
A1 Problem Statement

Willie’s Push-ups

After every football score, Willie the Wildcat does one push-up for every point scored so far in the

current game. On the scoreboard at the stadium, there is displayed the total number of push-ups that

Willie has done since the beginning of the season.

Write a program that accepts the current total number of push-ups (from the previous game). The

program than accepts the first score of the game and then prints the number of push-ups that Willie has

to do after this score and the current game push-up total. Keep prompting until a zero indicates the end

of the game. Then output the new total for the season.

Example 1: Input: Previous total: 90

 New score: 7

 Output: Current push-ups: 7

 Game push-up total: 7

 Input: New score: 3

 Output: Current push-ups: 10

 Game push-up total: 17

 Input: New score: 0

 Output: New total: 107

 Example 2: Input: Previous total: 105

 New score: 3

 Output: Current push-ups: 3

 Game push-up total: 3

 Input: New score: 3

 Output: Current push-ups: 6

 Game push-up total: 9

 Input: New score: 6

 Output: Current push-ups: 15

 Game push-up total: 24

 Input: New score: 0

 Output: New total: 129

A2 Problem Statement

Muddy Paws

There have been a few rain storms the last couple of days, but the puppies still had to go
outside to play. Coming back inside, the puppies left muddy paw prints all over the house.
You are tasked with trying to clean as many rooms of the house as you can, but you only
have so much cleaner. Write a program to determine how many rooms you can clean if you
have 10 gallons of cleaner. Each gallon of cleaner can clean a maximum of 500 square feet.
Your program should �rst take in input for how many rooms there are, followed by input
for the square footage (given as a whole number) of each room. The rooms are not given in
order of size. Inputs are given one per line. Finally, your program should output the
number of rooms you can clean.

Example
How many rooms are there? 3
Enter the square footage of room 1: 3000
Enter the square footage of room 2: 2000
Enter the square footage of room 3: 4000
2 room(s) were cleaned.

How many rooms are there? 2
Enter the square footage of room 1: 800
Enter the square footage of room 2: 1200
2 room(s) were cleaned.

af://n3

3 Advanced — Minimum Distance

Write program that takes as input a number n of points (an integer), followed
by the x- and y-coordinates (floating point) of n points, and produces as output
the closest pair of these points. The distance between two points (x1, y1) and
(x2, y2) is given by

d =
√

(x1 − x2)2 + (y1 − y2)2.

(Note that you don’t need to compute the square root to solve this problem,
as the square of the distance is minimized whenever the distance is minimized.)
You may assume that n will be at least 2 and at most 10.

Example:

Enter number of points: 4

Enter x0: -1.5

Enter y0: 3.7

Enter x1: 2.3

Enter y1: 5.6

Enter x2: 1.2

Enter y2: -10

Enter x3: 2.4

Enter y3: 5.1

(2.3, 5.6) and (2.4, 5.1) are closest.

A4 Problem Statement

Adding Fractions

To add fractions, you must convert the fractions to a common denominator, add the numerators and

then convert the result to the lowest denominator.

e.g. 1/4 + 1/2 = 2/8 + 4/8 = 6/8 = 3/4 or a/b + c/d = ad/bd + cb/bd = (ad + cb) / bd

The fraction (ad + cb) / bd then needs to be reduced by dividing both the numerator and denominator
by the largest integer that evenly divides both.

Write a program that accepts a series of numerator and denominator pairs, adds each pair to the

previous result and expresses the new sum in whole numbers plus a fractional part expressed in the

lowest denominator. A fraction with a zero numerator will not be displayed. No output is required until

after the second numerator and denominator.

All inputs and outputs must be integers. The fractions must be represented either 1) by an integer

numerator followed by a “/” and an integer denominator, e.g. “3/4”, or 2) by the numerator and

denominator printed separately and labelled as numerator and denominator respectively, e.g.

“numerator is 3; denominator is 4”.

All inputs will be positive integers, i.e. greater than zero

Example 1: Input: Num1: 2

 Dem1: 4

 Num: 3

 Dem: 4

 Output: 1 1/4

 Input: Num: 2

 Dem: 9

 Output: 1 17/36

Example 2: Input: Num1: 83

 Dem1: 99

 Num: 6

 Dem: 33

 Output: 1 2/99

Example 3: Input: Num1: 83

 Dem1: 99

 Num: 16

 Dem: 99

 Output: 1

A5 Problem Statement

Packing Up Decorations

It is time to start packing up all of the holiday decorations, but we lost all of the boxes! All
we have are some �at pieces of cardboard. We can use the cardboard to make a box (with no
lid). Write a program that takes in the width and length of a rectangular piece of cardboard
and calculates the dimensions of a box. This box should be able to hold as many
decorations as possible. Therefore, your program should maximize the volume of the box
using only whole number heights. As seen in the �gure below, the box can be made from
the carboard by cutting out a square, , from each corner where represents the height
of the box.

