Multiagent Control of Traffic Signals System Architecture Design 2.0

System Architecture Design

For Multiagent Control of Traffic Signals

Version 2.0

Submitted in partial fulfillment of the requirements of the degree of MSE

Bryan Nehl
CIS 895 — MSE Project
Kansas State University

Page 1 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

1
2
3

Table of Contents

INEEOAUCTION ...ttt ettt ettt et be et eaeees 3
RETETEICES ...ttt ettt ettt sttt et ene e 3
ATCRITECIUTE. ...ttt ettt e b e st e bt e et e bt e et e e sbeeeabeesebeeaseesneeenne 3
3.1 SYStEM ANALYSIS .oouviieiiieiieiieeiieeie ettt ettt ettt ettt sttt et e b e e ntaeenbeeenaeenbeenneas 3
3.2 System ContexXt DIAGIAMcc.ceecuieriieiiieiieeieeiee e eieeete et e saeebeeebeebeessaeesseesseeenseensnes 4
TR0 B @70} 01 070) 1 1<) 0 1 B 1) 1y o WSS 5
3.4 Component Interface SpecifiCationcceeeiieriieriiieiiieeiieiieeie et 6
AL IPEISISIPIAN ..o 6
3.4.2 IPerSiStSAfetyREQUESTcovv it 7
3.4.3 IPEISISTIMIBLIICS ..ttt bbb 7
3.5 System Design Rationaleccceeiiiiiiiiiiiiieiecieeeeete et 8
3.6 High-Level DESIZNcoiiuiiiiiiiiiieeie ettt ettt et 9
3.7 MId-LeVel DESIZN ...ccuuiiiiiiiiiiiieiie ettt sttt st e et e e e enneens 10
ComMPONENT INTETACLION.eeeuiieiieeiieeiieeieeiee ettt et e et et e et et e eseessaeeseesaaeesseesssesnseensseenns 11
4.1 Initialization INEETACTIONc..eiiiuiieeiiieeiie ettt et e e e e et e e s beeesabeeesereeesaseeesseeeans 12
4.2 In simulation processing MNETACTIONcc.eeruuieriieriieiierieeiee e eieesteeteesiteeeee e eeeens 12
4.3 Simulation end INTETACTIONccc.eiiiiiiiiiiiieiieiie ettt ettt e 13
4.4 DISCOVEIY ProtOCO]eiiiiiiiieiiee ettt et 13
USE/OCL MOGEI ...ttt ettt ettt sttt seenaessaenseenseeseenseensenns 14
5.1 OVEIVIEW ittt ettt ettt e b e st e bt e e st e bt s bt e bt e e bt e naeeeabeenaeeeane 14
5.2 USE OCL COUC...uuieuiieiiiiieiieiiesieeie e stteieettesteeaeeaesseeseeaesseessessaessaesaessessseseensenssenses 16
5.3 INTtAlZAION SCIIPL....iiiiiitiiiiiieieeeee ettt ettt 20

Page 2 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

1 Introduction

This document provides system design information for the MultiAgent Control of Traffic Signals
(MACTS) system. This system is used to simulate agent based control of traffic light signals.
This document covers the system components and component interfaces. However, it does not
cover all of the interfaces methods in detail. A system analysis diagram as well as a high-level
overview of the whole system is included in this document. Mid-Level design is also included
for all of the components. A sequence diagram is included which shows how the system
components interact during run time.

2 References
1. “Vision Document” available at http://people.cis.ksu.edu/~bnehl/.

3 Architecture
This section documents the system component design, the interfaces of those components and
provides high-level design with rationale for design within the system context.

3.1 System Analysis
Clearly describe the high level relationship between model elements

Simulation Engine
SUMO-GUI TraCl

SUMO Configuration
-GUI Configuration

Traffic Sensor Configuration

Route Configuration Network Configuration

Figure 1 System Analysis Diagram

Referring to Figure 1, the Simulation Engine takes care of the work of simulating the movement
of the vehicles in the system. The SUMO-GUI is the front-end graphical user interface that
displays the state of the simulation. TraCl is the TCP/IP interface to the simulation engine.
TraCl is how external entities can interact with the simulation. The Simulation Engine relies on
a SUMO Configuration file. The SUMO Configuration file includes specific settings
information for the GUI as well as references or pointers to three other configuration files. The
Traffic Sensor Configuration file contains information about sensors like the el inductor that are
on the road network. The Route Configuration includes information about the routes that cars
take. Details regarding the types of vehicles, vehicle distribution are specified. For the routes,
the flow rates and probabilities are specified. The Network Configuration file is the result of
running three files: Nodes, Edges and Connectors through the NETCONVERT utility.
NETCONVERT is a SUMO utility. The Nodes, Edges and Connectors files detail where

Page 3 of 20

http://people.cis.ksu.edu/~bnehl/

Multiagent Control of Traffic Signals

System Architecture Design 2.0

connections happen (nodes), streets are described by the edges and connectors handle the
mapping from one edge to another at a junction node.

