
Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 1 of 20

System Architecture Design

For Multiagent Control of Traffic Signals

Version 2.0

Submitted in partial fulfillment of the requirements of the degree of MSE

Bryan Nehl

CIS 895 – MSE Project

Kansas State University

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 2 of 20

Table of Contents
1 Introduction ... 3

2 References ... 3

3 Architecture... 3

3.1 System Analysis ... 3

3.2 System Context Diagram ... 4

3.3 Component Design ... 5

3.4 Component Interface Specification .. 6

3.4.1 IPersistPlan ... 6

3.4.2 IPersistSafetyRequest ... 7

3.4.3 IPersistMetrics .. 7

3.5 System Design Rationale ... 8

3.6 High-Level Design ... 9

3.7 Mid-Level Design .. 10

4 Component Interaction.. 11

4.1 Initialization interaction ... 12

4.2 In simulation processing interaction .. 12

4.3 Simulation end interaction ... 13

4.4 Discovery Protocol ... 13

5 USE/OCL Model .. 14

5.1 Overview .. 14

5.2 USE OCL Code .. 16

5.3 Initialization Script ... 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 3 of 20

1 Introduction
This document provides system design information for the MultiAgent Control of Traffic Signals

(MACTS) system. This system is used to simulate agent based control of traffic light signals.

This document covers the system components and component interfaces. However, it does not

cover all of the interfaces methods in detail. A system analysis diagram as well as a high-level

overview of the whole system is included in this document. Mid-Level design is also included

for all of the components. A sequence diagram is included which shows how the system

components interact during run time.

2 References
1. “Vision Document” available at http://people.cis.ksu.edu/~bnehl/.

3 Architecture
This section documents the system component design, the interfaces of those components and

provides high-level design with rationale for design within the system context.

3.1 System Analysis
Clearly describe the high level relationship between model elements

Figure 1 System Analysis Diagram

Referring to Figure 1, the Simulation Engine takes care of the work of simulating the movement

of the vehicles in the system. The SUMO-GUI is the front-end graphical user interface that

displays the state of the simulation. TraCI is the TCP/IP interface to the simulation engine.

TraCI is how external entities can interact with the simulation. The Simulation Engine relies on

a SUMO Configuration file. The SUMO Configuration file includes specific settings

information for the GUI as well as references or pointers to three other configuration files. The

Traffic Sensor Configuration file contains information about sensors like the e1 inductor that are

on the road network. The Route Configuration includes information about the routes that cars

take. Details regarding the types of vehicles, vehicle distribution are specified. For the routes,

the flow rates and probabilities are specified. The Network Configuration file is the result of

running three files: Nodes, Edges and Connectors through the NETCONVERT utility.

NETCONVERT is a SUMO utility. The Nodes, Edges and Connectors files detail where

http://people.cis.ksu.edu/~bnehl/

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 4 of 20

connections happen (nodes), streets are described by the edges and connectors handle the

mapping from one edge to another at a junction node.

3.2 System Context Diagram
This system context diagram shows how the components of the MACTS system interact with

each other and with the external systems.

Figure 2 System Context Diagram

In Figure 2, the System Context Diagram,

grey components are SUMO components,

the ivory components are SUMO

configuration files created by me. The

green components represent third party

infrastructure servers. The yellow

components (Communications Agent,

Agent Network (MAS) and Metrics Agent)

are the aspects that I will be creating. What

we don’t see at this level is the possibility

for multiple Agent Networks. That would

come in to play when we have a MAS

working at every intersection.

In Figure 3, the basic processing for a

single simulation step is shown. Data is

received from the simulator and sent to

RabbitMQ. From there, there the Metrics

Processing pulls data from its queue and

does its own parallel operations. In the

Analyze Data step, the MAS node planning

agent uses sensor information that it

received from specific queues. The

planning agent then creates a suggested

plan and sends it to the safety officer for

checking that the command is safe. At that

point, if the plan is safe, operation

continues on the happy path sending the

commands to the communications agent.

Otherwise, the planning agent is informed

that the plan isn’t safe.

