
Input Output

Order Numbers: 172 168 215 170 171 216 Orders out of order: 3

Order Numbers: 328 105 267 269 108 266 Orders out of order: 1

1 - Advanced - Out of Order Orders
Problem Statement

Frieda's First Come, First Served FroYo prides itself on serving customers in the exact order that
they place their orders. Unfortunately, frozen yogurt machines are constantly in need of repair, so
sometimes a customer's order is delayed and they have to wait while others who placed their
order later receive their FroYo first. Frieda especially doesn't like it when an earlier order is picked
up after one placed later.

Since this is a very popular location, Frieda has installed three ordering kiosks. Each kiosk assigns
an order number that begins with the ID of the kiosk. For example, orders placed at kiosk 1 will be
assigned order numbers in the range of 100 through 199, kiosk 2 would range from 200 through
299, and kiosk 3 would range from 300 through 399.

Each order is assigned a number that is a positive integer, where each order number is always
bigger than the last order issued. For example, if a customer places an order on kiosk 1 and
receives order number 142, the very next order placed may be number 145 (their order system is
a little glitchy).

Frieda uses a tracking system to determine when customers receive their food. The tracking
system records a list of integers representing order numbers, which are listed in the order that
the customers received their FroYo. Write a program to determine how many customers ordered
before another customer at the same kiosk, but received their orders later.

Input
Your program should take the following input:

Six order numbers as integers, where each number is between 100 and 399

You may assume that these are the only six orders received and that all customers receive their
food. The orders may come from one, two, or three kiosks

Output
Your program should output the number of customer who receive their food directly after a
larger order number from the same kiosk as a positive integer.

Example

af://n6
af://n12
af://n14

 Problem Statement - A2
 Box Collisions

 Two dimensional (2D) video games often resolve multiple collisions every frame. If every collision
 was precise to the pixel, the game could quickly lose performance. One performant way to
 handle all these collisions is to use an Axis-Aligned Bounding Box (AABB). Every collidable object
 in a game utilizing AABBs is given a fixed (i.e. non-rotating) rectangle, and collision checks simply
 test if two rectangles intersect. This can be seen in the figure below.

 Example of an AABB Intersection Example of no AABB Intersection

 Write a program that implements AABBs as described above. This program should accept a total
 number of rectangles, a constant width for all rectangles, a constant height for all rectangles, and
 unique x/y coordinates for the bottom left corner of each rectangle. The program should then
 print the total number of collisions detected. Each collision should only be counted once (i.e. A
 colliding with B is the same as B colliding with A). Also note that a collision should only occur if
 the rectangles are overlapping and not just touching. You can assume that the values for number
 of rectangles, width, height, x, and y are non-zero positive integers. You can also assume that the
 max number of rectangles will be at most 4. This means you can also assume that the max
 number of possible collisions is 6.

 Example 1 Example 2

 Input: Enter number of rectangles: 2
 Input: Enter width for rectangles: 2
 Input: Enter height for rectangles: 2
 Input: Enter x for rectangle 1: 4
 Input: Enter y for rectangle 1: 2
 Input: Enter x for rectangle 2: 6
 Input: Enter y for rectangle 2: 2
 Output: Number of collisions: 0

 Input: Enter number of rectangles: 3
 Input: Enter width for rectangles: 4
 Input: Enter height for rectangles: 4
 Input: Enter x for rectangle 1: 1
 Input: Enter y for rectangle 1: 1
 Input: Enter x for rectangle 2: 5
 Input: Enter y for rectangle 2: 2
 Input: Enter x for rectangle 3: 3
 Input: Enter y for rectangle 3: 3
 Output: Number of collisions: 2

 Solution - A2
 Box Collisions

 using System;

 public class Program
 {

 public static void Main (string [] args)
 {

 Console.Write("Enter # rectangles: ");
 int n = Convert.ToInt32(Console.ReadLine());

 Console.Write("Enter Width: ");
 int w = Convert.ToInt32(Console.ReadLine());
 Console.Write("Enter Height: ");
 int h = Convert.ToInt32(Console.ReadLine());

 int [] x = new int [n];
 int [] y = new int [n];

 for (int i = 0; i < n; i++)
 {

 Console.Write("Enter Rectangle " + (i+1) + "'s X: ");
 x[i] = Convert.ToInt32(Console.ReadLine());
 Console.Write("Enter Rectangle " + (i + 1) + "'s Y: ");
 y[i] = Convert.ToInt32(Console.ReadLine());

