
Curriculum vitae

Torben Amtoft
email: tamtoft HAT k-state DOT edu

URL: people.cs.ksu.edu/~tamtoft

December 9, 2022

Contents

Academic Record 2

Current Research Interests 2

Awards and Honors 2

Professional Employments 2

Teaching 3

Publications 6

Invited Talks and Research Presentations 11

Professional Contributions 13

Professional Development 15

Personal Record 15

Appendix: Detailed Summary of Research 16

1

Academic Record

1993 June 21th: Awarded the Ph.D. degree in Computer Science at DAIMI,
University of Aarhus. Advisor: Brian H. Mayoh.

1989 August 18th: Graduated as “cand.scient” (corresponding to an M.Sc.)
in Computer Science at DIKU, Copenhagen. Advisor: Neil D. Jones.

1985 Completed “bifag” (corresponding to a Bachelor’s degree) in Com-
puter Science and in Mathematics, at the University of Copenhagen.

Current Research Interests

Program analysis, in particular of dependencies and probabilistic correla-
tion, with applications to language-based security and program slicing.

Awards and Honors

October 2008 was co-awarded a grant of $3M over 5 years from AFOSR
(Air Force Office of Scientific Research) for the proposal Evidence-
based Trust in Large-scale MLS Systems. (John Hatcliff was the PI,
other co-PI’s were Andrew Appel and Edward Felton from Princeton,
Anindya Banerjee, Xinming Ou, Robby.)

January 2006 was co-awarded a grant of $450K over 3 years from AFOSR
(Air Force Office of Scientific Research) for the proposal An Integrated
Specification and Verification Environment for Component-based Ar-
chitectures of Large-scale Distributed Systems. (John Hatcliff was the
PI, Anindya Banerjee was also co-PI.)

August 2004 received the Best Paper Award for the 2004 edition of Static
Analysis Symposium (SAS) together with Anindya Banerjee, for our
paper Information Flow Analysis in Logical Form.

Professional Employments

2008-present Associate professor (tenured) at Kansas State University.

2

2002-2008 Assistant professor at Kansas State University.

2002 Research associate at Heriot-Watt University,.

1999-2002 Research associate at Boston University, working on the NSF-
funded Church Projecct.

1992-1998 Research assistant/research associate at DAIMI, University of
Aarhus, working on the LOMAPS project (and towards the end on
BRICS).

1989-1992 Ph.D. scholarship from University of Aarhus, including duties
as teaching assistant.

1985-1989 Part time teaching assistant at the University of Copenhagen.

Teaching

Undergraduate Courses

Logical Foundations of Programming, Kansas State University, CIS 301,
Spring&Fall of 2019 and Spring of 2020, each Fall during the years 2011-
2014, and also most semesters during the years 2002-2008.

Introduction to Programming Languages, Kansas State University, CIS 505,
each Fall since 2015; also Fall 2010 (with Xinming Ou) and Fall 2009 (with
David Schmidt).

Introduction to Algorithm Analysis, Kansas State University, CIS 575, each
Spring since 2013.

Compiler Design Theory, Boston University, CS 525, Spring 2001 (with
Assaf Kfoury).

Graduate Courses & Seminars

Programming Languages, Kansas State University, CIS 705, each Fall since
2015 (joint with the undergraduate version, CIS505).

Database Management Systems, Kansas State University, CIS 761, each
Spring from 2004 to 2012.

3

Formal Language Theory, Kansas State University, CIS 770, each Spring
from 2009 to 2015, and again in 2023.

Software Specification, Kansas State University, CIS 771, each Spring from
2016 to 2018, and Fall of 2018.

Analysis of Algorithms, Kansas State University, CIS 775, each Fall since
2008 (except 2017 and 2019 and 2021).

Software Foundations (mostly on the Coq proof assistant), Kansas State
University, Fall 2021.

Semantics of Programming Languages, Kansas State University, Spring 2017.

Program Analysis, Kansas State University, CIS 905, Spring 2005 (with
Anindya Banerjee) and Spring 2003; CIS 890, Fall 2010.

Language Based Security, Kansas State University, CIS 890, Fall 2004 and
Fall 2003 (both with Anindya Banerjee).

Programming the Web/Internet, Boston University, Fall 1999 & Spring 2000
& Fall 2000, with Assaf Kfoury and Santiago Pericas.

Functional Languages, University of Aarhus, Spring 1993 (with Flemming
Nielson).

Students

Ph.D. students

Joydeep Mitra (since August 2014, later co-supervising with Venkatesh Ran-
ganath and with Robby, until his graduation in July 2020).