Figure 3Basic Processing for single simulation step

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 5 of 20

3.3 Component Design

Figure 4 MACTS with single MAS Node

In the Figure 4 the MACTS with a single MAS is portrayed. The grey components, SUMO

Simulation Engine, SUMO GUI and SUMO TraCI are all part of the Simulation for Urban

MObility software. The light green components RabbitMQ and DataStore are third party servers

for message queuing and data persistence. The yellow components Communicator or System

Liaison and the Metrics agent are part of the MACTS system. No matter how many MAS Nodes

are in the system, there will only be one of each of these.

The communicator component has the responsibilities of: initiating a session, retrieving and

publishing sensor data, retrieving and publishing metrics data, retrieving and submitting

simulation commands, telling the simulation to proceed with the next step and finally of

notifying all participants that the simulation has ended.

The components that constitute a MAS Node are enclosed in the light blue container. They are

the yellow Planning Agent and the yellow Safety Agent. The pink component, Collaboration

Agent is an optional part of the MAS Node. Concrete instances of the planning agent will

propose a signal light plan given sensor data. The concrete safety agent will make the

determination if the proposed plan is safe for the intersection.

In figure five we see a multiple MAS node system. Some lines from the second MAS node to

the RabbitMQ and Data Store servers have been eliminated for clarity. If draw in, they would

originate and terminate the same as the connections from the first MAS node. In a multi-node

system with collaboration, the pink collaboration agents share or publish information about what

is happening in this intersection with neighboring collaboration agents.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 6 of 20

Because I know the topology of the test network, I know that there will at most be two MAS

nodes operating simultaneously. If a collaboration agent is enabled, it will be configured to

share relevant information with its neighbor. It will also be configured to receive shared

information from a predetermined queue.

Figure 5 MACTS with collaborating MAS Node

3.4 Component Interface Specification
While there are traditional class interfaces in the project, MACTS interfaces are more service

oriented application programming interfaces, SOA APIs. RabbitMQ is the communications

server used with JSON messages. In the forthcoming Component Design Document I will

expand on the message exchanges used, their purpose and the type of messages being passed.

3.4.1 IPersistPlan

Signature +persistPlan(simulationId : string, step : integer, agentId : string, plan :

string)

Purpose To store the plans that the agent creates during the simulation for

future review or analysis.

Pre-Conditions Established simulation and planning agent.

Initialized data store.

Post-Conditions The plan information is persisted in the data store.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 7 of 20

3.4.2 IPersistSafetyRequest

Signature +persistSafety(simulationId: string, step: integer, safetyAgentId:

string, planAgentId: string, request:string, response:string)

Purpose To store the requests that was made of the safety agent, by whom and

the response given.

Pre-Conditions Established simulation, planning and safety agents running.

Initialized data store.

Post-Conditions The safety information is persisted in the data store.

3.4.3 IPersistMetrics

Signature +persistStep(simulationId : string, step : integer,

simulationStepMetrics : Metrics)

Purpose To store metric information for every simulation step. This will enable

further review, analysis and potential reprocessing of the metrics.

Pre-Conditions Established simulation and communications agent running.

Initialized data store.

Post-Conditions The metric data for every simulation step is persisted along with a

simulation identifier and step identifier.

Signature +persistSimulation(simulationId : string, aggregatedMetrics : Metrics,

systemConfiguration : List<string>)

Purpose The purpose of this method is to store aggregated simulation metrics

along with the system configuration. The system configuration is the

list of agents that constituted the realized system. Having the

simulation identifier allows for associating the individual step metrics

with the overall aggregated metrics.

Pre-Conditions Established simulation and communications agent running.

Initialized data store.

Post-Conditions The aggregated metric data and system configuration are stored along

with the simulation identifier.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 8 of 20

3.5 System Design Rationale
There were several design criteria which led me to existing architecture. A key problem that had

to be resolved was how to enable a distributed architecture to work with the direct connection,

single client interface of TraCI. This design makes that possible by using a Communications

Agent/System Liaison which interacts with the other parts of the system in a decoupled way

through RabbitMQ message queues.

