
CIS 301: Lecture Notes on Program Verification

Torben Amtoft

Department of Computing and Information Sciences

Kansas State University

May 5, 2003

These notes are written as a supplement to [1, Sect. 16.5], but can be read in-
dependently. The proof rules are inspired by the presentation in [3, Chap. 4].
Section 5 is inspired by Chapter 16 in [2], an excellent treatise on the subject
of program construction.

1 Hoare Triples

To reason about correctness we shall consider Hoare triples, of the form

{φ}
P

{ψ}

saying that if φ (the precondition) holds prior to executing program code P
then ψ (the postcondition) holds afterwards.

Actually, the above description is ambiguous: what if P does not terminate?
Therefore we shall distinguish between

partial correctness: if P terminates then ψ holds;

total correctness: P does terminate and then ψ holds.

In these notes, we shall interpret a Hoare triple as denoting partial correct-
ness unless stated otherwise.

1



2 Software Engineering

In light of the notion of Hoare triples, one can think of software engineering
as a 3-stage process:

1. Translate the demands D of the user into a specification (φD, ψD).

2. Write a program P that satisfies the specification constructed in 1.

3. Prove that it in fact holds that

{φD}
P

{ψD}

When it comes to software practice, 1 is a huge task (involving numerous dis-
cussions with the users) and hardly ever done completely. While 2 obviously
has to be done, 3 is almost never carried out.

When it comes to academic discourse, 1 is an interesting task but only briefly
touched upon (Section 3) in CIS 301. Instead, we shall focus on 3 (Section
4), but also give a few basic heuristics for how to do 2 and 3 simultaneously
(Section 5).

3 Specifications

Square root

Suppose the user demands

Compute the square root of x and store the result in y

As a first attempt, we may write the specification

P

{y2 = x}

We now remember that we cannot compute the square root of negative
numbers and therefore add a precondition:

2



{x ≥ 0}
P

{y2 = x}

Then we realize that if x is not a square then we have to settle for an
approximation (since we are working with integers):

{x ≥ 0}
P

{y2 ≤ x}

On the other hand, this is too liberal: we could just pick y to be zero.
Therefore, we must also specify that y is the largest number that does the
job:

{x ≥ 0}
P

{y2 ≤ x ∧ (y+ 1)2 > x}

which seems a sensible specification of the square root program. (Observe
that it entails that y has to be non-negative. Why?)

Factorial

Now assume that the user demands

Ensure that y contains the factorial of x.

(Remember that the factorial function is defined by

fac(0) = 1

fac(n+ 1) = (n+ 1)fac(n) for n ≥ 0

and thus

fac(0) = 1, fac(1) = 1, fac(2) = 2, fac(3) = 6, fac(4) = 24, etc.)

It therefore seems that this should produce the specification

3



{x ≥ 0}
P

{y = fac(x)}

Well, it’s not hard to write a program satisfying this specification:

{x ≥ 0}
x := 4;
y := 24

{y = fac(x)}

The user may respond:

Hey, that’s cheating! You were not allowed to change x.

Well, if not that better has to be part of the specification! But how to
incorporate such demands? We shall need the concept of logical variables:
these do not occur in programs, only in specifications, and are written with
a subscript.

Using the logical variable x0 to denote the initial (and un-changed) value of
x, a program computing factorials can be specified as follows:

{x = x0 ≥ 0}
P

{y = fac(x0) ∧ x = x0}

Similarly, the specification of the square root program can be modified.

4 Proving Correctness

We shall now discuss how to verify a claim that

{φ}
P

{ψ}

4



where P is a program written in a language with the following simple1

syntax:

C ::= x := E

| C1; C2

| if B then C1 else C2 fi

| while B do C od

where B stands for boolean tests of the form E1 < E2, E1 ≤ E2, E1 6= E2,
etc; and E stands for integer expressions of the form n (a constant), x
(a variable), E1 + E2, E1 − E2, etc. Programs are thus constructed from
assignments, sequential composition, conditionals, and while-loops2.

4.1 Invariants

For the purpose of verification, the notion of invariants is crucial.

4.1.1 Motivating example

We look at the following program for computing the factorial function3 (cf.
Section 3).

{x ≥ 0}
y := 1;
z := 0;
while z 6= x do

z := z+ 1;
y := y ∗ z

od

{y = fac(x)}

1Many desirable language features (such as procedures) are absent from our language
which, however, is “Turing-complete” in that it can encode all other features one can
imagine!

2Note that we use the symbol od to end while-loops, rather than a curly bracket as this
symbol is used for writing pre- and post-conditions. Similarly, we use fi as a delimiter
for conditionals.

