
CIS 301: Lecture Notes on Induction

Torben Amtoft
Department of Computing and Information Sciences

Kansas State University

November 20, 2007

These notes are written as a supplement to [1, Sect. 16.1&16.3], but can be
read independently.

1 Loop Invariants: Induction in Disguise

Consider a loop of the form while B do C od, and assume that we know1

ψ is established by the preamble of the loop (1)

if with B true, ψ holds prior to C, then ψ also holds after C (2)

Then we can infer that

ψ is an invariant of the loop. (3)
That is, each time control reaches B, ψ holds.

1Using the framework of CIS 301: Lecture Notes on Program Verification, available at
http://www.cis.ksu.edu/~tamtoft/CIS301/Fall07/verification.pdf, this amounts to
(1) and (2) below being valid assertions.

{ψ} (1)
while B do

{ψ ∧B} WhileTrue
C

{ψ} (2)
od

1

Now observe that2

• (1) amounts to saying that ψ holds after 0 iterations;

• (2) amounts to saying that if ψ holds after k iterations, then after k+1
iterations ψ also holds;

• (3) amounts to saying that after any number (≥ 0) of loop iterations,
ψ holds.

We thus have the following

Principle 1 (Induction on Iterations). Assume that for a given loop,

• ψ holds after 0 iterations; and

• if ψ holds after k iterations then, after k + 1 iterations, ψ also holds.

Then, for all k ≥ 0, after k iterations, ψ will hold.

2 Induction on Natural Numbers

Principle 1 carries over to a general principle:

Principle 2 (Induction on Natural Numbers). Assume Q is such that

• Q(0) holds; and

• for all natural numbers k, if Q(k) holds then also Q(k + 1) holds.

Then, for all natural numbers k, Q(k) holds.

This is the rule mentioned in [1, p. 454]; in Fitch format, it can be written

Q(0)
...
∀k((Nat(k) ∧Q(k)) → Q(k + 1))
...

B ∀k(Nat(k) → Q(k))
2When we say that ψ holds after k iterations, we mean that if the loop iterates at least

k times then ψ holds after the k’th iteration. If control exits from the loop earlier, or if
one of the first k iterations gives rise to infinite computation (due to a subloop), then it
is vacuously true that “ψ holds after k iterations”.

2

Here Nat is a predicate3 that is true on exactly the numbers 0, 1, 2, 3, 4,

It is instructive to note that a sentence ∀k(Nat(k) → Q(k)) might also be
provable using a “General Conditional Proof”:

k Nat(k)

...
Q(k)

B ∀k(Nat(k) → Q(k))

But such an approach is less likely to succeed, since when proving Q(k)
for an arbitrary k, we now cannot assume Q(k − 1). On the other hand, a
general conditional proof may be the only way to establish ∀k(P (k) → Q(k))
in the case where the objects satisfying P do not have any “structure”.

Example 2.1 ([1, p. 454]). We want to prove that for all natural numbers
n we have

1 + · · ·+ n =
n(n+ 1)

2
With LHS and RHS given by

LHS(n) = 1 + · · ·+ n

RHS(n) =
n(n+ 1)

2

the claim is that for all natural numbers n we have Q(n) where Q(n) is given
by LHS(n) = RHS(n). We prove that by induction:

Basis step. We must establish Q(0), that is LHS(0) = RHS(0). Since
LHS(0) = 0 (as the sum of zero numbers is 0), this follows since RHS(0) =
0·1
2 = 0.

Inductive step. We can assume that Q(n) holds, that is LHS(n) = RHS(n),

3Alternatively, we could define Nat to hold only on 1, 2, 3, 4, . . . but not on 0. Our choice
does not matter much as long as we are consistent, unlike the formulation of Proposition 4
in [1, p.454] which—even though 0 just earlier on the page has been declared the first
natural number—implicitly assumes that the first n natural numbers are 1, . . . , n.

3

and must prove that Q(n+ 1) holds. But this follows since

LHS(n+ 1) = (1 + · · ·+ n) + (n+ 1) = LHS(n) + (n+ 1)

= RHS(n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)
2

= RHS(n+ 1)

where the third equality follows from the induction hypothesis.

2.1 Alternative formulations

Sometimes, we need to use another starting point than zero, say m0:

Q(m0) ∧ Nat(m0)
...
∀k((Nat(k) ∧ k ≥ m0 ∧Q(k)) → Q(k + 1))
...

B ∀k((Nat(k) ∧ k ≥ m0) → Q(k))

Below is an application of this principle, with m0 = 3.

Theorem 2.2. For a k-polygon (k ≥ 3), the sum of its angles is given by
(k − 2) · 180 degrees.

Proof. (Informal.) For the basis step, we must consider k = 3; the claim is
that the sum of the angles in a triangle is 180 degrees. But this is a fact
from elementary geometry.

For the inductive step, consider a (k + 1)-polygon P . It is not hard to see
that P can be split into a triangle and a k-polygon; the sum of the angles in
the former is 180 degrees (cf. above), and the sum of the angles in the latter
is (k− 2) · 180 degrees (by the induction hypothesis). Therefore, the sum of
the angles in P is 180 + (k − 2) · 180 = ((k + 1)− 2) · 180, as desired.