I chose to work with RabbitMQ and MongoDB because of their easy interfaces and ability to

work with JSON documents. Also, since the core of this project isn’t messaging or data

persistence this seemed to be a good way to avoid reinventing the wheel.

I knew that I wanted to be able to test various types of agents as well. So, I wanted to be able to

easily configure a network. This led me to a decoupled design where the agents communicate

with each other through message queues. Because there is some shared behavior amongst

agents, I thought it would be useful to have an abstract Agent class which could be used by the

other types of agents. Planning Agent, Collaboration Agent and Safety Agent are all more

specialized, yet still abstract classes that build upon the Agent class.

Why didn’t I have all of the planning agents going directly to the Communication Agent for

shared information? Because I wanted to reflect a bit of reality in that at a given intersection

there likely won’t be the connectivity back to a central all-knowing authority. The agent has to

interact with its neighbors.

To obtain system metrics, TraCI must be used to query the simulation for a specific metric on

every lane in the system. To me, it made the most sense for the Communications Agent to gather

all of this information and publish it to its own queue. From there, the Metrics Agent gathers it,

does any necessary analysis and aggregation and saves the data. The Metrics Agent stores the

network configuration along with all of the aggregated metrics at the end of a simulation run.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 9 of 20

3.6 High-Level Design

Figure 6 High Level Class Diagram

In this high level view of the design we can see how the design provides for reusability and

scalability of common components. For instance, a base abstract class of Agent is inherited by

the Safety Agent, the Collaboration Agent and the Planning Agent classes which are also

abstract. Further concrete classes are created off of these specialized classes. The Metrics Agent

and Communications Agent also take advantage of base behavior implemented in the Agent

class. We also see that all Agents will implement the discoverable interface which is used to find

other agents participating in the simulation. The discoverable interface is closely related to the

discover protocol outlined in section 4.4. The diagram also shows us the relationship between

the agent classes and the data access classes used for persisting simulation information.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 10 of 20

3.7 Mid-Level Design

Figure 7Class Diagram

I the mid-level design we start to see some of the methods that I anticipate will be necessary for

the project. For instance, with the communications agent the proposed methods relate back to

the System Requirements in the project Vision document. In this diagram we also see the

emergence of a Signal State container which will be used by the Safety Agent for managing the

current state of the signal, properties of the signal and requested changes in state.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 11 of 20

4 Component Interaction
In this section I’ll review the typical system initialization sequence, the looping of the doing

simulation sequence of events and finally the teardown or finish sequence.

Figure 8Sequence diagram for process interactions

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 12 of 20

4.1 Initialization interaction

In the system startup process, the Communications Agent creates a new simulation run identifier.

It then shares that on a broadcast exchange on RabbitMQ. The subscribed (already started)

metrics agent, planning agent, safety agent and potentially collaboration agent all receive the

new session identifier and perform any required local initialization. The safety agent also

responds back to the communications agent via RabbitMQ that it is “joining” the simulation.

The communication agent picks up this message/command and incorporates that knowledge.

Now, the communications agent will know when all agents have reported in for each system

simulation step.

4.2 In simulation processing interaction

While the maximum number of simulation steps has not been reached, the communications agent

(CA) queries TraCI for simulation metrics. The metrics are packaged and shared via RabbitMQ

with the metrics agent. The metrics agent does any necessary processing/aggregation and saves

the metrics. Next the CA queries TraCI for the current sensor simulation information. That

information is shared with subscribing planning agents via RabbitMQ. Based on the received

information, the planning agents create a plan and submit it to the Safety Agent for review. If

the plan is safe, the plan is sent by the Safety Agent to the CA via RabbitMQ. The CA then

executes the command. The CA waits for all joined agents to report in before kicking off the

next simulation step.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 13 of 20

4.3 Simulation end interaction

In the simulation end the communications agent has reached the max number of simulation steps.