3.2 System Context Diagram

This system context diagram shows how the components of the MACTS system interact with

each other and with the external systems.

<<component>= <<component>= g <<component>= g <<component>
SUMO Simulation Engine O) SUMO TraCl _O) Communications Agent - > RabbitMQ
L : VY
| s | I |
V ~. 3 \|/ <<component=> :
<<component>> Road Netwark Tratfic Canfiguration <<component>> < - - Agent Network (MAS) <<component>>
SUMO GUI Lonfiguration mongoDB €] Metrics Agent

Figure 2 System Context Diagram

In Figure 2, the System Context Diagram,
grey components are SUMO components,
the ivory components are SUMO
configuration files created by me. The
green components represent third party
infrastructure servers. The yellow
components (Communications Agent,
Agent Network (MAS) and Metrics Agent)
are the aspects that I will be creating. What
we don’t see at this level is the possibility
for multiple Agent Networks. That would
come in to play when we have a MAS
working at every intersection.

In Figure 3, the basic processing for a
single simulation step is shown. Data is
received from the simulator and sent to
RabbitMQ. From there, there the Metrics
Processing pulls data from its queue and
does its own parallel operations. In the
Analyze Data step, the MAS node planning
agent uses sensor information that it
received from specific queues. The
planning agent then creates a suggested
plan and sends it to the safety officer for
checking that the command is safe. At that
point, if the plan is safe, operation
continues on the happy path sending the
commands to the communications agent.
Otherwise, the planning agent is informed
that the plan isn’t safe.

(Check Safety of suggested Plan J

[Receive Data from simulator)
Metrics Processing
Analyze Data

(Create suggested plan)

Mot safe plan

Plan is safe

(Transmit Signal Contrel Commands to Simu lator j

Figure 3Basic Processing for single simulation step

Page 4 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

3.3 Component Design

Logistics
<<component=> @ <<component=>)
SUMO Simulation Engine —@* SUMO TraCl Simulalion Data SRR =] P ————
MACTS Communicator . 15
‘ (System Liaison) LeMseg
L
<<gomponent>> @
SUMO GUI !
<<cpmponent=> @ Metrics data
R itMQ
shared intersection data TLS Commands
Intersection traffic data
Planning
neighboring intersection traffic data
<<component>> <<component>> <<component>>
Collaboration Collaboration Agent Planning Agent Safely Compliance Safety Agent
Il

Data Access Layer

?IPerslsiPlan %ersist&afe‘tyl!equest
<<component>> <<component>> <<component>>
Planning DAO @ Safety DAO @ Metrics DAO @ 40)

L L IPersistMetrics
<<component=> @

Data Store

Figure 4 MACTS with single MAS Node

In the Figure 4 the MACTS with a single MAS is portrayed. The grey components, SUMO
Simulation Engine, SUMO GUI and SUMO TraCl are all part of the Simulation for Urban
MObility software. The light green components RabbitMQ and DataStore are third party servers
for message queuing and data persistence. The yellow components Communicator or System
Liaison and the Metrics agent are part of the MACTS system. No matter how many MAS Nodes
are in the system, there will only be one of each of these.

The communicator component has the responsibilities of: initiating a session, retrieving and
publishing sensor data, retrieving and publishing metrics data, retrieving and submitting
simulation commands, telling the simulation to proceed with the next step and finally of
notifying all participants that the simulation has ended.

The components that constitute a MAS Node are enclosed in the light blue container. They are
the yellow Planning Agent and the yellow Safety Agent. The pink component, Collaboration
Agent is an optional part of the MAS Node. Concrete instances of the planning agent will
propose a signal light plan given sensor data. The concrete safety agent will make the
determination if the proposed plan is safe for the intersection.