 }

 int nCollisions = 0;

 for (int i = 0; i < n; i++)
 {

 for (int j = i + 1; j < n; j++)
 {

 if (x[i] + w > x[j] &&
 x[i] < x[j] + w &&
 y[i] + h > y[j] &&
 y[i] < y[j] + h)

 {
 nCollisions += 1;

 }
 }

 }

 Console.WriteLine("Number of collisions: " + nCollisions);
 }

 }

3 Advanced — Magic Squares

Problem Statement

A 3× 3 magic square is nine integers arranged in a 3× 3 grid such that each

row, column, and diagonal sums to the same value. Furthermore, each of the

nine values must be distinct, are we restrict these values to being greater than

0 and less than 100. For example, each of the following is a magic square:

2 9 4

7 5 3

6 1 8

20 16 15

12 17 22

19 18 14

Write a program that takes as input three integers for the top row, from left

to right, and an integer for the leftmost element of the middle row, and displays

a magic sqaure containing these values, if possible. If no magic square exists

with the given values in the given locations, a message to this effect should be

displayed. You may assume that the four input values are distict and in the

proper range.

Example 1:

Enter value at row 0, column 0: 20

Enter value at row 0, column 1: 16

Enter value at row 0, column 2: 15

Enter value at row 1, column 0: 12

20 16 15

12 17 22

19 18 14

Example 2:

Enter value at row 0, column 0: 1

Enter value at row 0, column 1: 16

Enter value at row 0, column 2: 3

Enter value at row 1, column 0: 9

No magic square exists.

Example 3:

Enter value at row 0, column 0: 94

Enter value at row 0, column 1: 69

Enter value at row 0, column 2: 89

Enter value at row 1, column 0: 79

No magic square exists.

...dvanced.MagicSquares\Advanced.MagicSquares\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25

26

27

28

29

30

31
32
33
34
35
36
37
38
39
40
41

// 3 - Advanced Magic Squares
using System;

namespace Advanced.MagicSquares
{

internal class Program
{

private static int[,] _square = new int[3, 3];
private static bool[] _used = new bool[100];
private static int _sum;

static void Main(string[])
{

Read(0, 0);
Read(0, 1);
Read(0, 2);
Read(1, 0);
Console.WriteLine();
_sum = _square[0, 0] + _square[0, 1] + _square[0,
2]; // Row 0

if (Fill(2, 0, 0, 0, 1, 0)
&& // Column 0

Fill(1, 1, 2, 0, 0, 2)
&& // Minor diagonal

Fill(2, 1, 0, 1, 1, 1)
&& // Column 1

Fill(1, 2, 1, 0, 1, 1)
&& // Row 1

Fill(2, 2, 0, 2, 1, 2)
&& // Column 2

_square[2, 0] + _square[2, 1] + _square[2, 2] == _sum
&& // Row 2 (unnecessary)

_square[0, 0] + _square[1, 1] + _square[2, 2] ==
_sum) // Major diagonal

{
for (int i = 0; i < 3; i++)
{

for (int j = 0; j < 3; j++)
{

Console.Write(_square[i, j] + " ");
}
Console.WriteLine();

}
}
else

...dvanced.MagicSquares\Advanced.MagicSquares\Program.cs 2
42
43
44
45
46
47
48
49
50

51
52
53
54
55

56
57

58

59
60
61
62
63
64
65
66
67

{
Console.WriteLine("No magic square exists.");

}
Console.ReadLine();

}

private static void Read(int row, int col)
{

Console.Write("Enter value at row " + row + ", column " + col +
": ");

_square[row, col] = Convert.ToInt32(Console.ReadLine());
_used[_square[row, col]] = true;

}

private static bool Fill(int row, int col, int aRow, int aCol, int
bRow, int bCol)

{
_square[row, col] = _sum - _square[aRow, aCol] - _square[bRow,
bCol];

if (_square[row, col] < 1 || _square[row, col] > 99 || _used
[_square[row, col]])

{
return false;

}
_used[_square[row, col]] = true;
return true;

}
}

}

4 Advanced — Card Sequence

Problem Statement

A deck of cards has been arranged into a particular sequence. The deck
contains 32 cards, each of which is uniquely identified by a rank and a suit.
The eight ranks are 7, 8, 9, 10, Jack, Queen, King, and Ace. The four suits are
Hearts, Diamonds, Clubs, and Spades. Hearts and Diamonds are colored red,
whereas Clubs and Spades are colored black.

