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Top-Down Approach to Algorithms

Reduction: Solve a problem by using a solution to a
“simpler” problem.

The selection problem:

I Input: An array A[1..n] of Numbers and a Nat k.

I Output: The kth smallest element of A.

One solution:

1. Sort A.

2. Return A[k].

We have reduced selection to sorting.
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Sorting

We may sort an array A[1..n] for n > 1 by

1. sorting A[1..n − 1]; then

2. inserting A[n] into A[1..n− 1] at the proper location.

If n ≤ 1, then A[1..n] is already sorted.
We have reduced larger instances of sorting to smaller
instances.
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Recursive Insertion Sort

Precondition: A[1..n] is an array of Numbers, n is a Nat.
Postcondition: A[1..n] is a permutation of its initial values
such that for 1 ≤ i < j ≤ n, A[i ] ≤ A[j ].

InsertSort(A[1..n])
if n > 1

InsertSort(A[1..n − 1])
Insert(A[1..n])

Precondition: A[1..n] is an array of Numbers such that n is
a Nat, and for 1 ≤ i < j ≤ n − 1, A[i ] ≤ A[j ].
Postcondition: A[1..n] is a permutation of its initial values
such that for 1 ≤ i < j ≤ n, A[i ] ≤ A[j ].

Insert(A[1..n])
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Maximum Subsequence Sum

Input: An array A[0..n − 1] of (possibly negative)
Numbers.
Output: The maximum sum of any contiguous
subsequence of A; i.e.,

max

{
j−1∑
k=i

A[k] | 0 ≤ i ≤ j ≤ n

}
.
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A Naive Algorithm

Precondition: A[0..n − 1] is an array of Numbers, n is
a Nat.
Postcondition: Returns the maximum subsequence sum
of A.

MaxSumIter(A[0..n − 1])
m← 0
for i ← 0 to n

for j ← i to n
sum← 0
for k ← i to j − 1

sum← sum + A[k]
m←Max(m, sum)

return m
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Improving the Naive Algorithm

Precondition: A[0..n − 1] is an array of Numbers, n is
a Nat.
Postcondition: Returns the maximum subsequence sum
of A.

MaxSumOpt(A[0..n − 1])
m← 0
for i ← 0 to n − 1

sum← 0
for k ← i to n − 1

sum← sum + A[k]
m←Max(m, sum)

return m
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Reducing to a Smaller Problem

We can reduce an instance of size n > 0 to an instance of
size n − 1:

1. Find the maximum subsequence sum of the first
n − 1 elements.

2. Find the maximum suffix sum; i.e.,

max

{
n−1∑
k=i

A[k] | 0 ≤ i ≤ n

}
.

3. Return the maximum of these two values.

If n = 0, the maximum subsequence sum is 0.
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Finding the Maximum Suffix Sum

We can find the maximum suffix sum in a similar way;
i.e., if n > 0:

1. Find the maximum suffix sum of the first n − 1
elements.

2. Add the last element.

3. Return the maximum of this sum and 0.

If n = 0, the maximum subsequence sum is 0.
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Maximal Subsequence Sum, Top-Down

Precondition: A[0..n − 1] is an array of Numbers, n is
a Nat.
Postcondition: Returns the maximum subsequence sum
of A.

MaxSumTD(A[0..n − 1])
if n = 0

return 0
else

return Max(MaxSumTD(A[0..n − 2]),
MaxSuffixTD(A[0..n − 1]))
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Maximal Suffix Sum, Computed Top-Down

Precondition: A[0..n − 1] is an array of Numbers, n is
a Nat.
Postcondition: Returns the maximum suffix sum of A.

MaxSuffixTD(A[0..n − 1])
if n = 0

return 0
else

return
Max(0,A[n−1]+MaxSuffixTD(A[0..n−2]))
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Divide and Conquer

We can reduce an instance of size n > 1 to instances of
size bn/2c and dn/2e.

The maximum of the solutions to the smaller instances
does not include any segments that start in the first
instance and end in the last instance.
We therefore need to find the maximum suffix sum of the
first instance and the maximum prefix sum of the second.
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An Algorithm based on Divide and Conquer

Precondition: A[lo..hi] is an array of Numbers, lo ≤ hi,
and both lo and hi are Nats.
Postcondition: Returns the maximum subsequence sum
of A[lo..hi].

MaxSumDC(A[lo..hi])
if lo = hi

return Max(0,A[lo])
else

mid← b(lo + hi)/2c; mid1← mid + 1
sum1←MaxSumDC(A[lo..mid])
sum2←MaxSumDC(A[mid1..hi])
sum3←MaxSuffix(A[lo..mid]) +

MaxPrefix(A[mid1..hi])
return Max(sum1, sum2, sum3)
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Bottom-up Computation

We can often save stack space by implementing a
top-down design in a bottom-up fashion:

1. Compute solutions to the smallest instances.

2. Using the top-down solution as a guide, combine the
solutions of smaller instances to obtain solutions to
larger instances.
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Maximum Suffix Sum, Computed Bottom-Up

Precondition: A[lo..hi] is an array of Numbers, lo ≤ hi,
and both lo and hi are Nats.
Postcondition: Returns the maximum suffix sum of
A[lo..hi].

MaxSuffixBU(A[lo..hi])
m← 0
// Invariant: m is the maximum suffix sum of
// A[lo..i − 1]
for i ← lo to hi

m←Max(0,m + A[i ])
return m
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Maximum Subsequence Sum, Bottom-Up

Precondition: A[0..n − 1] is an array of Numbers, n is
a Nat.
Postcondition: Returns the maximum subsequence sum
of A.

MaxSumBU(A[0..n − 1])
m← 0;msuf← 0
// Invariant: m is the maximum subsequence sum
// of A[0..i − 1], msuf is the maximum suffix sum
// for A[0..i − 1]
for i ← 0 to n − 1

msuf←Max(0,msuf + A[i ])
m←Max(m,msuf)

return m
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