A somewhat different perspective is offered by the following rule4:
4For simplicity, we implicitly assume that all entities are natural numbers.

4

Principle 3 (Course-of-values induction). In order to prove that Q(k) holds
for all natural numbers k, it suffices to show the following property for all k:
given that Q holds for all numbers less than k, Q also holds for k. Expressed
in Fitch notation:

∀k(∀m(m < k → Q(m)) → Q(k))
...

B ∀kQ(k)

To justify the validity of course-of-values induction, assume (in order to
arrive at a contradiction) that the conclusion does not hold. That is, there
exists natural numbers not satisfying Q. Let k be the least such number.
That is, for all m < k we have Q(m). But then our premise tells us that also
Q(k), yielding the desired contradiction. (A variation of this proof, where
we do a proof by cases depending on whether k = 0 or k > 0, can be used
to establish the validity of the original induction principle.)

Note that to establish the premise required for course-of-values induction, a
proof of the following form is probably needed:

k ∀m(m < k → Q(m))

...
Q(k)

∀k(∀m(m < k → Q(m)) → Q(k))

We now give an example that illustrates the usefulness of course-of-values
induction. We shall consider the Fibonacci numbers5 given by

fib(n) = case n of
0 ⇒ 1
1 ⇒ 1
m+ 2 ⇒ fib(m+ 1) + fib(m)

Theorem 2.3. If n + 1 is divisible by 3, then fib(n) is an even number,
otherwise fib(n) is an odd number.

5See http://en.wikipedia.org/wiki/Fibonacci number (which uses a slightly differ-
ent definition) for a survey of some properties of these.

5

Proof. We shall employ course-of-values induction. There is thus no base
step, but “only” the inductive step. Here we have to establish, for an arbi-
trary n, with Q the property mentioned in the theorem, that if Q(m) holds
for all m < n then also Q(n) holds. We have to do a case analysis.

Case 1: n = 0 or n = 1. Then n + 1 is not divisible by 3, and accordingly
fib(n) = 1 which is odd.

Case 2: n+ 1 is divisible by 3. Then neither (n − 1) + 1 nor (n − 2) + 1 is
divisible by 3. Our induction hypothesis thus tells us that fib(n − 1) and
fib(n− 2) are both odd. As fib(n) = fib(n− 1)+fib(n− 2), this implies that
fib(n) is even, as desired.

Case 3: n > 2 and n+ 1 is not divisible by 3. Then exactly one of (n−1)+1
and (n−2)+1 is divisible by 3. Our induction hypothesis then tells us that
exactly one of fib(n − 1) and fib(n − 2) is even. As fib(n) = fib(n − 1) +
fib(n− 2), this implies that fib(n) is odd, as desired.

Note that the last two steps could not have been carried out using the
original principle of induction (Principle 2), where we in order to establish
Q(n) can assume only Q(n− 1) but not Q(n− 2).

We can actually be much more specific about the value of fib(n):

Theorem 2.4. For all n we have

fib(n) =
φn+1 − (−1

φ)n+1

√
5

where φ, also called the golden ratio6, is the positive solution to the equation

φ2 − φ− 1 = 0 (1)

Thus we have

φ =
1 +

√
5

2
≈ 1.618 (2)

Proof. Again, we do a course-of-values induction. First, however, observe
(by successively dividing by φ on both sides of (1)) that

φ− 1− 1
φ

= 0 (3)

1− 1
φ
− 1
φ2

= 0 (4)

6See, e.g., http://mathworld.wolfram.com/GoldenRatio.html for background infor-
mation on φ.

6

There are three cases; in the first two, it is convenient to work “backwards”.

Case 1: n = 0. By (3) and then (2), we infer the desired equality:

φ0+1 − (−1
φ)0+1

√
5

=
φ+ 1

φ√
5

=
φ+ φ− 1√

5
=
√

5√
5

= 1 = fib(0)

Case 2: n = 1. Using that φ + 1
φ =

√
5 (established in previous case), and

then (3), we infer the desired equality:

φ1+1 − (−1
φ)1+1

√
5

=
φ2 − 1

φ2

√
5

=
(φ+ 1

φ)(φ− 1
φ)

√
5

= φ− 1
φ

= 1 = fib(1)

Case 3: n = m+ 2. Here we infer the desired equality as follows:

fib(n) = (definition of fib(n))

fib(m+ 1) + fib(m) = (induction hypothesis)

φm+2 − (−1
φ)m+2

√
5

+
φm+1 − (−1

φ)m+1

√
5

= (rearrangement)

φm+1 + φm+2 − (−1
φ)m+1 − (−1

φ)m+2

√
5

= (common factor)

φm+1(1 + φ)− (−1
φ)m+1(1− 1

φ)
√

5
= (using (1) and (4))

φm+1φ2 − (−1
φ)m+1(1

φ2)
√

5
= (since n = m+ 2)

φn+1 − (−1
φ)n+1

√
5

3 Induction on Lists

Lists, a very common data structure, are inductively defined as follows:

base clause: List(nil) holds;

inductive clause: if List(x) and v is a value then also List(v c© x).