In figure five we see a multiple MAS node system. Some lines from the second MAS node to
the RabbitMQ and Data Store servers have been eliminated for clarity. If draw in, they would
originate and terminate the same as the connections from the first MAS node. In a multi-node
system with collaboration, the pink collaboration agents share or publish information about what
is happening in this intersection with neighboring collaboration agents.

Page 5 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

Because | know the topology of the test network, I know that there will at most be two MAS
nodes operating simultaneously. If a collaboration agent is enabled, it will be configured to
share relevant information with its neighbor. It will also be configured to receive shared
information from a predetermined queue.

Logistics
<<component>> @ <<gomponent=> @
SUMO Simulation Engine —O) 7 SUMO TraCl Simulation Data S N o ————
MACTS Communicator . R
| (System Liaison) Lis=imem!
L
<<component>> @
SUMO GUI !
<<component>> gl Metrics data
RabbitMQ
shared intersection data TLS Commands
Intersection traffic data
Planning
neighboring intersection traffic data
<<component>> <<component>> <<component>>
Collaboration Collaboration Agent Planning Agent Safety Compliance Safety Agent
i
|

Data Access Layer

QIPersistPlan %ersist&afetyl!equest
<<component>> <<pomponent=>> <<component>>
Planning DAO @ Safety DAO @ Metrics DAO @ _O)

L L IPersistMetrics
<<component>> @

Data Store

Redundant Interface lines omitted for clarity.
MAS MNode Nearby Collabaorator

shared intersection data

neighbering intersection traffic data
<<gomponent>> =<gomponent>> <<gomponent>>
Collaboration

Collaboration Agent2 Planning Agent2 Safely Compliance Safety Agent2

Figure 5 MACTS with collaborating MAS Node

3.4 Component Interface Specification

While there are traditional class interfaces in the project, MACTS interfaces are more service
oriented application programming interfaces, SOA APIs. RabbitMQ is the communications
server used with JSON messages. In the forthcoming Component Design Document | will
expand on the message exchanges used, their purpose and the type of messages being passed.

3.4.1 IPersistPlan

Signature +persistPlan(simulationld : string, step : integer, agentld : string, plan :
string)

Purpose To store the plans that the agent creates during the simulation for
future review or analysis.

Pre-Conditions Established simulation and planning agent.
Initialized data store.

Post-Conditions The plan information is persisted in the data store.

Page 6 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

3.4.2 IPersistSafetyRequest

Signature +persistSafety(simulationld: string, step: integer, safetyAgentid:
string, planAgentld: string, request:string, response:string)
Purpose To store the requests that was made of the safety agent, by whom and

the response given.

Pre-Conditions

Established simulation, planning and safety agents running.
Initialized data store.

Post-Conditions

The safety information is persisted in the data store.

3.4.3 [IPersistMetrics

Signature +persistStep(simulationld : string, step : integer,
simulationStepMetrics : Metrics)
Purpose To store metric information for every simulation step. This will enable

further review, analysis and potential reprocessing of the metrics.

Pre-Conditions

Established simulation and communications agent running.
Initialized data store.

Post-Conditions

The metric data for every simulation step is persisted along with a
simulation identifier and step identifier.

Signature +persistSimulation(simulationld : string, aggregatedMetrics : Metrics,
systemConfiguration : List<string>)
Purpose The purpose of this method is to store aggregated simulation metrics

along with the system configuration. The system configuration is the
list of agents that constituted the realized system. Having the
simulation identifier allows for associating the individual step metrics
with the overall aggregated metrics.

Pre-Conditions

Established simulation and communications agent running.
Initialized data store.

Post-Conditions

The aggregated metric data and system configuration are stored along
with the simulation identifier.

Page 7 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

3.5 System Design Rationale

There were several design criteria which led me to existing architecture. A key problem that had
to be resolved was how to enable a distributed architecture to work with the direct connection,
single client interface of TraCl. This design makes that possible by using a Communications
Agent/System Liaison which interacts with the other parts of the system in a decoupled way
through RabbitMQ message queues.

I chose to work with RabbitMQ and MongoDB because of their easy interfaces and ability to
work with JSON documents. Also, since the core of this project isn’t messaging or data
persistence this seemed to be a good way to avoid reinventing the wheel.

| knew that | wanted to be able to test various types of agents as well. So, | wanted to be able to
easily configure a network. This led me to a decoupled design where the agents communicate
with each other through message queues. Because there is some shared behavior amongst
agents, I thought it would be useful to have an abstract Agent class which could be used by the
other types of agents. Planning Agent, Collaboration Agent and Safety Agent are all more
specialized, yet still abstract classes that build upon the Agent class.

