + 1

{ψ} Assignment

fi

{ψ} IfEnd

od

{ψ ∧ i = k} WhileFalse

{∀j(j < k → a[j] ≤ a[0]) ∧ perm(a, a0)} Implies

Figure 1: A well-annotated program for putting the highest array value first.
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A Some Previous Exam Questions

Question I (Fall 2002)

Given a positive integer x, we may define its integer logarithm as the largest
integer y with the property that 2y ≤ x. (Example: the integer logarithm
of 10 is 3, since 23 = 8 ≤ 10 but 24 = 16 > 10.)

We claim that if the program below terminates then y will denote the integer
logarithm of x. Prove this claim by well-annotating the program. This
includes

a. formalizing the desired postcondition of the program;

b. coming up with a suitable invariant for the while loop.

You can ignore the implicit demand that the value of x should not change
(that is, don’t bother about introducing a logical variable x0).

y := 0;

w := 2;

while w ≤ x do

y := y + 1;

w := 2 ∗ w

od

This question carried 8 out of 25 points in a 50 minutes test.
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Proposed Answer for I

The desired postcondition is

{2y ≤ x ∧ 2y+1 > x}

which can be established using the loop invariant

2y ≤ x ∧ w = 2y+1

The program can now be well-annotated:

{x ≥ 1} Precondition
{20 ≤ x ∧ 2 = 20+1} Implies

y := 0;
{2y ≤ x ∧ 2 = 2y+1} Assignment

w := 2;
{2y ≤ x ∧ w = 2y+1} Assignment

while w ≤ x do

{2y ≤ x ∧ w = 2y+1 ∧ w ≤ x} WhileTrue

{2y+1 ≤ x ∧ 2w = 2y+1+1} Implies

y := y + 1;
{2y ≤ x ∧ 2w = 2y+1} Assignment

w := 2 ∗ w
{2y ≤ x ∧ w = 2y+1} Assignment

od

{2y ≤ x ∧ w = 2y+1 ∧ w > x} WhileFalse

{2y ≤ x ∧ 2y+1 > x} Implies

38



Question II (Spring 2003)

Assume we have a predicate divides with the property that

divides(x,w) = TRUE if and only if there exists an integer z with w = xz.

(For example, divides(3, 6) = TRUE but divides(3, 7) = FALSE.) Next we
define a predicate P as follows:

P(n, q) = TRUE if and only if ∀i[(1 < i ∧ i < q) → ¬divides(i, n)]

(For example, P(25, 5) = TRUE but P(25, 6) = FALSE.) By this definition,

for n ≥ 2, n is a prime if and only if P(n, n).

The following program is supposed to decide whether its input n is a prime,
and store the answer in the boolean identifier prime. (In the last program
line, if q = n then TRUE is assigned to prime, otherwise FALSE is assigned
to prime.)

{n ≥ 2}
q := 2;
while ¬divides(q, n) do

q := q + 1
od;
prime := (q = n)

{prime ↔ P(n, n)}

It turns out that a suitable invariant for the while loop is

2 ≤ q ∧ q ≤ n ∧ P(n, q)

Given that invariant, write down a well-annotated version of the program
so as to demonstrate that the program does indeed satisfy its specification.

We shall be interested in total correctness, so you must also argue that the
program always terminates. And for each instance of the rule Implies, you
must explicitly argue that the assertion is indeed a logical consequence of
the previous assertion.

This question carried 8 out of 25 points in a 90 minutes test.
In retrospective, though, this question was way too hard.

39



Proposed Answer for II

{n ≥ 2}
{2 ≤ 2 ≤ n ∧ P(n, 2)} Implies1

q := 2;
{2 ≤ q ≤ n ∧ P(n, q)} Assignment

while ¬divides(q, n) do
{2 ≤ q ≤ n ∧ P(n, q) ∧ ¬divides(q, n)} WhileTrue

{2 ≤ q + 1 ≤ n ∧ P(n, q + 1)} Implies2

q := q + 1
{2 ≤ q ≤ n ∧ P(n, q)} Assignment

od;
{2 ≤ q ≤ n ∧ P(n, q) ∧ divides(q, n)} WhileFalse

{(q = n) ↔ P(n, n)} Implies3

prime := (q = n)
{prime ↔ P(n, n)} Assignment

Here Implies1 is justified, since P(n, 2) is vacuously true (as there is no
integer i such that 1 < i < 2).

To see that Implies2 is justified, observe that

• P(n, q) ∧ ¬divides(q, n) implies P(n, q + 1);

• ¬divides(q, n) implies q 6= n.

To see that Implies3 is justified, observe that

• if q = n then clearly P(n, n) is a consequence of P(n, q);

• if q 6= n, then q < n and from divides(q, n) we infer that P(n, n) does
not hold.

We now show termination, using a proof by contradiction: assume that q

keeps on being incremented. Since initially q ≤ n, at some point it will
hold that q = n, implying that divides(q, n). Then we exit the loop,
contradicting our assumption.
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Question III (Fall 2003)

Below is written a program which given x and n raises x to the power of
n and stores the result in y (without changing x or n). An invariant for
the while loop is given. Prove that the program is partially correct, by
completing the assertions so as to produce a well-annotated program. (You
do not need to argue for the validity of any application of Implies.)