Committees for Ph.D. students

Sarthak Khanal (October 2022, Doina Caragea), Venkat Margapuri (June
2022, Mitch Neilsen), Ademola Okerinde (March 2022, Bill Hsu), Majed Al-
sadhan (February 2022, Bill Hsu), Deepti Lamba (August 2021, Bill Hsu),
Nawaf Alharbi (April 2021, Doina Caragea), Chendi Cao (December 2020,
Mitch Neilsen), HongMin Li (November 2020, Doina Caragea), Xukun Li
(August 2020, Doina Caragea), Qais Tasali (June 2020, Eugene Vasserman),
Chaney Courtney (April 2020, Mitch Neilsen), Jean-Christophe Léchenet
(July 2018, l’Université Paris-Saclay, supervisors: Pascale Le Gall and Niko-

4

lai Kosmatov), Zhi Zhang (June 2016, major professor: John Hatcliff), Nic
Herndon (April 2016, Doina Caragea), Ming Yang (December 2015, Bill
Hsu), Hao Qian (September 2015, Dan Andresen), Ana Stanescu (June 2015,
Doina Caragea), Rohit Parimi (June 2015, Doina Caragea), Karthik Tan-
girala (April 2015, Doina Caragea), Huang Zhu (July 2014, Gurdip Singh),
Sumeet Gujrati (November 2013, Gurdip Singh), Waleed Aljandal (Decem-
ber 2008, Bill Hsu), Oksana Tkachuk (December 2008, Matt Dwyer & John
Hatcliff), William Deng (June 2007, John Hatcliff & Robby).

Pending: Emily Alfs (Doina Caragea), Spandan Das (Pavithra Prabhakar),
Bishwas Mandal (George Amariucai), Joshua Schwartz (Pascal Hitzler),
Soudabeh Taghian Dinani (Doina Caragea), Joseph Zalewski (Pascal Hit-
zler).

Master students

Master theses: Joshua Donnoe (April 2018).

Master reports: Kaushik Atchuta (April 2014), Balaji Rayakota (April 2013),
Dayou Jiang (April 2013).

Master of Software Engineering (MSE) projects: Srunokshi K.P. Neelakan-
tan (July 2010–April 2011), Abhilash Manne (April–December 2010),
Phaninder Surapaneni (April–December 2009), Vamsi Mummaneni (August–
December 2008), Santosh Bejjamshety (December 2007–August 2008), Nayan
Ancha (June–August 2008), Sandhya Bathini (August 2008).

Project Supervision

Independent studies: Joydeep Mitra (2015 & 2016), Shailaja Maddala (2014/15),
Balaji Rayakota (2013), Vineet Tadakamalla (2010), Gaurav Chauhan (2008/9),
Sandhya Bathini (2008), Santosh Bejjamshety (2008), Anupam Godbole
(2008), Venkata Sri Vatsav Reddy Konreddy (2008), Srunokshi K.P. Nee-
lakantan (2008).

Implementation projects: Joshua Donnoe (2016), Deepti Garlapati (2014),
Akash Suryawanshi (2014), Nikhita Addanki (2013), Balaji Rayakota (2011
& 2013), Vineet Tadakamalla (2010 & 2011), Naga Sowjanya Karumuri
(2008), Abhilash Manne (2008).

Internship reports: Nisha Stephen (2008 & 2009), Nayan Ancha (2008),
Greeshma Malgireddy (2008), Aditi Breed (2007).

5

Senior projects: Joseph Hathaway (2022), Christopher Schultz (2022), Do-
minic Tassio (2021), Leif White (2020), Hanavan Kuhn (2020), Curtis Flam-
ing (2020), Zach Woods (2020), Zane Chance (2020), Bryden Pollard (2019),
Calvin Bauer (2019), Nicholas Davies (2018-9), Chloe Henderson (2018),
Anthony Atkinson (2018), Daniel Jones (2016), Jake Ehrlich (2016), Aaron
Schif (2016), Joshua Donnoe (2016), Chad Bachman (2014).

Research Advising/Collaboration

James Myose (2022), Zach Woods (2019–20), Max Wiens-Evangelista (2018–
20), Matt Link (2017–18), Joydeep Mitra (2014–20), Zhi Zhang (2010–
2016, [13]) Andrew Cousino (2009–2013), Joey Dodds (2010–2012, [13]),
Balaji Rayakota (2010–2011), Vineet Tadakamalla (2010–2011), Edwin Ro-
driguez (2005–2010, [16, 14]), Ye Zhang (2008-2010, [15]), Jonathan Hoag
(2007-2009), Scott Harmon (2006), Sruthi Bandhakavi (2004-2005, [18]),
Venkatesh Ranganath (2004-2005, [19, 6]), Oksana Tkachuk (2003).

Publications

[Monographs]

[1] Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and
Effect Systems: Behaviours for Concurrency. Imperial College Press,
1999.

[Journal articles]

[2] Torben Amtoft and Anindya Banerjee. A theory of slicing for imper-
ative probabilistic programs. ACM TOPLAS, 42(2), April 2020. A
substantially extended version of [12].

[3] Torben Amtoft, Kelly Androutsopoulos, David Clark, Mark Harman,
and Zheng Li. An alternative characterization of weak order depen-
dence. Information Processing Letters, 110:939–943, October 2010.

[4] Torben Amtoft. Flow-sensitive type systems and the ambient calcu-
lus. Higher-Order and Symbolic Computation, 21(4):411–442, Decem-
ber 2008.

[5] Torben Amtoft. Slicing for modern program structures: a theory for
eliminating irrelevant loops. Information Processing Letters, 106(2):45–
51, April 2008.

6

[6] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John
Hatcliff, and Matthew B. Dwyer. A new foundation for control de-
pendence and slicing for modern program structures. ACM TOPLAS,
29(5), 2007. A special issue with extended versions of selected papers
from the 14th European Symposium on Programming (ESOP 2005).

[7] Torben Amtoft and Anindya Banerjee. A logic for information flow
analysis with an application to forward slicing of simple imperative
programs. Science of Computer Programming, 64(1):3–28, 2007.