Why didn’t I have all of the planning agents going directly to the Communication Agent for
shared information? Because | wanted to reflect a bit of reality in that at a given intersection
there likely won’t be the connectivity back to a central all-knowing authority. The agent has to
interact with its neighbors.

To obtain system metrics, TraCl must be used to query the simulation for a specific metric on
every lane in the system. To me, it made the most sense for the Communications Agent to gather
all of this information and publish it to its own queue. From there, the Metrics Agent gathers it,
does any necessary analysis and aggregation and saves the data. The Metrics Agent stores the
network configuration along with all of the aggregated metrics at the end of a simulation run.

Page 8 of 20

Multiagent Control of Traffic Signals

3.6 High-Level Design

<<|nterface>>

IDiscoverable
+broad castPing(simulationld : string)
#respondPong(simulationid . string, agentld : string) Safety Data Access
M
: Implements
i
Agent
Metrics Agent [} Safety Agent
<—

Matrics Data Access

Communications Agent : _______

St Saviours Fixed Plan_| |

Rosa Kiln Lane Fixed Plan

Planning Data Access Planning Agent AN
1 [
[
A A A |
| | | |
FixedPlan Agent : : Genetic Agent :
| [
----- i
A A | AN
! : Reactive Agent : :
b N N
| A A l
|
|

System Architecture Design 2.0

Rose Kiln Lane Safety Agent

St Saviours Safety Agent

St Saviours Collaboration Agent

Rose Kiln Lane Collaboration Agent

5t Saviours Genetic Agent

Rose Kiln Lane Genetic Agent

_____ 5t Saviours Reactive Agent

Rese Kiln Lane Reactive Agent

Figure 6 High Level Class Diagram

In this high level view of the design we can see how the design provides for reusability and
scalability of common components. For instance, a base abstract class of Agent is inherited by
the Safety Agent, the Collaboration Agent and the Planning Agent classes which are also
abstract. Further concrete classes are created off of these specialized classes. The Metrics Agent
and Communications Agent also take advantage of base behavior implemented in the Agent
class. We also see that all Agents will implement the discoverable interface which is used to find
other agents participating in the simulation. The discoverable interface is closely related to the
discover protocol outlined in section 4.4. The diagram also shows us the relationship between
the agent classes and the data access classes used for persisting simulation information.

Page 9 of 20

Multiagent Control of Traffic Signals

3.7 Mid-Level Design

System Architecture Design 2.0

Safety Data Access.

Metrics Data Access |

<<Interface>>
IDiscoverable

‘oDcrs\slSa!c‘v[S\mulammd string, step : inleger, safetyAgentld : siring, pianAgentld : string, request : siring, response strmg]‘

‘mcmslstcp[s\mu\z\mmd string, step : integer, simulationS tepMetrics : Metrics)
| strin Metrics, systemC Listestring=] | [+broadeastPing(simuationia : string) SignalState
esp| : sting, agentld : stang) [-minimumGreenTime : int
‘ ~——— | |moim mRedTime : in t
' |-minimunmY ellowTime : int
s Agaat | Implements Safety Agent |-currentState : String
L Plan) ime :int
+gatherRawletrics() +gatherRawMetrics|) [“Agent I | | ageOfCurentStats : int
!)) +getFromQ(queueN string) : JSON \ +SignalState(minRedTime : int, minGreenTime : int, minYellowTime : int, initialState : string =r)
] +sendToQ queueName : string, data : JSON) +getCurentstats(): string
sting)) .\ +getAgeCiCurentStateinSeconds) : int
mulation () istring}: StaiaC
sgeneraleNewSessionid) (— || N T
+publishNewSessionld () Agent
D:

Planning Agent ‘

o N
a0 ‘ [_st saviours Safety Agent | Rose Kiln Lane Safety Agent_|
Dot | | |

[Planning Data Access |

)

‘opcm\st?lnn(slmul;\t\onld.slr\ng. step : integer, agentkd ; sting, plan : string) \createPian()
+submiToSatetyAgentForReviewl)
+gather SafetyAgentResponse()

St Saviours Fixed Plan
I

Rose Kiln Lane Reactive Agent

Figure 7Class Diagram

é St Saviours Collaboration Agent

- [[Rose Kiin Lane Collaboration Agent

St Saviours Genetic Agent

¢----
o L
Reactive Agent <} - - - - [Rese Kiln Lane Genetic Agent

A A
[
L

St Saviours Reactive Agent

I the mid-level design we start to see some of the methods that | anticipate will be necessary for
the project. For instance, with the communications agent the proposed methods relate back to
the System Requirements in the project Vision document. In this diagram we also see the
emergence of a Signal State container which will be used by the Safety Agent for managing the
current state of the signal, properties of the signal and requested changes in state.