The deck is arranged so that, no matter how it is cut by moving cards from
the top to the bottom, the colors of the first five cards uniquely determine the
first card. The colors of the first two cards determine the suit as follows:

• Black-Black: Spades

• Black-Red: Clubs

• Red-Black: Diamonds

• Red-Red: Hearts

The colors of the third, fourth, and fifth cards determine the rank as follows:

• The rank is initialized to 7.

• If the third card is black, add 4.

• If the fourth card is black, add 2.

• If the fifth card is black, add 1.

If the rank, as computed above, is 11, 12, 13, or 14, it is interpreted as Jack,
Queen, King, or Ace, respectively.

Furthermore, the color of the sixth card in the sequence is determined by
the rank and suit of the first card. If the first card is the 8 of Hearts, the 8 of
Clubs, or any 9, the sixth card is the same color as the first card; otherwise,
the sixth card is the opposite color from the first card. Having the color of the
sixth card, we can now identify the second card, from which we can determine
the color of the seventh card, etc.

Write a program that takes as input a sequence of five letters, each of which
is either “B” (denoting black) or “R” (denoting red), and produces as output
the ranks and suits of these five cards in the order they appear. You may choose
whether to have the program accept the input as five separate letters or as a
single string. You may assume that each character is either “B” or “R”. Your
output must be the full name of each card, as shown in the examples below.

Example 1:

Enter colors: BBRRB

8 of Spades

9 of Clubs

Queen of Hearts

10 of Diamonds

Ace of Clubs

Example 2:

Enter colors: RBRBR

9 of Diamonds

Jack of Clubs

7 of Diamonds

8 of Clubs

10 of Hearts

...dvanced.CardSequence\Advanced.CardSequence\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

// 4 - Advanced Card Sequence
// See also the solution to the beginning problem from this round.
using System;

namespace Advanced.CardSequence
{

internal class Program
{

static void Main(string[])
{

Console.Write("Enter colors: ");
string cols = Console.ReadLine();
Console.WriteLine();
string[] ranks = { "7", "8", "9", "10", "Jack", "Queen",
"King", "Ace" };

for (int i = 0; i < 5; i++)
{

string suit;
if (cols[i] == 'B')
{

if (cols[i + 1] == 'B') suit = "Spades";
else suit = "Clubs";

}
else
{

if (cols[i + 1] == 'B') suit = "Diamonds";
else suit = "Hearts";

}
int rank = 0;
if (cols[i + 2] == 'B') rank += 4;
if (cols[i + 3] == 'B') rank += 2;
if (cols[i + 4] == 'B') rank += 1;
Console.WriteLine(ranks[rank] + " of " + suit);
if ((rank == 1 && (suit == "Hearts" || suit == "Clubs")) ||

rank == 2)
cols += cols[i];

else
cols += (char)('B' + 'R' - cols[i]);

}
Console.ReadLine();

}
}

}

A5 Problem Statement

There are many ways to solve

logic problems like the one

on the left. One approach is

to consider the four cases:

which signs are true if the

sleeping bag is (1) in the red

tent, (2) in the yellow tent,

(3) in the blue tent, finally, (4)

in the green tent. For

example, if the sleeping bag is in the red tent, then the sign for the red tent is false,

the sign for the yellow tent is true, the sign for the blue tent is true, and the sign

for the green tent is false. Since in this case, there are two signs that are true and

thus, the sleeping bag cannot be in the red tent.

Write a program that accepts two characters that determine the sign for each tent:

‘T’ mean the statement is positive. ‘N’ means it is negative. ‘H’ means here. The

letters R, Y, B, G mean red, yellow, blue and green respectively. The situation

shown in the image would be specified by

‘N H N B N H T Y’.

Print out which tent contains the sleeping bag and which tent’s sign is true. The

output for this situation would be: Sleeping bag is in blue tent; the red tent’s sign

is true. If there is no situation in which only one sign is true, print out: no solution.

Formatting of output not important as long as answer is clear where bag is and

which sign is true.

Example 1: input: N H T G T R T Y

 output: no solution (both case 1 “in red tent’ and case 3 “in blue

tent” make only one sign true)

Example 2: input: N B T G N R T B

 output: in red tent; red sign true

C:\Users\David\source\repos\LogicA\LogicA.cpp 1
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43

44
45
46

// LogicA.cpp : This file contains the 'main' function. Program execution
begins and ends there.