[8] Torben Amtoft, Assaf J. Kfoury, and Santiago M. Pericas-Geertsen.
Orderly communication in the ambient calculus. Computer Languages,
Systems & Structures, 28:29–60, 2002 (Elsevier Science).

[9] Torben Amtoft, Hanne Riis Nielson, and Flemming Nielson. Behaviour
analysis for validating communication patterns. Software Tools for
Technology Transfer, 2(1):13–28, 1998.

[10] Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and
behaviour reconstruction for higher-order concurrent programs. Journal
of Functional Programming, 7(3):321–347, May 1997.

[11] Torben Amtoft and Jesper Larsson Träff. Partial memoization for ob-
taining linear time behavior of a 2DPDA. Theoretical Computer Sci-
ence, 98(2):347–356, May 1992.

[Conference articles]

[12] Torben Amtoft and Anindya Banerjee. A theory of slicing for probabilis-
tic control flow graphs. In Proc. FoSSaCS 2016 (part of ETAPS’16),
pages 180–196, Springer LNCS 9634, 2016. Acceptance rate: 36.5 %
A preliminary version, with full proofs, appears as Technical Report
2015-1, CIS Department, Kansas State University, July 2015.

[13] Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew Appel, Lennart
Beringer, John Hatcliff, Xinming Ou, and Andrew Cousino. A cer-
tificate infrastructure for machine-checked proofs of conditional infor-
mation flow. In First Conference on Principles of Security and Trust
(part of ETAPS 2012), pages 369–389, Springer LNCS 7215, 2012. Ac-
ceptance rate: 30 %.

[14] Torben Amtoft, John Hatcliff and Edwin Rodŕıguez. Precise and au-
tomated contract-based reasoning for verification and certification of

7

information flow properties of programs with arrays. In Proc. ESOP
2010 (part of ETAPS 2010), pages 43–63, Springer LNCS 6012, 2010.
Acceptance rate: 24.8 %.

[15] Ye Zhang, Torben Amtoft, and Flemming Nielson. From generic to
specific: off-line optimization for a general constraint solver. In Pro-
ceedings of 7th International Conference on Generative Programming
and Component Engineering (GPCE’08), pages 45–53, ACM Press, Oc-
tober 2008. Acceptance rate: 31 %.

[16] Torben Amtoft, John Hatcliff, Edwin Rodŕıguez, Robby, Jonathan
Hoag, and David Greve. Specification and checking of software con-
tracts for conditional information flow. In Proceedings of the 15th
International Symposium on Formal Methods (FM’08), pages 229–245,
Springer LNCS 5014, May 2008. Acceptance rate: 21.7 %. An ex-
tended version appears as Technical Report SAnToS-TR2007-5, CIS
Department, Kansas State University. An extended version appears as
Chapter 12 in Design and Verification of Microprocessor Systems for
High-Assurance Applications, edited by David S. Hardin.

[17] Torben Amtoft and Anindya Banerjee. Verification condition genera-
tion for conditional information flow. In Proceedings of the 5th ACM
Workshop on Formal Methods in Security Engineering (FMSE’07),
pages 2–11, George Mason University, November 2007. Acceptance rate:
28.6 %. An extended version appears as Technical Report 2007-2, Dept.
of Computing and Information Sciences, Kansas State University, Au-
gust 2007.

[18] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for
information flow in object-oriented programs. In Proceedings of the
33rd Annual ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages (POPL’06), pages 91–102, ACM Press, 2006.
Acceptance rate: 19.8 %.

[19] Venkatesh Ranganath, Torben Amtoft, Anindya Banerjee, Matthew B.
Dwyer, and John Hatcliff. A new foundation for control-dependence
and slicing for modern program structures. In Proc. ESOP 2005 (part
of ETAPS 2005), pages 77–93, Springer LNCS 3444, 2005. Acceptance
rate: 24.6 %.

[20] Torben Amtoft and Anindya Banerjee. Information flow analysis in
logical form. In Proc. SAS 2004, pages 100–115, Springer LNCS 3148,

8

2004. Received the SAS’04 Best Paper Award. Acceptance rate: 36.5
%. An extended version appears as the technical report 2004-3, Depart-
ment of Computing and Information Sciences, Kansas State University,
April 2004.

[21] Torben Amtoft and Henning Makholm and J. B. Wells. PolyA: true
type polymorphism for mobile ambients. In Proc. TCS 2004, pages 591–
604, Kluwer, 2004. An extended version appears as the technical report
HW-MACS-TR-0015, School of Mathematical and Computer Sciences,
Heriot-Watt University, February 2004.

[22] Torben Amtoft and Robert Muller. Inferring annotated types for inter-
procedural register allocation with constructor flattening. Proceedings
of ACM SIGPLAN TLDI’03 Workshop, pages 86–97, ACM Press, Jan-
uary 2003. Acceptance rate: 42 %.

[23] Torben Amtoft, Assaf J. Kfoury, and Santiago M. Pericas-Geertsen.
What are polymorphically-typed ambients? In Proc. ESOP 2001 (part
of ETAPS 2001), pages 206–220, Springer LNCS 2028, 2001. Accep-
tance rate: 34 %. An extended version appears as the technical report
BUCS-TR-2000-021, Boston University.