3Since the program does not change the value of x, we can safely write its specification
without employing a logical variable x0.

5



There are many mistakes we could have made when writing that program:
for instance we could have reversed the two lines in the loop body (in which
case y would be assigned zero and keep that value forever), or we could have
written the loop test as z ≤ x (in which case y would end up containing
fac(x+ 1)).

Let us now convince ourselves that what we wrote is correct. We might first
try a simulation: if say x = 4, the situation at the entry of the loop is:

x y z

After 0 iterations 4 1 0
After 1 iterations 4 1 1
After 2 iterations 4 2 2
After 3 iterations 4 6 3
After 4 iterations 4 24 4

and then z = x so that the loop terminates, with y containing the desired
result 24 = fac(x). This may boost our confidence in the program, but still
a general proof is needed. Fortunately, the table above may help us in that
endeavor. For it suggests that it is always the case that y = fac(z).

Definition 4.1. A property which holds each time the loop test is evaluated
is called an invariant for the loop.

Equivalently, a property ψ is an invariant for a loop iff ψ holds after any
number (≥ 0) of loop iterations.

We now annotate the program with our prospective invariant:

{x ≥ 0}
y := 1;
z := 0;

{y = fac(z)}
while z 6= x do

z := z+ 1;
y := y ∗ z

od

{y = fac(x)}

Of course, we must prove that what we have found is indeed an invariant:

Proposition 4.2. For all k ≥ 0, after k iterations of the loop it holds that
y = fac(z).

6



This proposition almost begs for a proof by induction!

Establishing the invariant. The base step amounts to checking that
y = fac(z) after 0 iterations. But since the preamble assigns y the value 1
and assigns z the value 0, the claim follows from the fact that fac(0) = 1.

Maintaining the invariant. The inductive step amounts to checking
that if y = fac(z) holds after k iterations, then it also holds after k + 1
iterations. With y′ denoting the value of y after k + 1 iterations, and z′

denoting the value of z after k + 1 iterations, this follows since

y′ = yz′ = y(z+ 1) = fac(z)(z+ 1) = fac(z+ 1) = fac(z′)

where for the third equality we have used the induction hypothesis, and for
the fourth equality we have used the definition of the factorial function.

Completing the correctness proof. We have shown that every time the
loop test is evaluated, it holds that y = fac(z). If (when!) we eventually exit
the loop then the loop test is false, that is z = x. Therefore, if (when) the
program terminates it holds that y = fac(x). This shows that our program
satisfies its specification!

Recall from Section 1, however, that our focus is on partial correctness.
Still, in this case total correctness is not hard to prove: since x is initially4

non-negative, and since z is initialized to zero and incremented by one at
each iteration, eventually z will equal x, causing the loop to terminate.

4.1.2 Proof Principles for Invariants

From the previous subsection we see that three steps are involved when
proving that a certain property ψ is indeed an invariant for a loop:

1. we must show that the code before the loop establishes ψ;

2. we must show that ψ is maintained after each iteration;

3. we must show that if the loop test evaluates to false, ψ is sufficient
to establish the desired postcondition.

4It is interesting that the proof of partial correctness did not use the precondition
x ≥ 0.

7



4.2 Annotated Programs

We have argued that annotating a program with loop invariants is essential
for the purpose of verification (and also to understand how the program
works!) It is often beneficial to provide more fine-grained annotations.

Example 4.3. For our factorial program, a fully annotated version looks
like

{x ≥ 0} (A)
{1 = fac(0)} (B)

y := 1;
{y = fac(0)} (C)

z := 0;
{y = fac(z)} (D)

while z 6= x do

{y = fac(z) ∧ z 6= x} (E)
{y(z+ 1) = fac(z+ 1)} (F)

z := z+ 1;
{yz = fac(z)} (G)

y := y ∗ z
{y = fac(z)} (H)

od

{y = fac(z) ∧ z = x} (I)
{y = fac(x)} (J)

In the next section, we shall see that this program is in fact well-annotated.

4.3 Well-Annotated Programs and Valid Annotations

We first define what it means for an annotation to be valid. There are several
cases:

Logical consequence. If the annotation {ψ} immediately follows the an-
notation {φ}, and ψ is a logical consequence of φ, then ψ is valid.

Trying to conform with the notation used in [1], we can write this rule as

{φ}
. {ψ} Implies (if ψ logical consequence of φ)

8



saying that the marked annotation is valid.

Of course, in order to trust that ψ holds, we must at some point also establish
that φ is valid!