Page 10 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

4 Component Interaction

In this section I’ll review the typical system initialization sequence, the looping of the doing
simulation sequence of events and finally the teardown or finish sequence.

safely Ageni: Safely Agent

TeaCl ‘ ‘ ‘communications Ageni : Communications Agent ‘ ‘ﬁmm‘ | metnics Agent : MelncaAgent.

| plmg)ngm(.ﬂhmmgﬂ\gm\|

| collaboration Agent : Collaboration Agent|

T T
| 1
o |
1: iniate Simutation Run |
2 noyNewRunid !
2.{: newRunig

221:m
2.3.0: it

o
™

T
1
I
1
1
|
ThewRun ik T
L

T

T
1

|

1

|

|

1

!

I

|

|

| Za newRun g
|

: 241004
I

|

|

1

|

1

1

|

|

EWRETE

PR

Ly

1 3 joinSimulaton{newRunkt masd)|
3.1: jomSimutaton (newRunid.maski) r,‘
d [

4
3.1.1: acaPanicipating Mas(newRuhid masid)
:‘ |

3

Toop

[stephumber < MAXSTERS]

3.12: doSimuistion Step(timelinMilaeconds)

'Yy

T aEnEnE

3.14: packageMetrics
3.15: shareMemica

3.1.5.1: Metrics Data

A: persist metics
5: aggregale run metics

3.16: querySimulstion State

4

4
<4

-
H

3.1.7: packageSmuiatonstateD,

H——

3.1.8: share StatePbia (stateData, s mulstionRun d, smulationS | phumber)

6.4: createPlan
6.2 submit(Pian) |

7: doExecute(masid signal plsn) ||
7.4 doE s cute [masid, signal pian)

~

‘=

F 9

|
7.1.2: wai for 2l MAS before oos:'g

I

I

1

|
|
|
|
|
1
[
7.1.4: simulstion€ nd o :
7.1.4.1: amuiationEnd |
I
7.0.4.1.1: pars mgg-egmeue‘-cdl
71442 dnmh I
|
|
7.1.42 amuiationEnd
74421 fnigh
7.1.4.3 amuiatonEnd

7.4.3: simulationE nd

I
I
I
|
I
|
I
|
: (stateDats smutaton ﬁ‘-\c.s mul at onStephumber)
T
|
I
I
I
I
|
|
I
|
|
|
L
|
|
|

'y

|
I
|
1
1
I
|
I
|
I
1
I
|
I
i
I
I
I
I
I
I
I
I
|
I
|
I
|
ﬂli 7.1.1: changeTisPlan| signal,plan} "‘
I
I
|
i
|
I
|
I
I
I
I
I
I
|
I
|
I
i
I
|

e P

RN -

Fiéure 8Sequence diagram for process interactions

Page 11 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

4.1 Initialization interaction

‘ i Agent | C cat Agsnt| |F&ahhltMQ‘ ‘rrm Agent : MetricsAgent | ‘plsmlng Agent ! Planning Agmt| |mfswﬁgﬂﬂ'asfetyngaﬂ| ‘mmu-aimm\mmamnm|
T

4 l
1 initiateSimulationRun |
2 notifyNewRunld

|
|
|
| |
21}: newRunld

|
i
|
I
i
I)
; ZZ newRunld T

TT newRond 214t

|
Ta eI 224 it
231t
241, it

3 joinSimulation(newRunld mas|d}

Y

|
3.1: joinSim i Id, masld}) »l
o s F*

—————

|

|

n |
3.1.1: addParticipatingMas(newRunld masld) |

:‘ | |

In the system startup process, the Communications Agent creates a new simulation run identifier.
It then shares that on a broadcast exchange on RabbitMQ. The subscribed (already started)
metrics agent, planning agent, safety agent and potentially collaboration agent all receive the
new session identifier and perform any required local initialization. The safety agent also
responds back to the communications agent via RabbitMQ that it is “joining” the simulation.
The communication agent picks up this message/command and incorporates that knowledge.
Now, the communications agent will know when all agents have reported in for each system
simulation step.