[24] Torben Amtoft and Franklyn Turbak. Faithful translations between
polyvariant flows and polymorphic types. In Proc. ESOP 2000 (part
of ETAPS 2000), pages 26–40, Springer LNCS 1782, 2000. Acceptance
rate: 31 %.

[25] Hanne Riis Nielson, Torben Amtoft, and Flemming Nielson. Behaviour
analysis and safety conditions: a case study in CML. In Proc. FASE’98
(part of ETAPS’98), pages 255–269, Springer LNCS 1382, 1998. Ac-
ceptance rate: 31 %.

[26] Torben Amtoft. Local type reconstruction by means of symbolic fixed
point iteration. In Proc. ESOP’94, pages 43–57, Springer LNCS 788,
1994. Acceptance rate: 28 %.

[27] Torben Amtoft. Minimal thunkification. In Proc. WSA’93, pages 218–
229, Springer LNCS 724, 1993. Acceptance rate: 29 %.

[28] Torben Amtoft. Unfold/fold transformations preserving termination
properties. In Proc. PLILP’92, pages 187–201, Springer LNCS 631,
August 1992. Acceptance rate: 35 %.

9

[29] Torben Amtoft. Properties of unfolding-based meta-level systems.
In Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’91), New Haven, Connecticut. Sigplan Notices, vol. 26, no. 9,
pages 243–254, 1991. Acceptance rate: 41 %.

[30] Torben Amtoft, Thomas Nikolajsen, Jesper Larsson Träff, and Neil D.
Jones. Experiments with implementations of two theoretical construc-
tions. In Logic at Botik, USSR, pages 119–133, Springer LNCS 363,
July 1989.

[Other reviewed articles]

[31] Torben Amtoft and Kelly Androutsopoulos and David Clark. Correctly
slicing extended finite state machines. In From Lambda Calculus to
Cybersecurity Through Program Analysis: Essays Dedicated to Chris
Hankin on the Occasion of His Retirement, Alessandra Di Pierro and
Pasquale Malacaria and Rajagopal Nagarajan (editors), pages 149–197,
Springer LNCS 12065, 2020. A much preliminary version appears as
Research Note RN/13/22 from University College London, Department
of Computer Science, December 2013.

[32] Torben Amtoft, Charles Consel, Olivier Danvy, and Karoline
Malmkjær. The abstraction and instantiation of string-matching
programs. In The Essence of Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D. Jones, Torben Mogensen
and David Schmidt and I. Hal Sudborough (editors), pages 332–357,
Springer LNCS 2566, 2002. An extended version appeared as Technical
Report BRICS RS-01-12, DAIMI, Aarhus, Denmark, April 2001.

[33] Hanne Riis Nielson, Flemming Nielson, and Torben Amtoft. Polymor-
phic subtyping for effect analysis: the static semantics. In Analysis
and Verification of Multiple-Agent Languages, pages 141–171, Springer
LNCS 1192, 1997. Acceptance rate: 87 %.

[34] Torben Amtoft, Flemming Nielson, Hanne Riis Nielson, and Jürgen
Ammann. Polymorphic subtyping for effect analysis: the dynamic se-
mantics. In Analysis and Verification of Multiple-Agent Languages,
pages 172–206, Springer LNCS 1192, 1997. Acceptance rate: 87 %.

[35] Flemming Nielson, Hanne Riis Nielson, and Torben Amtoft. Polymor-
phic subtyping for effect analysis: the algorithm. In Analysis and Ver-
ification of Multiple-Agent Languages, pages 207–243, Springer LNCS
1192, 1997. Acceptance rate: 87 %.

10

[Miscellaneous]

[36] Torben Amtoft and J.B. Wells. Mobile processes with dependent com-
munication types and singleton types for names and capabilities. Tech-
nical report 2002-3, Department of Computing and Information Sci-
ences, Kansas State University, December 2002.

[37] Ian Westmacott, J. B. Wells, Robert Muller, and Torben Amtoft. A
mechanical verification of region inference: using an automatic theorem
prover to verify a type-based program transformation. Submitted for
publication, 2002.

[38] Torben Amtoft. Causal type system for ambient movements. Submitted
for publication, October 2001. Technical report 2002-04, Department
of Computing and Information Sciences, Kansas State University, 2002.

[39] Torben Amtoft. Partial evaluation for constraint-based program anal-
yses. BRICS Technical Report BRICS-RS-99-45, DAIMI, University of
Aarhus, Denmark, 1999.

[40] Torben Amtoft. Strictness types: An inference algorithm and an appli-
cation. Technical Report PB-448, DAIMI, University of Aarhus, Den-
mark, August 1993.

[41] Torben Amtoft. Sharing of Computations. PhD thesis, DAIMI, Uni-
versity of Aarhus, Denmark, 1993. Technical report PB-453.

[42] Torben Amtoft and Jesper Larsson Träff. Memoization and its use
in lazy and incremental program generation. Master’s thesis, DIKU,
University of Copenhagen, Denmark, August 1989. No. 89-8-1.

Invited Talks and Research Presentations

Conference/workshop talks

A theory of slicing for probabilistic control flow graphs. FoSSaCS’16, Eind-
hoven, Netherlands, April 2016.

Precise and automated contract-based reasoning for verification and certi-
fication of information flow properties of programs with arrays. ESOP’10,
Paphos, Cyprus, March 2010.

11

From Generic to Specific: Off-line Optimization for a General Constraint
solver. GPCE’08, Nashville, Tennessee, October 2008.