Example 4.4. Referring back to Example 4.3, note that thanks to this rule

• annotation (B) is valid, since it is a logical consequence of annotation
(A);

• annotation (F) is valid, since it is a logical consequence of annotation
(E);

• annotation (J) is valid, since it is a logical consequence of annotation
(I).

Rule for While loops. We have the rule

{ψ}
while B do

. {ψ ∧B} WhileTrue

. . .
{ψ}

od

. {ψ ∧ ¬B} WhileFalse

saying that if ψ is a loop invariant then

• at the beginning of the loop body, the loop test has just evaluated to
true and therefore ψ ∧B will hold;

• immediately after the loop, the loop test has just evaluated to false
and therefore ψ ∧ ¬B will hold.

Note that we are still left with the obligation to show that the two ψ an-
notations (one before the loop, the other at the end of the loop body) are
valid.

Example 4.5. Referring back to Example 4.3, note that annotations (E)
and (I) are valid, thanks to this rule.

9



Rule for Conditionals. We have the rule

{φ}
if B

then

. {φ ∧B} IfTrue

. . .
{ψ}

else

. {φ ∧ ¬B} IfFalse

. . .
{ψ}

fi

. {ψ} IfEnd

saying that if φ holds before a conditional statement then

• at the beginning of the then branch, φ ∧B will hold;

• at the beginning of the else branch, φ ∧ ¬B will hold;

and also saying that ψ holds after the conditional statement if ψ holds at
the end of both branches.

Again, we are left with the obligation to show that the initial φ annotation
is valid, and that the ψ annotations concluding each branch are valid.

Observe that this rule is quite similar to the rule ∨ Elim from propositional
logic!

Rule for Assignments We would surely expect that it for instance holds
that

{y = 5}
x := y+ 2

{x = 7 ∧ y = 5}

and it seems straightforward to go from precondition to postcondition. But
now consider

10



{y+ 2z ≤ 3 ∧ z ≥ 1}
x := y+ z

{???}

where it is by no means a simple mechanical procedure to fill in the question
marks: what does the precondition imply concerning the value of y+ z?

It turns out that we shall formulate the proper rule backwards: if we assign x
the expression E, and we want ψ(x) to hold after the assignment, we better
demand that ψ(E) holds before the assignment! This motivates the rule5

{ψ(E)}
x := E

. {ψ(x)} Assignment

Referring back to our first example, we have

{y = 5}
{y+ 2 = 7 ∧ y = 5} Implies

x := y+ 2
{x = 7 ∧ y = 5} Assignment

And referring back to our second example, we have

{y+ 2z ≤ 3 ∧ z ≥ 1}
{y+ z ≤ 2} Implies

x := y+ z

{x ≤ 2} Assignment

since it is easy to check that if y + 2z ≤ 3 and z ≥ 1 then y + z ≤ 2.

Example 4.6. Referring back to Example 4.3, note that annotations (C),
(D), (G), and (H) are valid, thanks to this rule.

Well-annotation. We are now done with all the rules for validity. Note
that there is no need for a rule for sequential composition C1;C2, since in
an annotation

5As usual, we let ψ(x) denote a formula where x is possibly free, and let ψ(E) denote
the result of substituting E for the free occurrences of x.

11



{φ}
C1;

{φ1}
C2

{φ2}

the validity of each φi (i = 1, 2) must be established using the form of Ci.
But there is a rule for all other language constructs, and also a rule Implies

that is not related to any specific language construct.

We are now ready to assemble the pieces:

Definition 4.7. We say that an annotated program

{φ}
. . .

{ψ}

is well-annotated iff all annotations, except for the precondition φ, are valid.

Theorem 4.8. Assume that the annotated program

{φ}
. . .

{ψ}

is in fact well-annotated. Then the program satisfies its specification (φ,ψ).

12



Example 4.9. The program in Example 4.3 is well-annotated. This follows
from Examples 4.4, 4.5, and 4.6. We can write

{x ≥ 0}
{1 = fac(0)} Implies

y := 1;
{y = fac(0)} Assignment

z := 0;
{y = fac(z)} Assignment

while z 6= x do

{y = fac(z) ∧ z 6= x} WhileTrue

{y(z+ 1) = fac(z+ 1)} Implies

z := z+ 1;
{yz = fac(z)} Assignment

y := y ∗ z
{y = fac(z)} Assignment

od

{y = fac(z) ∧ z = x} WhileFalse

{y = fac(x)} Implies

5 Developing a Correct Program

In Section 4, we considered the situation where we must prove the correctness
of a program which has already been written for a given specification. This
two-step approach has some drawbacks:

• it gives us no clue about how actually to construct programs;

• if the program in question has been developed in an unsystematic
way, perhaps by someone else, it may be hard to detect the proper
invariant(s).