4.2 Insimulation processing interaction

Tracl ications Agent : C ications Agent Rabbithid metricsfgent : MetricsAgent planning Agent : Planning Agent safety Agent : Satety Agent
I I

| | |
loop (0) | i i i
| [sepNumber < MAXSTEPS] | ! : |
3.1.2: doSir i {timelInhilli | | | |
o | | | |
il 3713 queryMetrics | | | |
< 1 | | |
| 3.1.4: packageMetrics | | | |
} 3.1.5: shareMetrics ! : : :
} 31.51: Matrics Data | : :
} 4 persist metrics I I
1 | |
‘ 3.1.6: quenySimulationStale ‘ 5 aggrogate run merica I I
ol
E‘l-‘ | | |
| | |
| 31.7: packageSimulationStateDefta i ' i
31.8 pta(stateData, sirr Runld,sim ber)			
'L'[[]			
! 6 (stateData, simulationRunld simulationStephumber) ! i			
I			
} T : 6.1: createPlan :			
		6.2 submit{Plan)	
; ; : T doExecute(masld signal plan)	ﬁl		
7.1: doExecute(masid signal plan)	_1‘. ' '		
7.1.1: changeTlsPlan(signal plan) Bl	‘J : : u		
j4 I			
‘ 7.1.2: wait for all MAS before bopii“g : : :

While the maximum number of simulation steps has not been reached, the communications agent
(CA) queries TraCl for simulation metrics. The metrics are packaged and shared via RabbitMQ
with the metrics agent. The metrics agent does any necessary processing/aggregation and saves
the metrics. Next the CA queries TraCl for the current sensor simulation information. That
information is shared with subscribing planning agents via RabbitMQ. Based on the received
information, the planning agents create a plan and submit it to the Safety Agent for review. If
the plan is safe, the plan is sent by the Safety Agent to the CA via RabbitMQ. The CA then
executes the command. The CA waits for all joined agents to report in before kicking off the
next simulation step.

Page 12 of 20

Multiagent Control of Traffic Signals

4.3 Simulation end interaction

System Architecture Design 2.0

TraCl communications Agent : Communical tions Agent Rabbith metricsAgent : Metricsagent planning Agent : Planning Agant sataty Agent : Safety Agent collaboration Agent : Collabaration Agent

7..3: simulationEnd !
7.1.4; simulationEnd

71.4.1: simulationEnd |

I,
7.1.4;2: simulationEnd
H

1
|
|
|
|
71411 pcrs\s!Aggrcq:chclrics}
71.41.2:finish }

|

|

7.1.4.2 1:finish
7.1.4 3: simulationEnd

T
} =H 7.1.43.1:finish
|

In the simulation end the communications agent has reached the max number of simulation steps.
Therefore, it broadcasts a simulation end to all participating parties. The Metrics Agent performs
final aggregation of metrics and stores them. The planning agent and safety agent perform any

finishing tasks.

4.4 Discovery Protocol

sd Discovery Protocol)

agent : Agent

RabbithC

Listening Agents : Agent

I
|
I 1: broadcast Ping (simulationld)

I
Figure 9 Discovery Protocol

1.1: broad castPing(simulaticnld)

2: respondPong(simulationld, agentld)

2.1 respondPong(simulationld, age ntld)

R A s 4

In the discovery protocol, an agent sends a broadcast ping along with the current simulation Id to
a discovery queue. All agents are monitoring the discovery queue. On “hearing” a ping, the
listening agent responds with the simulation Id as well as its agentld. The agentld is made up of
the type of Agent and the MAS Node Id. Any agent that is listening to the pong response queue

will “hear” other agents on the network.

Page 13 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

5 USE/OCL Model

5.1 Overview

This section will provide a formal specification that the safety agent enforces minimum time per
light color and that the lights must change in a rotation of green, yellow, red. The system
combines all traffic light signals at an intersection into a single command.

The interactions involved are Planning Agent sends plan to Safety Agent. Safety Agent
evaluates. If ok, the Safety Agent sends the plan on to the Communications Agent. If not ok, the
Safety Agent notifies the planning agent that the plan is not acceptable and the cause/reason why.