7

That is, a list is either empty (nil), or a value v in front of a list; here values
could be natural numbers but also characters etc. (and they could even be
lists themselves!)

Example 3.1. Consider a list with the elements 5,7,4 (note that the order
matters). This list is in our syntax written as

5 c© (7 c© (4 c© nil))

which we may abbreviate as [5, 7, 4]. A graphic representation is

C
/ \
5 C

/ \
7 C

/ \
4 nil

Lists, as defined above, are very similar to the “linked lists” seen in pointer
languages like C. In particular, unlike what is the case for arrays, one does
not have direct access to each element, but must instead follow a chain of
pointers. A key difference, however, is that lists are immutable: in the above
example, we cannot replace say 7 by 8; if we do want a list [5, 8, 4], we must
construct it from scratch! This might seem inconvenient, but in fact makes
reasoning about programs much simpler: if we allow a program to change
the object denoted by p1, that could (perhaps inadvertently) also change
the object denoted by p2, if the two pointers p1 and p2 happen to alias.

Principle 4 (List induction). In order to show that a property holds for all
lists, it suffices to show that it holds for the empty list, and that the property
holds for a non-empty list provided it holds for its “tail”. Expressed in Fitch
notation:

Q(nil)
...
∀x∀v((List(x) ∧Q(x)) → Q(v c© x))
...

B ∀x(List(x) → Q(x))

We also call this induction principle structural induction.

8

To justify the validity of list induction, assume (in order to arrive at a
contradiction) that the conclusion does not hold. That is, there exists lists
not satisfying Q. Let x be among the “shortest” such lists (there might be
several choices). That is, for all y such that y is shorter than x we have
Q(y).

We shall do a case analysis depending on whether x is nil or not, in both
cases arriving at a contradiction. If x = nil, the contradiction comes since
our first premise then tells us that Q(x) does hold. If x is of the form v c© y,
then y is shorter than x so Q(y) holds, which by our second premise implies
that also Q(x) holds, yielding the desired contradiction.

Definition 3.2. The append function, taking two lists x and y as argu-
ments and returning their concatenation x++ y (also a list), is given by the
following recursive definition

x++ y = case x of
nil ⇒ y
(v c© x′) ⇒ v c© (x′ ++ y)

For example, we have [5, 7] ++ [8, 4] = [5, 7, 8, 4] since

(5 c© (7 c© nil)) ++ (8 c© (4 c© nil))
= 5 c© ((7 c© nil) ++ (8 c© (4 c© nil)))
= 5 c© (7 c© (nil ++ (8 c© (4 c© nil))))
= 5 c© (7 c© (8 c© (4 c© nil)))

By definition, nil is a “left neutral element” for the append function. We
shall now show that it is also a right neutral element.

Theorem 3.3. For all lists x, we have x++ nil = x.

Proof. With Q(x) given by x ++ nil = x, we shall prove by list induction
that Q(x) holds for all lists x. For the basis step, we must establish Q(nil),
that is nil ++ nil = nil which is trivial from Definition 3.2.

For the inductive step, we can assume Q(x) and must show Q(v c© x), which
follows from the calculation (v c© x)++ nil = v c© (x++ nil) = v c© x. Here
we used Definition 3.2 for the first equality, and the induction hypothesis
for the second equality.

We can also prove that the append function is associative:

9

Theorem 3.4. For all x,y,z, we have (x++ y) ++ z = x++ (y ++ z).

Proof. We do structural induction on x (it is easy to see that induction in
y or z will not work): for given y and z, we define Q(x) as the predicate
(x++ y) ++ z = x++ (y ++ z).

For the basis step, we must establish Q(nil), that is

(nil ++ y) ++ z = nil ++ (y ++ z)

which follows as both left hand side and right hand side reduces to y ++ z.

For the inductive step, we can assume Q(x), and must establish Q(v c© x),
which follows from the calculation

((v c© x) ++ y) ++ z = (Definition 3.2)
(v c© (x++ y)) ++ z = (Definition 3.2)
v c© ((x++ y) ++ z) = (Induction hypothesis)
v c© (x++ (y ++ z)) = (Definition 3.2, backwards)
(v c© x) ++ (y ++ z)

3.1 Other kinds of structural induction

In Sect. 2.1 we saw that for natural numbers, “course-of-values induction”
is often more applicable than the standard induction principle. Similarly,
for other inductively defined data structures (like binary trees), it is often
more convenient to apply the following induction principle

∀x(∀y(y “smaller than” x→ Q(y)) → Q(x))
...

B ∀xQ(x)

The unspecific “smaller than” can be defined in a numerous ways. For binary
trees, one could for instance say that “y is smaller than x” iff y has fewer
nodes than x.

References

[1] Jon Barwise and John Etchemendy. Language, Proof and Logic. CSLI
Publications, 1999.

10