{n ≥ 0}

y := 1;

w := x;

k := n;

{y · wk = xn}

while k 6= 0 do

if k is even

then

k := k/2;

w := w ∗ w

else

k := k− 1;

y := y ∗ w

fi

od

{y = xn}

This question carried 6 out of 25 points in a 90 minutes test.
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Proposed Answer for III

{n ≥ 0}

{1 · xn = xn} Implies

y := 1;

{y · xn = xn} Assignment

w := x;

{y · wn = xn} Assignment

k := n;

{y · wk = xn} Assignment

while k 6= 0 do

{y · wk = xn ∧ k 6= 0} WhileTrue

if k is even

then

{y · wk = xn ∧ k 6= 0 ∧ k is even} IfTrue

{y · (w2)k/2 = xn} Implies

k := k/2;

{y · (w2)k = xn} Assignment

w := w ∗ w

{y · wk = xn} Assignment

else

{y · wk = xn ∧ k 6= 0 ∧ k is odd} IfFalse

{y · w · wk−1 = xn} Implies

k := k− 1;

{y · w · wk = xn} Assignment

y := y ∗ w

{y · wk = xn} Assignment

fi

{y · wk = xn} IfEnd

od

{y · wk = xn ∧ k = 0} WhileFalse

{y = xn} Implies
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Question IV (Spring 2004)

We consider an array a with n (> 0) elements, a[0] . . . a[n− 1]. Below is a
program that decides whether a is sorted: if it is, the identifier k ends up
having the value n− 1; if it is not, k ends up having the value n.

The loop invariant, and the postcondition, have been given. Complete the
assertions, thus demonstrating that the program satisfies its specification
(which actually proves only one part of correctness.) You do not need to
argue that the applications of the Implies rule are valid.

{n > 0}

k := 0;

{k < n→ ∀j(j < k → a[j] ≤ a[j + 1])}

while k < n− 1 do

if a[k] ≤ a[k + 1]

then

k := k + 1

else

k := n

fi

od

{k < n→ ∀j(j < n− 1 → a[j] ≤ a[j + 1])}

This question carried 6 out of 25 points in a 100 minutes test.
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Proposed Answer for IV

{n > 0}
{0 < n→ ∀j(j < 0 → a[j] ≤ a[j + 1])} Implies

k := 0;
{k < n→ ∀j(j < k → a[j] ≤ a[j + 1])} Assignment

while k < n− 1 do

{(k < n→ ∀j(j < k → a[j] ≤ a[j + 1])) ∧ k < n− 1} WhileTrue

if a[k] ≤ a[k + 1]
then

{(k < n→ ∀j(j < k → a[j] ≤ a[j + 1])) ∧ k < n− 1 ∧ a[k] ≤ a[k + 1]} IfTrue

{k + 1 < n→ ∀j(j < k + 1 → a[j] ≤ a[j + 1])} Implies

k := k + 1
{k < n→ ∀j(j < k → a[j] ≤ a[j + 1])} Assignment

else

{(k < n→ ∀j(j < k → a[j] ≤ a[j + 1])) ∧ k < n− 1 ∧ a[k] > a[k + 1]} IfFalse

{n < n→ ∀j(j < n→ a[j] ≤ a[j + 1])} Implies

k := n
{k < n→ ∀j(j < k → a[j] ≤ a[j + 1])} Assignment

fi

{k < n→ ∀j(j < k → a[j] ≤ a[j + 1])} IfEnd

od

{(k < n→ ∀j(j < k → a[j] ≤ a[j + 1])) ∧ k ≥ n− 1} WhileFalse

{k < n→ ∀j(j < n− 1 → a[j] ≤ a[j + 1])} Implies
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Question V (Fall 2004)

Consider the program below, which given a positive integer y multiplies it
by two (in a silly way), and stores the result in x.

{y = y0 ∧ y0 > 0}

x := 0;

while y 6= 0 do

y := y− 1

x := x + 2

od

{x = 2y0}

The main issue in proving correctness is to come up with a suitable invariant.
First argue why the following suggested invariants will not work:

• x ≥ 0

• x + 2y = 2y0 ∧ x > 0

• x + (2y)(x+1) = 2y0

It turns out that a suitable invariant is x + 2y = 2y0. Using that invariant,
give a formal proof of (partial) correctness of the above program, by well-
annotating it.

This question carried 10 out of 25 points in a 50 minutes test.
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Proposed Answer for V

Each of the purported invariants satisfies 2 of the 3 requirements, but. . .

• x ≥ 0 is not strong enough to let us infer the postcondition;

• x + 2y = 2y0 ∧ x > 0 is not established by the preamble;

• x + (2y)(x+1) = 2y0 is not maintained by the loop body.

That x + 2y = 2y0 is a suitable invariant follows from the well-annotated
program

{y = y0 ∧ y0 > 0}
{0 + 2y = 2y0} Implies

x := 0;
{x + 2y = 2y0} Assignment

while y 6= 0 do

{x + 2y = 2y0 ∧ y 6= 0} WhileTrue

{x + 2 + 2(y− 1) = 2y0} Implies

y := y− 1
{x + 2 + 2y = 2y0} Assignment

x := x + 2
{x + 2y = 2y0} Assignment

od

{x + 2y = 2y0 ∧ y = 0} WhileFalse

{x = 2y0} Implies
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