//

#include <iostream>

int main()
{
 char TR, TY, TB, TG, CR, CY, CB, CG;
 char PR, PY, PB, PG;
 int IsTR, IsTY, IsTB, IsTG;
 char Quit;
 Quit = 'Q';
 while (Quit == 'Q')
 {
 std::cout << "\nEnter T or N for red";
 std::cin >> TR;
 std::cout << "\nEnter color for red";
 std::cin >> CR;

 std::cout << "\nEnter T or N for yellow";
 std::cin >> TY;
 std::cout << "\nEnter color for yellow";
 std::cin >> CY;

 std::cout << "\nEnter T or N for blue";
 std::cin >> TB;
 std::cout << "\nEnter color for blue";
 std::cin >> CB;

 std::cout << "\nEnter T or N for green";
 std::cin >> TG;
 std::cout << "\nEnter color for green";
 std::cin >> CG;
 IsTR = 0; IsTY = 0; IsTB = 0; IsTG = 0;
 PR = 'X'; PY = 'V'; PB = 'W'; PG = 'Z';

 std::cout << "\n Case: " << TR << CR << TY << CY << TB << CB << TG <<
CG << "\n1";

 // case 1: bag is in red tent

 if (TR == 'T' && (CR == 'H' || CR == 'R')) { IsTR++; PR = 'R'; }
 if (TR == 'N' && (CR == 'B' || CR == 'Y' || CR == 'G')) { IsTR++; PR =

'R'; }
 if (TY == 'T' && CY == 'R') { IsTR++; PR = 'Y'; }
 if (TB == 'T' && CB == 'R') { IsTR++; PR = 'B'; }
 if (TG == 'T' && CG == 'R') { IsTR++; PR = 'G'; }

C:\Users\David\source\repos\LogicA\LogicA.cpp 2
47

48

49

50
51
52
53
54
55

56
57
58
59

60

61

62
63
64
65
66

67
68
69
70

71

72

73
74
75
76
77

78
79
80
81

82

 if (TY == 'N' && (CY == 'H' || CY == 'B' || CY == 'G' || CY == 'Y'))
{ IsTR++; PR = 'Y'; }

 if (TB == 'N' && (CB == 'H' || CB == 'B' || CB == 'G' || CB == 'Y'))
{ IsTR++; PR = 'B'; }

 if (TG == 'N' && (CG == 'H' || CG == 'B' || CG == 'G' || CG == 'Y'))
{ IsTR++; PR = 'G'; }

 std::cout << "\n 2";

 // case 2: bag is in yellow tent

 if (TY == 'T' && (CY == 'H' || CY == 'Y')) { IsTY++; PY = 'Y'; }
 if (TY == 'N' && (CY == 'B' || CY == 'R' || CY == 'G')) { IsTY++; PY =

'Y'; }
 if (TR == 'T' && CR == 'Y') { IsTY++; PY = 'R'; }
 if (TB == 'T' && CB == 'Y') { IsTY++; PY = 'B'; }
 if (TG == 'T' && CG == 'Y') { IsTY++; PY = 'G'; }
 if (TR == 'N' && (CR == 'H' || CR == 'B' || CR == 'G' || CR == 'R'))

{ IsTY++; PY = 'R'; }
 if (TB == 'N' && (CB == 'H' || CB == 'B' || CB == 'G' || CB == 'R'))

{ IsTY++; PY = 'B'; }
 if (TG == 'N' && (CG == 'H' || CG == 'B' || CG == 'G' || CG == 'R'))

{ IsTY++; PY = 'G'; }

 // case 3: bag is in blue tent

 if (TB == 'T' && (CB == 'H' || CB == 'B')) { IsTB++; PB = 'B'; }
 if (TB == 'N' && (CB == 'R' || CB == 'Y' || CB == 'G')) { IsTB++; PB =

'B'; }
 if (TY == 'T' && CY == 'B') { IsTB++; PB = 'Y'; }
 if (TR == 'T' && CR == 'B') { IsTB++; PB = 'R'; }
 if (TG == 'T' && CG == 'B') { IsTB++; PB = 'G'; }
 if (TY == 'N' && (CY == 'H' || CY == 'Y' || CY == 'G' || CY == 'R'))

{ IsTB++; PB = 'Y'; }
 if (TR == 'N' && (CR == 'H' || CR == 'Y' || CR == 'G' || CR == 'R'))

{ IsTB++; PB = 'R'; }
 if (TG == 'N' && (CG == 'H' || CG == 'Y' || CG == 'G' || CG == 'R'))

{ IsTB++; PB = 'G'; }

 // case 4: bag is in green tent

 if (TG == 'T' && (CG == 'H' || CG == 'G')) { IsTG++; PG = 'G'; }
 if (TG == 'N' && (CG == 'R' || CG == 'Y' || CG == 'B')) { IsTG++; PG =