Verification Condition Generation for Conditional Information Flow. FMSE’07,
Fairfax, Virginia, November 2007.

A New Foundation for Control-Dependence and Slicing for Modern Program
Structures. ESOP’05, Edinburgh, Scotland, April 2005.

Information Flow Analysis in Logical Form. SAS’04, Verona, Italy, August
2004.

What are polymorphically-typed ambients? ESOP’01, Genova, Italy, April
2001.

Faithful translations between polyvariant flows and polymorphic types. ESOP’00,
Berlin, Germany, March 2000.

Local type reconstruction by means of symbolic fixed point iteration. ESOP’94,
Edinburgh, Scotland, April 1994.

Minimal thunkification. WSA’93, Padova, Italy, September 1993.

Unfold/fold transformations preserving termination properties. PLILP’92,
Leuven, Belgium, August 1992.

Properties of unfolding-based meta-level systems. PEPM’91, New Haven,
Connecticut, June 1991.

Invited talks (since 2000)

Program Slicing and its Correctness (History and Recent Trends). Midwest
Verification Days 2014, University of Missouri in Columbia, October 4th,
2014.

Correctness of Slicing Finite State Machines. Harvard University, August
19th, 2013.

Hoare-like Logics for Verifying and Inferring Conditional Information Flow.
19th CREST Open Workshop on Interference and Dependence, University
College London, May 1st, 2012.

Slicing for Modern Program Structures: a Theory for Eliminating Irrelevant
Loops. King’s College London, July 22nd, 2009; Technical University of
Denmark, June 2nd, 2008.

Verification Condition Generation for Conditional Information Flow. North-

12

eastern University, May 30th, 2007.

A Logic for Information Flow in Object-Oriented Programs. Technical Uni-
versity of Denmark, May 23rd, 2006; University of Copenhagen, May 22nd,
2006.

Information Flow Analysis in Logical Form. University of Copenhagen, Au-
gust 5th, 2004; Open Source Quality Project Retreat (Santa Cruz, Califor-
nia), May 14th, 2004.

The Semantic Soundness of a Type System for Interprocedural Register Al-
location and Constructor Flattening. Boston University, June 2nd, 2003;
Northeastern University, May 28th, 2003. (These presentations were as-
sisted by Robert Muller.)

Causal Type System for Ambient Movements. Boston University, December
16th, 2002.

Causal Type Systems for Ambients. Technical University of Denmark, Au-
gust 17th, 2001.

What are Polymorphically Typed Ambients? Kansas State University (inter-
view talk), April 26th, 2001; Universita Ca’ Foscari di Venezia, April 10th,
2001; NEPLS at Brown University (Providence, RI), December 7, 2000.

Faithful Translations between Polyvariant Flows and Polymorphic Types.
University of Copenhagen, April 3rd, 2000; NJPLS (New Jersey Program-
ming Language Seminar), September 1, 1999.

Behaviour Analysis for Validating Communication Patterns. Northeastern
University, March 15th, 2000.

Professional Contributions

Refereeing

I served on the program committees for

• FoSSaCS 2012 (15th International Conference on Foundations of Soft-
ware Science and Computation Structures), held as part of ETAPS in
Tallinn, Estonia, Spring 2012. (LNCS volume 7213.)

• IFL’11 (23rd Symposium on Implementation and Application of Func-
tional Languages), held in Lawrence, Kansas, Fall 2011.

13

• ESOP’09 (European Symposium on Programming), held as part of
ETAPS 2009 in York, United Kingdom, Spring 2009. (LNCS volume
5502.)

• ICFP’06 (The 11th ACM SIGPLAN International Conference on Func-
tional Programming), held in Portland, Oregon, September 2006.

• ESOP’04 (European Symposium on Programming), held as part of
ETAPS in Barcelona, Spain, Spring 2004. (LNCS volume 2986.)

• ITRS’04 (Workshop on Intersection Types and Related Systems), held
co-located with LICS and ICALP in Turku, Finland, July 2004.

• PADO-II (Programs as Data Objects), a symposium held with MFPS
2001 in Aarhus, Denmark, May 2001. (LNCS volume 2053.)

I have served as a reviewer on 43 journal submissions: 9 times for ACM
Transactions on Programming Languages and Systems; 5 times for Higher-
Order and Symbolic Computation; 5 times for Information and Computation;
4 times for Information Processing Letters; 4 times for Journal of Functional
Programming; 4 times for Theoretical Computer Science; 2 times for Formal
Aspects of Computing; 1 time for each of ACM Computing Surveys, ACM
Transactions of Computational Logic (ToCL), Computer Languages, IEEE
Transactions on Software Engineering, International Journal of Foundations
of Computer Science, International Journal on Software Tools for Technol-
ogy Transfer (STTT), Journal of Computer Science and Technology, Jour-
nal of Systems and Software, Logical Methods in Computer Science, Studia
Logica.

On numerous occasions, I have reviewed conference submissions on request
from program committee members. The conferences include POPL (Prin-
ciples of Programming Languages), 15 submissions; SAS (Static Analysis
Symposium), 14 submissions; ICFP (International Conference on Func-
tional Programming), 12 submissions; ESOP (European Symposium on Pro-
gramming), 11 submissions; CONCUR (Conference on Concurrency The-
ory), 7 submissions; ICALP (International Colloquium on Automata, Lan-
guages, and Programming), 5 submissions; PEPM (Partial Evaluation and
Semantics-based Program Manipulation), 5 submissions.