In this section, we shall illustrate that it is often possible to write a program
together with the proof of its correctness.

For that purpose, we look at the square root specification6 from Section 3:

6We have not bothered to employ the device of logical variables, and must therefore
solemnly promise that the program to be constructed will not modify the value of x.

13



{x ≥ 0}
P

{y2 ≤ x ∧ (y+ 1)2 > x}

It seems reasonable to assume that P should be a loop, possibly with some
preamble. With φ the (yet unknown) invariant of that loop, we have the
skeleton

{x ≥ 0}
???

{φ}
while B do

{φ ∧B} WhileTrue

???
{φ}

od

{φ ∧ ¬B} WhileFalse

{y2 ≤ x ∧ (y+ 1)2 > x}

We now face the main challenge: to come up with a suitable invariant φ,
the form of which will direct the remaining construction process. In order
to justify the postcondition, we must ensure that

y2 ≤ x ∧ (y+ 1)2 > x is a logical consequence of φ ∧ ¬B (1)

There are at least two ways to achieve that, to be described in the next two
subsections.

5.1 Deleting a Conjunct

A simple way to satisfy (1) is to define

φ = y2 ≤ x

B = (y+ 1)2 ≤ x

That is, we follow the following general recipe:

• let the loop test be the negation of one of the conjuncts of the post-
condition;

• let the loop invariant be the remaining conjuncts of the postcondition.

14



Our prospective annotated program now looks like

{x ≥ 0}
???

{y2 ≤ x}
while (y+ 1)2 ≤ x do

{y2 ≤ x ∧ (y+ 1)2 ≤ x} WhileTrue

???
{y2 ≤ x}

od

{y2 ≤ x ∧ (y+ 1)2 > x} WhileFalse

The obvious way to establish the loop invariant is to initialize y to zero,
leaving us with the now nearly completed program

{x ≥ 0}
{02 ≤ x} Implies

y := 0
{y2 ≤ x} Assignment

while (y+ 1)2 ≤ x do

{y2 ≤ x ∧ (y+ 1)2 ≤ x} WhileTrue

???
{y2 ≤ x}

od

{y2 ≤ x ∧ (y+ 1)2 > x} WhileFalse

And the obvious way to maintain the loop invariant is to increment y by
one, resulting in the well-annotated program

{x ≥ 0}
{02 ≤ x} Implies

y := 0
{y2 ≤ x} Assignment

while (y+ 1)2 ≤ x do

{y2 ≤ x ∧ (y+ 1)2 ≤ x} WhileTrue

{(y+ 1)2 ≤ x} Implies

y := y+ 1
{y2 ≤ x} Assignment

od

{y2 ≤ x ∧ (y+ 1)2 > x} WhileFalse

15



This program will clearly always terminate, but is rather inefficient. We
shall now describe a method which in this case results in a more efficient
program.

5.2 Replacing an Expression By a Variable

Let us consider another way of satisfying (1). First observe that the post-
condition involves the expression y as well as the expression y+1. It might
be beneficial to loosen the connection between these two entities, by intro-
ducing a new variable w which eventually should equal y + 1 but in the
meantime may roam more freely. Note that the postcondition is implied by
the formula

y2 ≤ x ∧ w2 > x ∧ w = y+ 1

containing three conjuncts. It is thus tempting to apply the previous tech-
nique of “deleting a conjunct”, resulting in

φ = y2 ≤ x ∧ w2 > x

B = w 6= y+ 1

Our prospective annotated program now looks like

{x ≥ 0}
???

{y2 ≤ x ∧ w2 > x}
while w 6= y+ 1 do

{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1} WhileTrue

???
{y2 ≤ x ∧ w2 > x}

od

{y2 ≤ x ∧ w2 > x ∧ w = y+ 1} WhileFalse

{y2 ≤ x ∧ (y+ 1)2 > x} Implies

To establish the loop invariant, we must not only initialize y to zero but also
initialize w so that w2 > x: clearly, x+ 1 will do the job.

16



{x ≥ 0}
{02 ≤ x ∧ (x+ 1)2 > x} Implies

y := 0
{y2 ≤ x ∧ (x+ 1)2 > x} Assignment

w := x+ 1
{y2 ≤ x ∧ w2 > x} Assignment

while w 6= y+ 1 do
. . .