'G'; }
 if (TY == 'T' && CY == 'G') { IsTG++; PG = 'Y'; }
 if (TB == 'T' && CB == 'G') { IsTG++; PG = 'B'; }
 if (TR == 'T' && CR == 'G') { IsTG++; PG = 'R'; }
 if (TY == 'N' && (CY == 'H' || CY == 'B' || CY == 'Y' || CY == 'R'))

{ IsTG++; PG = 'Y'; }
 if (TB == 'N' && (CB == 'H' || CB == 'B' || CB == 'Y' || CB == 'R'))

C:\Users\David\source\repos\LogicA\LogicA.cpp 3

83

84
85
86
87
88
89
90
91

92

93

94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

109

110

{ IsTG++; PG = 'B'; }
 if (TR == 'N' && (CR == 'H' || CR == 'B' || CR == 'Y' || CR == 'R'))

{ IsTG++; PG = 'R'; }

 std::cout << "\nR " << IsTR << " PR " << PR;
 std::cout << "\nY " << IsTY << " PY " << PY;
 std::cout << "\nB " << IsTB << " PB " << PB;
 std::cout << "\nG " << IsTG << " PG " << PG;

 if (IsTR == 1) std::cout << "\nbag is in Red, sign is at tent " << PR;
 if (IsTY == 1) std::cout << "\nbag is in Yellow, sign is at tent " <<

PY;
 if (IsTB == 1) std::cout << "\nbag is in Blue, sign is at tent " <<

PB;
 if (IsTG == 1) std::cout << "\nbag is in Green, sign is at tent " <<

PG;

 std::cout << "\nEnter quit";
 std::cin >> Quit;
 }
}

// Run program: Ctrl + F5 or Debug > Start Without Debugging menu
// Debug program: F5 or Debug > Start Debugging menu

// Tips for Getting Started:
// 1. Use the Solution Explorer window to add/manage files
// 2. Use the Team Explorer window to connect to source control
// 3. Use the Output window to see build output and other messages
// 4. Use the Error List window to view errors
// 5. Go to Project > Add New Item to create new code files, or Project > Add
 Existing Item to add existing code files to the project

// 6. In the future, to open this project again, go to File > Open > Project
and select the .sln file

Input Output

Enter the starting letter: 13
Do you want to (E)ncode or (D)ecode? E
Enter a plaintext message: Hello, World!

Uryyb, Jbeyq!

Enter the starting letter: 18
Do you want to (E)ncode or (D)ecode? E
Enter a plaintext message: Hello, World!

Zwddg, Ogjdv!

Enter the starting letter: 25
Do you want to (E)ncode or (D)ecode? D
Enter a ciphertext message: Fn Bzsr!

Go Cats!

6 - Advanced - Super Secret
Problem Statement

Substitution ciphers are simple encryption algorithms where plaintext is replaced with ciphertext
based off some fixed system. For example, we could shift or rotate the alphabet by some number
of positions as the basis for encrypting a message. If we rotate the alphabet n positions, a letter is
substituted with a letter that comes n places after it. For example, if we start with a normal
English alphabet and rotate 13 positions, "A" in plaintext, would become "N" in ciphertext. To
convert the ciphertext back into plaintext, you can just do the ROT13 cipher in reverse.

Write a program that will encrypt plaintext and decrypt ciphertext using the substitution cipher
described. Your program should take in the number of positions to rotate as input. If a number
other than "0" is given, your alphabet should wrap around for encrypting/decrypting a letter that
would cause you to go past the end of the alphabet. For example, if you are rotating 5 positions,
the letter "X" would be encrypted to be "C". The wrap would also apply to decryption, but in
reverse. In rotating 5 positions, "C" would decrypt to "X".

The program should then take as input an "E" for encode or "D" for decode followed by the
message to encode or decode. The message should be encrypted/decrypted, and the result
should be printed out. Non-alpha characters should not be manipulated. Uppercase characters
should remain uppercase and lowercase characters should remain lowercase.

Input
A number n, where , that represents the number of rotations.
A character ('E' or 'D') that indicates encrypt or decrypt. This letter will be capitalized.
A non-empty string that is the message to encode or decode

Output
Your program should output the message from the user that is encrypted or decrypted based off
of the inputs. The output should maintain the case of the original message as well as any non-
alpha characters.

Example

af://n6
af://n14
af://n16

	Input
	Output
	Example