14

Invited Seminar and Conference Participation

Workshop-fest in Honor of Neil D. Jones, Copenhagen, Denmark, August
25-26, 2007.

First International Workshop on Programming Language Interference and
Dependence (PLID). Verona, Italy, August 25, 2004.

Dagstuhl Seminar 03411 on Language-Based Security. October 5–10, 2003.

Advanced Course on the Principles of Program Analysis. Dagstuhl Event
No 98451, November 9–13, 1998.

Professional Development

I have attended numerous international conferences, for example ETAPS
(European Joint Conferences on Theory and Practice of Software) 7 times
(2000, 2001, 2005, 2009, 2010, 2012, 2016), and POPL (Principles of Pro-
gramming Languages) 5 times (1995, 1997, 1999, 2000, 2001).

In 2017, I attended in Portugal a summer school on probabilistic program-
ming which was the 1st edition of the “School on Foundations of Program-
ming and Software systems” which is jointly funded by EATCS, ETAPS,
ACM SIGLOG, and ACM SIGPLAN.

Scientific visits include: Mark Harman’s group in London, at King’s College
(July 2009) and University College (May 2012 and August 2013 and July
2017), Bob Muller at Boston College (May/June 2003), Michele Bugliesi at
Universita‘ “Ca Foscari”, Venezia (April 2001), Lone Leth & Bent Thomsen
at ECRC Munich (April 1996) and ICL London (November 1996), Mitch
Wand at Northeastern University, Boston (January 1995).

Outreach includes team visits (June 2006 & June 2007 & October 2007) to
Rockwell Collins’ Advanced Technology Center in Cedar Rapids, Iowa, who
has funded research done by our team (led by John Hatcliff).

Personal Record

Nationality citizen of Denmark; citizen (since January 2017) of the U.S.

15

Languages Danish; English; a little (and rusty) German, Russian, French.

References can be obtained from, e.g., Flemming Nielson, Hanne Riis
Nielson, Olivier Danvy, Assaf Kfoury, J.B. Wells, David Schmidt, Anindya
Banerjee, John Hatcliff.

Appendix: Detailed Summary of Research

Below is a description of my research contributions, categorized by topic; a
chronological ordering of the topics has been attempted.

Memoization and theory of computation. [30] investigates the mean-
ing and practical use of the 2nd recursion theorems by Kleene and Rogers.
My M.Sc. thesis [42] is about how to improve efficiency of program exe-
cution by means of a generalized form of memoization, resembling partial
evaluation; as reported in [11], Cook’s ingenious linear-time simulation of
2DPDAs can be thought of as an instance of this technique.

Models for program optimization. The main purpose of my Ph.D.
thesis [41] is to develop a model enabling one to reason about various tech-
niques for program optimization, in particular wrt. speedup and correctness.
Concerning speedup, some of the results are presented in [29]; in particular
the reasons why a program transformation may yield more than a constant
speedup are factored out. Concerning correctness, some results (generalizing
previous approaches from the literature) about preservation of termination
properties for a logic language are presented in [28].

Specification of analysis and transformation. In [40], strictness ana-
lysis is formulated in terms of type inference. A type reconstruction al-
gorithm is presented, and the strictness information is used to avoid some
superfluous “thunkifications” when translating from call-by-name into call-
by-value. Of particular interest is the proof technique: the correctness of
the translation is proved simultaneously with the correctness of the analy-
sis. The part concerning type reconstruction is published in [26]; the part
concerning translation is published in [27].

16

Effect analysis for concurrent systems. [10] develops a sound and
complete type and behavior reconstruction algorithm for a fragment of Con-
current ML (CML), the starting point being the inference system presented
by Hanne Riis Nielson and Flemming Nielson at POPL’94. The algorithm
returns a set of constraints; and we show how to solve these in the monomor-
phic case (but not in general).

The monograph [1] gives an overview over type and effect systems, and then
(improving upon the results of [33], [34] and [35]) develops an annotated type
and effect system for a fragment of CML; the system uses constraints on the
left hand side of the turn-stile and integrates Hindley-Milner polymorphism,
subtyping, and effects. We show that the system is semantically sound;
and develop a reconstruction algorithm that is sound and also complete.
This algorithm has been used as the basis of a prototype implementation,
available for experimentation on the WWW. [9] contains a description of
the system, illustrated by several examples, as well as a brief account of the
underlying theory. [25] shows that the system greatly assists in validating a
number of safety properties for “realistic” concurrent systems.

Applications of partial evaluation. [39] reports on experiments inves-
tigating whether control flow analysis can be optimized by partially evalu-
ating the analyzer. So far the results have been negative, except that the
residual program pinpointed a serious source of inefficiency, leading to the
(re)invention of an incremental version of the analyzer.

[32] exposes how one by partial evaluation of a single generic string match-
ing algorithm can achieve the effect of the Knuth & Morris & Pratt string
matcher, as well as the effect of (several variants of) the Boyer & Moore
string matcher. This has been known for at least a decade, when similar
results were made public by the authors (together and independently); the
primary goal of this paper is thus to summarize the findings and put them
into perspective.