For the loop body, it seems a sensible choice to modify either y or w. This
can be expressed as a conditional of the form

if B′ then

y := E1

else

w := E2

fi

We now plug that into the main program. Even without knowing E1, E2,
or B′, several extra annotations can be provided:

. . .
{y2 ≤ x ∧ w2 > x}

while w 6= y+ 1 do
{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1} WhileTrue

if B′ then

{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1 ∧B′} IfTrue

{E1
2 ≤ x ∧ w2 > x} (A)

y := E1

{y2 ≤ x ∧ w2 > x} Assignment

else

{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1 ∧ ¬B′} IfFalse

{y2 ≤ x ∧ E2
2 > x} (B)
w := E2

{y2 ≤ x ∧ w2 > x} Assignment

fi

{y2 ≤ x ∧ w2 > x} IfEnd

od

{y2 ≤ x ∧ w2 > x ∧ w = y+ 1} WhileFalse

{y2 ≤ x ∧ (y+ 1)2 > x} Implies

17



We still have to justify annotations (A) and (B). But they will follow by
Implies, provided there exists an expression E such that

E1 = E

E2 = E

B′ = E2 ≤ x

We have thus constructed the well-annotated program

{x ≥ 0}
{02 ≤ x ∧ (x+ 1)2 > x} Implies

y := 0
{y2 ≤ x ∧ (x+ 1)2 > x} Assignment

w := x+ 1
{y2 ≤ x ∧ w2 > x} Assignment

while w 6= y+ 1 do
{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1} WhileTrue

if E2 ≤ x

then

{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1 ∧ E2 ≤ x} IfTrue

{E2 ≤ x ∧ w2 > x} Implies

y := E

{y2 ≤ x ∧ w2 > x} Assignment

else

{y2 ≤ x ∧ w2 > x ∧ w 6= y+ 1 ∧ E2 > x} IfFalse

{y2 ≤ x ∧ E2 > x} Implies

w := E

{y2 ≤ x ∧ w2 > x} Assignment

fi

{y2 ≤ x ∧ w2 > x} IfEnd

od

{y2 ≤ x ∧ w2 > x ∧ w = y+ 1} WhileFalse

{y2 ≤ x ∧ (y+ 1)2 > x} Implies

We are left with deciding which E to use. For partial correctness, we have
just seen that any choice will do. But of course, we want to ensure termi-
nation, and hopefully a quick such! For that purpose, we pick

E = (y+ w) div 2

where a div b (for positive b) is the largest integer c such that bc ≤ a. With
that choice, it is not difficult to see that y and w will get closer to each other

18



for each iteration, until eventually w = y+ 1. This shows total correctness.
Even more, the program runs much faster than our first attempt!

References

[1] Jon Barwise and John Etchemendy. Language, Proof and Logic. CSLI
Publications, 1999.

[2] David Gries. The Science of Programming. Springer-Verlag, 1981.

[3] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and reasoning about systems. Cambridge University Press, 2000.

19



A Typical Exam Questions

Question I (Fall 2002)

Given a positive integer x, we may define its integer logarithm as the largest
integer y with the property that 2y ≤ x. (Example: the integer logarithm
of 10 is 3, since 23 = 8 ≤ 10 but 24 = 16 > 10.)

We claim that if the program below terminates then y will denote the integer
logarithm of x. Prove this claim by well-annotating the program. This
includes

a. formalizing the desired postcondition of the program;

b. coming up with a suitable invariant for the while loop.

You can ignore the implicit demand that the value of x should not change
(that is, don’t bother about introducing a logical variable x0).

y := 0;

w := 2;

while w ≤ x do

y := y+ 1;

w := 2 ∗ w

od

20



Proposed Answer for I

The desired postcondition is

{2y ≤ x ∧ 2y+1 > x}

and is satisfied, as shown by the well-annotation

{x ≥ 1} Precondition
{20 ≤ x ∧ 2 = 20+1} Implies

y := 0;
{2y ≤ x ∧ 2 = 2y+1} Assignment

w := 2;
{2y ≤ x ∧ w = 2y+1} Assignment

while w ≤ x do

{2y ≤ x ∧ w = 2y+1 ∧ w ≤ x} WhileTrue

{2y+1 ≤ x ∧ 2w = 2y+1+1} Implies

y := y+ 1;
{2y ≤ x ∧ 2w = 2y+1} Assignment

w := 2 ∗ w
{2y ≤ x ∧ w = 2y+1} Assignment

od

{2y ≤ x ∧ w = 2y+1 ∧ w > x} WhileFalse

{2y ≤ x ∧ 2y+1 > x} Implies

21