Trall
hashode
1 [simulator planningAgent © PlanningAgent
safetyAgent | SafetyAgernt
irteracts mazhodeRole
mashodeRole
ligizon |1 masModeContainsPlanningdgent
CommunicationsAoent
submitToTraciicommand : String) planninbisgentRol
N mashodeContainsSafety Agent
Flanningtgent

checkResult : String

safetyAgent | SafetyAgent

crestePlan(: String

submitToSatety AgertForReview(plan : String)

safetyAgentRole 1

SafetyAgent
signalState | SignalState
checkSafePlaniplan : String) : String
safetyhgentRole

safetyAgentCofitainzSignalState

* zignal=tateRole

Signal=tate

minimumGreenTime ; Integer

minitumBedTime © Integer

minimum'yellow Time : Integer

currentState @ String

currentStateminimumTime © Integer

ageCfCurrentState © Integer

Signalstate(minRedTime | Integer, minGreenTime | Integer, minyelow Time © Integer, intialState © String) @ SignalState
getCurrertState() : String

gethgeCfCurrentStateinSeconds() © Integer

changeStateTo{desiredState | String)) : String

Figure 10Class Diagram for formal specification

Page 14 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

mn:asiode

T — planningAgentRole

ontainzsPlanningAderit -
safetyAgent=idza pa:PlanningAqert

azModeRole checkResut=lUndefined
safetyAgent=Undefined

mashodeContainsSafety Agent

za: Safety Agert
signalState=gss

igral=tateRole

sz SignalState
minirmumGreenTime=Undefined
minirmumBEedTime=Undefined
mimirrp e el Time=Undefined
currertstate="r'
currert=tateblinimumTime=Undefined
agefCurrentstate=Undefined

Figure 11Instance Diagram

Page 15 of 20

Multiagent Control of Traffic Signals

5 2 USE OCL Code

CIS 895 MSE Project Formal Specification MACTS Architecture

-- File: macts.use
-- Author: Bryan Nehl

System Architecture Design 2.0

-- Description: Aspects of the MultiAgent Control of Traffic Signals

-- models specified in USE OCL

-- This is a formal specification that:

-- The safety agent enforces minimum time per light color and
-- The lights must change in a rotation of green, yellow, red.

-- The system combines all traffic light signals at an intersection into a

single command.

-- The interactions involved are:

-- Planning Agent sends plan to Safety Agent.
-- Safety Agent evaluates.

-- If ok, the Safety Agent sends the plan on to the Communications

Agent.

-- If not ok, the Safety Agent notifies the planning agent that
-- the plan is not acceptable and the cause/reason why.

model Macts
-- classes -------------mm---o

class TraCI
end

-- abstract, no instances of
class Agent

end
-- one
class CommunicationsAgent < Agent
operations
submitToTraci(command : String)
end
-- MAS Node ---------mmmmmmm - -
-- abstract

-- may only have one "PlanningAgent" type per node
class MasNode
attributes
planningAgent : PlanningAgent
safetyAgent : SafetyAgent
end

== SAFETY AGENT == - - oo oo oo oo e oo

class SafetyAgent < Agent

Page 16 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

attributes

signalState : SignalState
operations

checkSafePlan(plan : String) : String
end

-- PLANNING AGENT -------mm e mm e e e e e e e e o -
class PlanningAgent < Agent
attributes
checkResult : String
safetyAgent : SafetyAgent
operations
createPlan() : String
submitToSafetyAgentForReview(plan : String)
end

== SIGNAL STATE ----- - - oo mmmmm oo oo oo oo
class SignalState
attributes

minimumGreenTime : Integer

minimumRedTime : Integer

minimumYellowTime : Integer

currentState : String

currentStateMinimumTime : Integer

ageOfCurrentState : Integer
operations

SignalState(minRedTime : Integer, minGreenTime : Integer, minYellowTime
: Integer, initialState : String) : SignalState

getCurrentState() : String

getAgeOfCurrentStateInSeconds() : Integer

changeStateTo(desiredState : String) : String
end

-- associations -----------------

association interacts between
TraCI[1] role simulator;
CommunicationsAgent[1] role liaison;
end

association safetyAgentContainsSignalState between
SafetyAgent[1] role safetyAgentRole;
SignalState[0..*] role signalStateRole;

end

association masNodeContainsPlanningAgent between
MasNode[1] role masNodeRole;
PlanningAgent[1] role planningAgentRole;
end