Frameworks for polyvariant analysis. [24] demonstrates that there
is a close relationship between polyvariant flow analyses and type systems
with finitary polymorphism. We present a flow logic, based on the general
approach of Nielson & Nielson and augmented with ideas from Palsberg &
Pavlopoulou, and also present a type system employing union and intersec-
tion types; both these systems satisfy a subject reduction property. We then
provide translations between types and flows that are “faithful” in that they

17

act as the identity on “canonical” elements, and otherwise canonicalize.

Type systems for the ambient calculus. [23, 8] and [38, 4] consider the
Ambient Calculus, proposed by Cardelli and Gordon as a formal framework
to study issues of mobility and migrant code, and develop type systems for
the calculus. These systems employ a notion of causality in that processes
are assigned “behaviors”, where a behavior is essentially a regular set of
traces. Thus type checking (of fully annotated processes) is decidable, using
techniques borrowed from finite automata theory. (Under certain restric-
tions, type inference is also possible.)

In [23], the focus is on extending the ambient calculus so as to allow a
more natural, yet safe, style of programming. This is done by embedding
a functional language, and by designing the type system to smoothly inte-
grate several kinds of “polymorphism”: (i) the well-investigated notion of
subtyping; (ii) “arity polymorphism”, allowing the same ambient to hold
several topics of conversation simultaneously; and (iii) “orderly communi-
cation”, allowing the same ambient to hold several topics of conversation
consecutively. A subject reduction property ensures that communicating
subprocesses agree on their “topic of conversation”. As “orderly communi-
cation” is the main technical innovation of the above, the journal paper [8]
concentrates on this feature only.

In [38], summarized and put into perspective in [4], the focus is on security
in that the type system is parameterized by a set of security constraints:
static ones expressing where a given ambient may reside, and dynamic ones
expressing where a given ambient may be dissolved. A subject reduction
property then guarantees that a well-typed process never violates these con-
straints. It is argued that the presence of causality significantly increases the
precision of the analysis and compensates for the lack of “co-capabilities”
(an otherwise increasingly popular extension to the ambient calculus).

The goal of [36], and the further development in [21], is to provide type
polymorphism of the kind that is usually present in polymorphic type sys-
tems for the lambda-calculus, thereby allowing mobile agents to follow non-
predetermined paths and to carry non-predetermined types of data from
location to location. This is achieved by letting the type of an ambient
process give an upper bound on the possible ambient nesting shapes of any
process to which it can evolve. Because these shapes can depend on which
capabilities and names are actually communicated, the types support this
with explicit dependencies on communication. The type of an ambient name

18

may thus depend on where the ambient has traveled, whereas in previous
type systems for ambient calculi, there is a global assignment of types to
ambient names.

Type systems for register allocation. In [22], we design for a com-
piler intermediate language an annotated type system supporting inter-
procedural register allocation and the representation of tuples and variants
directly in the register file.

Information Flow Analysis. In [20], we specify an information flow
analysis for a simple imperative language, using a Hoare logic. The logic
facilitates static checking of a larger class of programs than can be checked
by extant type-based approaches in which a program is deemed insecure
when it contains an insecure subprogram. The logic is based on an abstract
interpretation of program traces that makes independence between program
variables explicit. Unlike other, more precise, approaches based on Hoare
logic, our approach does not require a theorem prover to generate invariants.
We demonstrate the modularity of our approach by showing that a frame
rule holds in our logic.

In [7], we extend the results of [20] to handle also nontermination sensitive
information flow analysis, and show how the logic gives rise to a (provably
correct) algorithm for forward slicing.

In [18], we modify the logic of [20] to handle object-oriented languages; to
reason about aliasing, ubiquitous in such languages, the information flow
logic is built on top of a logic for abstract locations (just as any analysis for
higher order functional programs is built on top of a control-flow analysis).
The logic enjoys “small” specifications, so as to facilitate modular reason-
ing; these can be combined by a frame rule. Under certain assumptions,
it is possible to compute “strongest postconditions”. Our language permits
programmer assertions, in the style of ESC/Java.

In [17], we present an alternative approach to information flow analysis of
sequential heap manipulating programs. We use “object flow invariants”
to express the information flow properties an object must satisfy; such an
invariant may be temporarily violated while an object is being updated but
must be restored at the end (when the “scope” of the object is closed).
Hence there is no need for explicit reasoning about aliasing. In general, in-
formation flow properties are expressed using assertions that are conditional

19

in that they depend on standard Hoare assertions being satisfied. We define
an algorithm VCgen which from a program and its desired postcondition
generates a precondition which is strong enough to establish the postcon-
dition. VCgen must be supplied with object flow invariants as well as with
flow invariants for loops; if these invariants are not strong enough then the
verification conditions generated by VCgen cannot be satisfied. The current
analysis is intraprocedural.

In [16], we employ the techniques of [17], extended to an interprocedural
setting, to enhance the SPARK information flow annotation language with
conditional information flow contracts. Unlike [17], we now have a method
for automatically inferring loop flow invariants; therefore contracts can be
compositionally checked and inferred (the SPARK subset of Ada deliberately
omits constructs that are difficult to reason about, such as heap objects;
hence we do not need to worry about inferring flow invariants for such). We
report on the use of this framework for a collection of SPARK examples; our
experiments are based on an implementation that allows various degrees of
assertion simplification.