Input for this program will be given one per line. The length of the cardboard is given �rst,
then the width. All values will be given as whole inches. You may assume that the
dimensions entered for the cardboard represent a valid rectangle, where the width
represents the short side and is at least at least 3 inches. Your program should should
output the dimensions (length, width, height) and volume of the box you create.

Example
Enter length of the cardboard: 8
Enter width of the cardboard: 3

length = 6
width = 1
height = 1
volume = 6

Enter length of the cardboard: 25
Enter width of the cardboard: 20

af://n5

length = 17
width = 12
height = 4
volume = 816

6 Advanced — Next Card

This problem is based on a 1-player game consisting of n cards containing
the values 0 through n − 1. The cards are shuffled and placed face down. The
player then reveals one card at a time, and for each card, guesses whether the
next card’s value will be higher or lower than the last. If she guesses all cards
correctly, she wins; otherwise, she loses.

Write a program that takes as input the number of cards, then the value
of each card in sequence. Following each card, it produces as output the best
guess (i.e., lower or higher than the last card), along with the probability that
this guess is correct. The probability that a randomly-chosen card is in a given
subset of the remaining cards is given by dividing the number of cards in the
subset by the number of cards remaining. If the probabilities of both guesses
are the same, the program should guess “lower”. If any guess is incorrect, the
program should immediately terminate with the message, “I lose.”. If it guesses
all cards correctly, it should display the message, “I win!”. You may assume
that the number of cards will be at least 2, and that each guess is distinct and
in the specified range. All inputs will be integers.

Example 1:

Enter number of cards: 10

Enter next card: 5

Lower (probability = 0.5555556)

Enter next card: 4

Lower (probability = 0.5)

Enter next card: 8

I lose.

Example 2:

Enter number of cards: 4

Enter next card: 1

Higher (probability = 0.6666667)

Enter next card: 3

Lower (probability = 1)

Enter next card: 0

Higher (probability = 1)

Enter next card: 2

I win!

A1 Solution

Willie’s Push-ups

int main()
{
 float NS, CP, CS, PTP;

 char q; q = 'a';
 char ng; ng = 'b';
 while (ng != 'N')
 {
 CP = 0; CS = 0;
 q = 'a';
 std::cout << "\nEnter prior total push-ups: "; std::cin >> PTP;

 while (q != 'N')
 {
 std::cout << "\nEnter new score: "; std::cin >> NS;
 if (NS == 0) {
 PTP = PTP + CP;
 std::cout << "\nEnd of Game - New total push-ups: "

<< PTP << "\n";
 q = 'N'; //ng = 'N'; //return 0;
 }
 else
 {
 CS = CS + NS;
 CP = CP + CS;

 std::cout << "\nCurrent push-ups: " << CS

<< " Game push-up total: "; std::cout << CP;
 }
 }

 std::cout << "\nAnother Game?: "; std::cin >> ng;
 }

 return 0;}

1 gpsqft = 500
2 gallons = 10
3 cleaned = 0
4
5 n = int(input("How many rooms are there? "))
6 rooms = []
7 i = 1
8 while i <= n:
9 rooms.append(int(input("Enter the square footage of room {}: ".format(i))))

10 i += 1
11
12 for room in sorted(rooms):
13 used = room / gpsqft
14 if used <= gallons:
15 cleaned += 1
16 gallons -= used
17
18 print("{} room(s) were cleaned.".format(cleaned))
19

A2 Solution

...imumDistance.Advanced\MinimumDistance.Advanced\Program.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/* 3 Advanced - Minimum Distance
* Author: Rod Howell
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MinimumDistance.Advanced
{

 class Program
 {

 static void Main(string[] args)
 {

 Console.Write("Enter number of points: ");
 int n = Convert.ToInt32(Console.ReadLine());
 double[] x = new double[n];
 double[] y = new double[n];
 for (int i = 0; i < n; i++)
 {

 Console.Write("Enter x" + i + ": ");
 x[i] = Convert.ToDouble(Console.ReadLine());
 Console.Write("Enter y" + i + ": ");
 y[i] = Convert.ToDouble(Console.ReadLine());

