
CIS 301: Lecture Notes on Logic for Security

Torben Amtoft

Department of Computing and Information Sciences

Kansas State University

May 5, 2004

These notes are inspired by [1].

1 Secure Information Flow

Assume we are dealing with two kinds of variables: those of high security (clas-
sified); and those of low security (non-classified). Our goal is that users with
low clearance should not be able to gain information about the values of the
classified variables. In the following, this notion will be made precise.

For the sake of simplicity, let us assume that there are only two variables
in play: l (for low) and h (for high). We want to protect ourselves against an
attacker (spy) who

• knows the initial value of l;

• knows the program that is running;

• can observe the final value of l;

• can not observe intermediate states of program execution.

A program is said to be secure if such an attacker cannot detect anything about
the initial value of h.

1.1 Examples

The program below is not secure.

l := h + 7 (1)

For by subtracting 7 from the final value of l, the attacker gets the initial value
of h. On the other hand, the program below is clearly secure.

l := l + 47 (2)

1



One rotten apple does not always spoil the whole barrel; having the insecure
program in (1) as a preamble may still yield a secure program as in

l := h + 7; l := 27 (3)

since we assumed that the attacker cannot observe intermediate values of l.
Also the following program is secure:

h := l (4)

For even though the attacker learns the final value of h (as it equals the initial
value of l which is known), he is still clueless about the initial value of h.

The following program is just a fancy way of writing l := h + 7 (since we do
not care about the final value of h)

l := 7; while h > 0 do h := h− 1; l := l + 1 od (5)

and is therefore insecure. Also, the following program is insecure

if h = 6789 then l := 0 else l := 1 fi (6)

since if the final value of l is zero, we know that h was initially 6789.

1.2 Specification

By putting quantifiers in front of Hoare triples, we can express security formally:

Definition: The program P is secure iff

∀l0 ∃l1 ∀h0 ∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

To put it another way, the final value (l1) of l must depend only on the initial
value (l0) of l and not on the initial value (h0) of h.

By negating this definition (and applying de Morgan’s laws repeatedly), we
arrive at:

Observation: The program P is insecure iff

∃l0 ∀l1 ∃h0 ¬∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

To put it another way, a program is insecure if for all possible final values of l,
there exists an initial value of h that produces a different final value for l.

2



1.3 Examples Revisited

We first address the programs that are secure, and show that they do indeed
meet the requirement stated in our Definition. In each case, we are given some
l0 and must find l1 such that

∀h0 ∃h1

{l = l0 ∧ h = h0}
P

{l = l1 ∧ h = h1}

For the program in (2), we choose l1 as l0 + 47; this does the job since

∀h0 ∃h1

{l = l0 ∧ h = h0}
l := l + 47

{l = l0 + 47 ∧ h = h1}

For the program in (3), we can choose l1 as 27; for the program in (4), we simply
choose l1 as l0.

We next address the programs that are not secure, and show (cf. our Ob-
servation) that no matter how l1 has been chosen, we can find h0 such that it
does not hold that

{l = l0 ∧ h = h0}
P

{l = l1}

For the programs in (1) and (5), we can just pick an h0 different from l1 − 7,
say h0 = l1. For clearly it does not hold that

{l = l0 ∧ h = l1}
l := h + 7

{l = l1}

For the program in (6), we proceed by cases on l1: if l1 is zero, then we can
choose (among many possibilities) h0 to be 2345 since it does not hold that

{l = l0 ∧ h = 2345}
if h = 6789 then l := 0 else l := 1 fi

{l = 0}

Alternatively, if l1 is one, then we choose h0 to be 6789 since it does not hold
that

{l = l0 ∧ h = 6789}
if h = 6789 then l := 0 else l := 1 fi

{l = 1}

(If l1 is neither zero nor one, we can choose any value for h0.)

3



1.4 Declassification

A severe limitation of our theory is exposed by the last example (6) which is
considered insecure even though very little information may actually be leaked
to the attacker. Think of h as denoting a PIN code, with the attacker testing
whether it happens to be 6789; if the PIN codes were selected randomly, the
chance of the test revealing the PIN code is very small (1 to 10,000). It is
currently an important challenge for research in (language based) security to
formalize these considerations!

1.5 Data Integrity

We might consider an alternative interpretation of the variables l and h: l

denotes a licensed entity, whereas h denotes a hacked (untrustworthy) entity.
The integrity requirement is now:

Licensed data should not depend on hacked data.

It is interesting to notice that the framework described on the preceding pages
covers also that situation! In particular, a program satisfies the above integrity
requirement if and only if it is considered secure (according to our Definition).
For example, (3) is safe as the licensed variable l will eventually contain 27
which does not depend on hacked data, whereas (6) is unsafe as the value of the
hacked variable h influences the value of the licensed variable.

References

[1] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving ap-
proach to analysis of secure information flow. In Workshop on Issues in the
Theory of Security (WITS’03). Affiliated to ETAPS 2003, Warsaw, Poland.,
2003.

4