In [14], we extend [16] so as to enable precise compositional specification
of information flow in programs with arrays. This has substantial practical
impact since SPARK does not allow dynamic allocation of memory and
hence, to implement complex data structures, makes heavy use of arrays.
These have previously been treated as indivisible entities; flows that involve
only particular locations of an array had to be abstracted into flows on
the whole array. The main technical novelty of [14] is an algorithm for
inferring universally quantified contracts for for loops. We demonstrate
the expressiveness of the enhanced contracts, and the effectiveness of the
automated verification algorithm, on realistic embedded applications.

In [13], we extend the framework of [14] so that the algorithm for verifying
source code compliance to an information flow contract emits formal certifi-
cates of correctness, to be checked by the Coq proof assistant. For a core
subset of the source language, we have proved in Coq that if a program
can be given a certificate which is well-typed then the program does indeed
satisfy the semantic information flow properties specified by the certificate.

Slicing. In [19], we examine the notion of control dependence, underlying
many program analysis techniques such as slicing. We argue that existing
definitions are difficult to apply seamlessly to modern program structures
which make substantial use of exception processing and increasingly sup-

20

port reactive systems designed to run indefinitely; we repair on that by
developing definitions that apply also to control flow graphs without end
nodes (or with more than one end node) and which conservatively extend
classic definitions. For one of the new definitions, we show the correctness
of the induced slicing algorithm, wrt. a correctness criterion based on weak
bisimulation. Algorithms for computing the new control dependences form
the basis of a publicly available program slicer that has been implemented
for full Java.

In [6], we extend [19] so as to handle control flow graphs without end nodes
also if they are irreducible. This requires a new notion of control-based
dependence, called “order dependence”. A detailed correctness proof is given
for the slicing induced by the modified definitions.

[5] provides a feature missing in [6]: the foundation of an approach to slicing
which allows for the elimination of loops that do not affect the values of
relevant variables, and thereby is more likely to generate slices of manageable
size. The corresponding correctness criterion is based on “weak simulation”,
implying that the observational behavior of the original program is a prefix
of the behavior of the sliced program. A crisp correctness proof shows that
for slicing to satisfy this correctness property, even wrt. control flow graphs
that are irreducible or have no end nodes, it is sufficient that the given slice
set is closed under (data dependence and) “weak order dependence”, one of
the new dependencies proposed in [6].

[3] shows that for a control-flow graph where all nodes are reachable from
each other, the abovementioned notion of weak order dependence can be
expressed in terms of traditional control dependence where one node has
been converted into an end node.

[31] provides a foundation for slicing in a non-deterministic setting, address-
ing two key correctness properties. “Weak correctness”, which allows to slice
away irrelevant loops, now requires not only that each observable action by
the original program can be simulated by the sliced program but also, so as
not to increase non-determinism, that each observable action by the sliced
program can be simulated by the original program, unless the original pro-
gram gets stuck or it loops, the latter possibility excluded if we consider
“strong correctness”. To ensure weak/strong correctness, we do not try
to invent new suitable control dependence relations but instead simply de-
mand that the slice set (in addition to being closed under data dependence)
satisfies the properties of “weak commitment”/”strong commitment” pro-
posed by Danicic et al. We carry out the development in the setting of

21

“extended finite state machines” (EFSMs), and also prove that for each of
the properties “weak commitment” and “strong commitment” there exists
a least set with that property and that least slice set can be computed by a
low polynomial algorithm. We conduct extensive experiments with widely-
studied benchmark and industrial EFSMs so as to measure the relative sizes
of slices produced by our algorithms, and to compare with the results of
slicing algorithms that use existing definitions of control dependence.

[12] provides a foundation for slicing in a probabilistic setting, where vari-
ables may be assigned random values from a given distribution, and unde-
sirable combinations of values may be removed by “observe” statements; in
the presence of these features, the standard notions of data and control de-
pendence no longer suffice for semantically correct slicing, as demonstrated
by Hur et al. in recent work. We present a theory for slicing probabilistic
programs, represented as control flow graphs (pCFGs) whose nodes trans-
form probability distributions. We separate the specification of slicing from
its implementation: first we develop syntactic conditions that a slice must
satisfy; next we prove that any such slice is semantically correct; finally we
give an algorithm to compute the least slice. The theory is a non-trivial
extension of the recent framework by Danicic et al. that unified previous
works on slicing and provided solid semantic foundations to the slicing of a
large class of (deterministic) programs. Our correctness results states that
the original program and the sliced program have the same final probability
distribution, modulo a constant factor so as to allow the removal of “ob-
serve” statements that do not introduce any bias in the final distribution.
This will be the case if the variables tested by “observe” statements are
probabilistically independent of those variables relevant for the final value.
To ensure this, a key feature of our syntactic conditions is that they in-
volve two disjoint slices, such that the variables of one are probabilistically
independent of the variables of the other.

[2] is an extended version of [12]. A key additional contribution is that we
apply our results to the slicing of structured imperative probabilistic pro-
grams; this involves establishing the adequacy of the semantics of pCFGs
with respect to the “classical” semantics (based on expectation functions)
of structured programs, and allows us to show that slicing based on our syn-
tactic conditions (for the corresponding pCFG) will preserve the normalized
semantics of a structured program. Another additional contribution is that
we allow to slice away certain loops if they are known (through some ana-
lysis, or an oracle) to terminate with probability 1.

22