 }
 double min = Double.PositiveInfinity;
 int index1 = -1;
 int index2 = -1;
 for (int i = 0; i < n; i++)
 {

 for (int j = i + 1; j < n; j++)
 {

 double diffX = x[i] - x[j];
 double diffy = y[i] - y[j];
 double distSq = diffX * diffX + diffy * diffy;
 if (distSq < min)
 {

 index1 = i;
 index2 = j;
 min = distSq;

 }
 }

 }
 Console.WriteLine();
 Console.Write("(" + x[index1] + ", " + y[index1] + ") and (" +
 x[index2] + ", " + y[index2] + ") are closest.");

 Console.ReadLine();
 }

 }
}

A3 Solution

A4 Solution

Adding Fractions

int main()
{

float RN, RF, R1, R2;
int N1, N2, D1, D2, FN, FD;
int W, i;
char q; q = 'a';
char n; n = 'n';

while (n != 'N') {
std::cout << "\nEnter first numerator: "; std::cin >> N1;
std::cout << "\nEnter first denominator: "; std::cin >> D1;
R1 = N1; R2 = D1; RF = R1 / R2; std::cout << "\n floatF:" << RF;
q = 'a';
while (q != 'N')
{

W = 0;
std::cout << "\nEnter next numerator: "; std::cin >> N2;
std::cout << "\nEnter next denominator: "; std::cin >> D2;
R1 = N2; R2 = D2; RN = R1 / R2; std::cout << "\n floatN: " << RN;

FN = N1*D2 + N2*D1;
FD = D1*D2;
N1 = FN; D1 = FD;

while (FN >= FD) {
W = W + 1; FN = FN - FD;

}
for (i = FD - 1; i > 1; i = i - 1) {

if ((((FN / i)* i) == FN) && (((FD / i)*i) == FD))
{

FN = FN / i; FD = FD / i;
}

}
if (FN > 0)
{

std::cout << "\nCurrent Fraction is " << W << " plus "
<< FN << "/" << FD;

}
else
{

std::cout << "\nCurrent Fraction is " << W ;
}
RF = RF + RN; std::cout << "\n floatF:" << RF;

std::cout << "\nAnother term?: "; std::cin >> q;
}

std::cout << "\nStart a new Fraction?: "; std::cin >> n;

}
return 0;

}

1 length = int(input("Enter length of the cardboard: "))
2 width = int(input("Enter width of the cardboard: "))
3 volume = 0
4 h = 0
5 max_volume = -1
6 max_height = -1
7 small_side = min(width, length)
8 while h * 2 < width:
9 h += 1

10 volume = h * (length - 2 * h) * (width - 2 * h)
11 if volume > max_volume:
12 max_volume = volume
13 max_height = h
14 print("\nlength = {:.0f}\nwidth = {:.0f}\nheight = {:.0f}\nvolume =

{:.0f}".format(length - 2 * max_height, width - 2 * max_height, max_height, max_volume))
15

A5 Solution

...\Contest18\NextCard.Advanced\NextCard.Advanced\Program.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/* 6 Advanced - Next Card
* Author: Rod Howell
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace NextCard.Advanced
{

 class Program
 {

 static void Main(string[] args)
 {

 Console.Write("Enter number of cards: ");
 int n = Convert.ToInt32(Console.ReadLine());
 bool[] used = new bool[n];
 int last = -1;
 bool lower = false;
 while (true)
 {

 Console.Write("Enter next card: ");
 int i = Convert.ToInt32(Console.ReadLine());
 used[i] = true;
 n--;
 if ((lower && i > last) || (!lower && i < last))
 {

 Console.WriteLine("I lose.");
 Console.ReadLine();
 return;

 }
 else if (n == 0)
 {

 Console.WriteLine("I win!");
 Console.ReadLine();
 return;

 }
 int less = 0;
 for (int j = 0; j < i; j++)
 {

 if (!used[j])
 {

 less++;
 }

 }
 if (less >= n - less)
 {

 Console.WriteLine("Lower (probability = " +
 (float)less / n + ")");

 lower = true;
 }

A6 Soltuion

...\Contest18\NextCard.Advanced\NextCard.Advanced\Program.cs 2
53
54
55
56
57
58
59
60
61
62
63
64

 else
 {

 Console.WriteLine("Higher (probability = " +
 (float)(n - less) / n + ")");

 lower = false;
 }
 last = i;

 }
 }

 }
}

	a5-problem.pdf
	Example

	a2-problem.pdf
	Example