Page 17 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

association masNodeContainsSafetyAgent between
MasNode[1] role masNodeRole;
SafetyAgent[1l] role safetyAgentRole;

end

-- constraints --------------------
constraints

-- there is only one communications agent
context CommunicationsAgent inv OneCommAgent:
CommunicationsAgent.allInstances->size() = 1

-- the mas node contains two agents.
-- one is a planning agent and the other a safety agent
context mn:MasNode
inv planningAgentIsAPlanningAgent:
mn.planningAgent.oclIsKindOf(PlanningAgent)
inv safetyAgentIsSafetyAgent:
mn.safetyAgent.oclIsKindOf (SafetyAgent)

context SignalState
-- check that the current state is in the set of valid states
inv validCurrentState:
Set{'G','r','y'} -> includes(self.currentState)

== SAFETY AGENT =-----c-ccmcc e cmccccmcccccmccccece oo
-- LIGHTS MUST CHANGE IN CORRECT ORDER: green, yellow, red ------------------

-- valid light colors are: { G, g, r, y }

-- post condition checks to the changeStateTo operation of the SignalState
-- the current state should either be the same as the previous state OR

-- it should be the next state in the cycle

context SignalState::changeStateTo(desiredState:String):String

post yellowFollowsGreen:
self.currentState@pre
includes(self.currentState)
post redFollowsYellow:
self.currentState@pre
includes(self.currentState)
post greenFollowsRed:
self.currentState@pre
includes(self.currentState)

'G' implies Set{'G','y'} ->

y' implies Set{'y','r'} ->

r' implies Set{'r','G'} ->

-- MINIMUM TIME PER LIGHT COLOR

-- the currentStateMinimumTime should correspond to the current state
-- Green, yellow and red have different minimum state times

pre greenMinTime:

Page 18 of 20

Multiagent Control of Traffic Signals System Architecture Design 2.0

self.currentState
self.minimumGreenTime

'G' implies currentStateMinimumTime

pre yellowMinTime:
self.currentState = 'y' implies currentStateMinimumTime
self.minimumYellowTime

pre redMinTime:
self.currentState
self.minimumRedTime

r' implies currentStateMinimumTime

-- after every state change the new age of current state should be
-- @ if the state changed or incremented by 1 if the state stayed the same
post ageOfCurrentStateIncrements:

Set{@, 1 + self.ageOfCurrentState@pre } ->
includes(self.ageOfCurrentState)

-- stated another way, if the state set to is the same as the previous state
-- then increment by 1, otherwise it is a new state so it should be set to ©
post agelncrements: if self.currentState@pre = desiredState then
self.ageOfCurrentState = self.ageOfCurrentState@pre + 1
else self.ageOfCurrentState = @ endif

-- again, if the current state is different than the previous current state,
the age should be ©
post lightStateChangingZerosAge:

self.currentState <> self.currentState@pre implies
self.ageOfCurrentState = 0

-- if the age of the current state is less than the previous minimum time
-- then the current state should be the same as the previous
post minimumStateTimeEnforced:

self.ageOfCurrentState < currentStateMinimumTime@pre implies
self.currentState = self.currentState@pre

-- context SafetyAgent::checkSafePlan(plan : String) : String
-- safetyAgent.checkSafePlan(plan)

-- receives messages with error issues from safety agent

-- SAFE PLAN: let the planning agent know if plan is acceptable
-- UNSAFE PLAN: if not, give reason why

-- SUBMIT PLAN: to the Communications Agent

-~ COMMUNICATIONS AGENT === === oo oo oo o oo oo
-- receives plan from Safety Agent and executes/submits it to TraCI

Page 19 of 20

Multiagent Control of Traffic Signals

5.3 Initialization Script

lcreate

Iset ss.

lcreate
Icreate
lcreate

lset mn.
Iset mn.
lset sa.

linsert
linsert
linsert

Iset ss
Iset ss
Iset ss

Iset ss.
lset ss.

ss : SignalState
currentState := 'r'
sa : SafetyAgent

mn : MasNode

pa : PlanningAgent
planningAgent := pa
safetyAgent := sa
signalState := ss

(mn,pa) into masNodeContainsPlanningAgent
(mn,sa) into masNodeContainsSafetyAgent
(sa,ss) into safetyAgentContainsSignalState

.minimumGreenTime := 3
.minimumYellowTime := 2
.minimumRedTime := 1

currentStateMinimumTime :

ageOfCurrentState := 0

System Architecture Design 2.0

Page 20 of 20