Therefore, it broadcasts a simulation end to all participating parties. The Metrics Agent performs

final aggregation of metrics and stores them. The planning agent and safety agent perform any

finishing tasks.

4.4 Discovery Protocol

Figure 9 Discovery Protocol

In the discovery protocol, an agent sends a broadcast ping along with the current simulation Id to

a discovery queue. All agents are monitoring the discovery queue. On “hearing” a ping, the

listening agent responds with the simulation Id as well as its agentId. The agentId is made up of

the type of Agent and the MAS Node Id. Any agent that is listening to the pong response queue

will “hear” other agents on the network.

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 14 of 20

5 USE/OCL Model

5.1 Overview
This section will provide a formal specification that the safety agent enforces minimum time per

light color and that the lights must change in a rotation of green, yellow, red. The system

combines all traffic light signals at an intersection into a single command.

The interactions involved are Planning Agent sends plan to Safety Agent. Safety Agent

evaluates. If ok, the Safety Agent sends the plan on to the Communications Agent. If not ok, the

Safety Agent notifies the planning agent that the plan is not acceptable and the cause/reason why.

Figure 10Class Diagram for formal specification

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 15 of 20

Figure 11Instance Diagram

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 16 of 20

5.2 USE OCL Code
-- CIS 895 MSE Project Formal Specification MACTS Architecture
-- File: macts.use
-- Author: Bryan Nehl
--
-- Description: Aspects of the MultiAgent Control of Traffic Signals
-- models specified in USE OCL
--
-- This is a formal specification that:
-- The safety agent enforces minimum time per light color and
-- The lights must change in a rotation of green, yellow, red.
-- The system combines all traffic light signals at an intersection into a
single command.
--
-- The interactions involved are:
-- Planning Agent sends plan to Safety Agent.
-- Safety Agent evaluates.
-- If ok, the Safety Agent sends the plan on to the Communications
Agent.
-- If not ok, the Safety Agent notifies the planning agent that
-- the plan is not acceptable and the cause/reason why.

model Macts

-- classes -------------------

class TraCI
end

-- abstract, no instances of
class Agent
end

-- one
class CommunicationsAgent < Agent
operations
 submitToTraci(command : String)
end

-- MAS Node ---
-- abstract
-- may only have one "PlanningAgent" type per node
class MasNode
attributes
 planningAgent : PlanningAgent
 safetyAgent : SafetyAgent
end

-- SAFETY AGENT ---
class SafetyAgent < Agent

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 17 of 20

attributes
 signalState : SignalState
operations
 checkSafePlan(plan : String) : String
end

-- PLANNING AGENT ---
class PlanningAgent < Agent
attributes
 checkResult : String
 safetyAgent : SafetyAgent
operations
 createPlan() : String
 submitToSafetyAgentForReview(plan : String)
end

-- SIGNAL STATE --
class SignalState
attributes
 minimumGreenTime : Integer
 minimumRedTime : Integer
 minimumYellowTime : Integer
 currentState : String
 currentStateMinimumTime : Integer
 ageOfCurrentState : Integer
operations
 SignalState(minRedTime : Integer, minGreenTime : Integer, minYellowTime
: Integer, initialState : String) : SignalState
 getCurrentState() : String
 getAgeOfCurrentStateInSeconds() : Integer
 changeStateTo(desiredState : String) : String
end

-- associations -----------------

association interacts between
 TraCI[1] role simulator;
 CommunicationsAgent[1] role liaison;
end

association safetyAgentContainsSignalState between
 SafetyAgent[1] role safetyAgentRole;
 SignalState[0..*] role signalStateRole;
end

association masNodeContainsPlanningAgent between
 MasNode[1] role masNodeRole;
 PlanningAgent[1] role planningAgentRole;
end

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 18 of 20

association masNodeContainsSafetyAgent between
 MasNode[1] role masNodeRole;
 SafetyAgent[1] role safetyAgentRole;
end

-- constraints --------------------

constraints

-- there is only one communications agent
context CommunicationsAgent inv OneCommAgent:
 CommunicationsAgent.allInstances->size() = 1

-- the mas node contains two agents.
-- one is a planning agent and the other a safety agent
context mn:MasNode
 inv planningAgentIsAPlanningAgent:
 mn.planningAgent.oclIsKindOf(PlanningAgent)
 inv safetyAgentIsSafetyAgent:
 mn.safetyAgent.oclIsKindOf(SafetyAgent)

context SignalState
 -- check that the current state is in the set of valid states
 inv validCurrentState:
 Set{'G','r','y'} -> includes(self.currentState)

-- SAFETY AGENT ---
-- LIGHTS MUST CHANGE IN CORRECT ORDER: green, yellow, red ------------------
--
-- valid light colors are: { G, g, r, y }
-- post condition checks to the changeStateTo operation of the SignalState
-- the current state should either be the same as the previous state OR
-- it should be the next state in the cycle
context SignalState::changeStateTo(desiredState:String):String

post yellowFollowsGreen:
 self.currentState@pre = 'G' implies Set{'G','y'} ->
includes(self.currentState)
post redFollowsYellow:
 self.currentState@pre = 'y' implies Set{'y','r'} ->
includes(self.currentState)
post greenFollowsRed:
 self.currentState@pre = 'r' implies Set{'r','G'} ->
includes(self.currentState)

-- MINIMUM TIME PER LIGHT COLOR
-- the currentStateMinimumTime should correspond to the current state
-- Green, yellow and red have different minimum state times
pre greenMinTime:

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 19 of 20

 self.currentState = 'G' implies currentStateMinimumTime =
self.minimumGreenTime

pre yellowMinTime:
 self.currentState = 'y' implies currentStateMinimumTime =
self.minimumYellowTime

pre redMinTime:
 self.currentState = 'r' implies currentStateMinimumTime =
self.minimumRedTime

-- after every state change the new age of current state should be
-- 0 if the state changed or incremented by 1 if the state stayed the same
post ageOfCurrentStateIncrements:
 Set{0, 1 + self.ageOfCurrentState@pre } ->
includes(self.ageOfCurrentState)

-- stated another way, if the state set to is the same as the previous state
-- then increment by 1, otherwise it is a new state so it should be set to 0
post ageIncrements: if self.currentState@pre = desiredState then
 self.ageOfCurrentState = self.ageOfCurrentState@pre + 1
 else self.ageOfCurrentState = 0 endif

-- again, if the current state is different than the previous current state,
the age should be 0
post lightStateChangingZerosAge:
 self.currentState <> self.currentState@pre implies
self.ageOfCurrentState = 0

-- if the age of the current state is less than the previous minimum time
-- then the current state should be the same as the previous
post minimumStateTimeEnforced:
 self.ageOfCurrentState < currentStateMinimumTime@pre implies
self.currentState = self.currentState@pre

-- context SafetyAgent::checkSafePlan(plan : String) : String
 -- safetyAgent.checkSafePlan(plan)
 -- receives messages with error issues from safety agent

-- SAFE PLAN: let the planning agent know if plan is acceptable
-- UNSAFE PLAN: if not, give reason why

-- SUBMIT PLAN: to the Communications Agent

-- COMMUNICATIONS AGENT --
-- receives plan from Safety Agent and executes/submits it to TraCI

Multiagent Control of Traffic Signals System Architecture Design 2.0

Page 20 of 20

5.3 Initialization Script
!create ss : SignalState
!set ss.currentState := 'r'
!create sa : SafetyAgent
!create mn : MasNode
!create pa : PlanningAgent
!set mn.planningAgent := pa
!set mn.safetyAgent := sa
!set sa.signalState := ss
!insert (mn,pa) into masNodeContainsPlanningAgent
!insert (mn,sa) into masNodeContainsSafetyAgent
!insert (sa,ss) into safetyAgentContainsSignalState

!set ss.minimumGreenTime := 3
!set ss.minimumYellowTime := 2
!set ss.minimumRedTime := 1
!set ss.currentStateMinimumTime := 1
!set ss.ageOfCurrentState := 0

