
Vulnerability of Deep Reinforcement Learning to
Policy Induction Attacks

Vahid Behzadan and Arslan Munir

Department of Computer Science and Engineering
University of Nevada, Reno

1664 N Virginia St, Reno, NV 89557
{vbehzadan,amunir}@unr.edu

Abstract. Deep learning classifiers are known to be inherently vulner-
able to manipulation by intentionally perturbed inputs, named adver-
sarial examples. In this work, we establish that reinforcement learning
techniques based on Deep Q-Networks (DQNs) are also vulnerable to ad-
versarial input perturbations, and verify the transferability of adversarial
examples across different DQN models. Furthermore, we present a novel
class of attacks based on this vulnerability that enable policy manipu-
lation and induction in the learning process of DQNs. We propose an
attack mechanism that exploits the transferability of adversarial exam-
ples to implement policy induction attacks on DQNs, and demonstrate
its efficacy and impact through experimental study of a game-learning
scenario.

Keywords: Reinforcement Learning, Deep Q-Learning, Adversarial Ex-
amples, Policy Induction, Manipulation, Vulnerability

1 Introduction

Inspired by the psychological and neuroscientific models of natural learning, Re-
inforcement Learning (RL) techniques aim to optimize the actions of intelligent
agents in complex environments by learning effective controls and reactions that
maximize the long-term reward of agents [1]. The applications of RL range from
combinatorial search problems such as learning to play games [2] to autonomous
navigation [3], multi-agent systems [4], and optimal control [5]. However, clas-
sic RL techniques generally rely on hand-crafted representations of sensory in-
put, thus limiting their performance in the complex and high-dimensional real
world environments. To overcome this limitation, recent developments combine
RL techniques with the significant feature extraction and processing capabili-
ties of deep learning models in a framework known as Deep Q-Network (DQN)
[6]. This approach exploits deep neural networks for both feature selection and
action-value function approximation, hence enabling unprecedented performance
in complex settings, such as learning efficient playing strategies from unlabeled
video frames of Atari games [7], robotic manipulation [8], and autonomous nav-
igation of aerial [9] and ground vehicles [10].



2 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

The growing interest in the application of DQNs in critical systems necessi-
tate the investigation of this framework with regards to its resilience and robust-
ness to adversarial attacks on the integrity of RL processes. The reliance of RL on
interactions with the environment gives rise to an inherent vulnerability which
makes the process of learning susceptible to perturbation as a result of changes
in the observable environment. Exploiting this vulnerability provides adversaries
with the means to disrupt or change control policies, leading to unintended and
potentially harmful actions. For instance, manipulation of the obstacle avoid-
ance and navigation policies learned by autonomous Unmanned Aerial Vehicles
(UAV) enables the adversary to use such systems as kinetic weapons by inducing
actions that lead to intentional collisions.

In this paper, we study the efficacy and impact of policy induction attacks
on the Deep Q-Learning RL framework. To this end, we propose a novel attack
methodology based on adversarial example attacks against deep learning models
[13]. Through experimental results, we verify that similar to classifiers, Q net-
works are also vulnerable to adversarial examples, and confirm the transferability
of such examples between different models. We then evaluate the proposed at-
tack methodology on the original DQN architecture of Mnih et al. [7], the results
of which verify the feasibility of policy induction attacks by incurring minimal
perturbations in the environment or sensory inputs of an RL system. We also
discuss the insufficiency of defensive distillation [14] and adversarial training [15]
techniques as state of the art countermeasures proposed against adversarial ex-
ample attacks on deep learning classifiers, and present potential techniques to
mitigate the effect of policy induction attacks against DQNs.

The remainder of this paper is organized as follows: Section 2 presents an
overview of Q-Learning, Deep Q-Networks, and adversarial examples. Section 3
formalizes the problem and defines the target and attacker models. In Section 4,
we outline the attack methodology and algorithm, followed by the experimental
evaluation of the proposed methodology in Section 5. A high-level discussion on
effectiveness of the current countermeasures is presented in Section 6, and the
paper is concluded in Section 7 with remarks on future research directions.

2 Background

2.1 Q-Learning

The generic RL problem can be formally modeled as a Markov Decision Pro-
cess (MDP), described by the tuple MDP = (S,A, P,R), where S is the set of
reachable states in the process, A is the set of available actions, R is the map-
ping of transitions to the immediate reward, and P represents the transition
probabilities. At any given time-step t, the MDP is at a state st ∈ S. The RL
agent’s choice of action at time t, at ∈ A causes a transition from st to a state
st+1 according to the transition probability P atst,st+a

. The agent receives a reward
rt = R(st, at) ∈ R, where R denotes the set of real numbers, for choosing the
action at at state st.



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 3

Interactions of the agent with MDP are captured in a policy π. When such
interactions are deterministic, the policy π : S → A is a mapping between the
states and their corresponding actions. A stochastic policy π(s, a) represents the
probability of optimality for action a at state s.

The objective of RL is to find the optimal policy π∗ that maximizes the
cumulative reward over time at time t, denoted by the return function R̂t =∑∞
k=0 γ

krt+k, where γ ∈ [0, 1] is the discount factor representing the diminishing

worth of rewards obtained further in time, hence ensuring that R̂ is bounded.

One approach to this problem is to estimate the optimal value of each action,
defined as the expected sum of future rewards when taking that action and
following the optimal policy thereafter. The value of an action a in a state s is
given by the action-value function Q defined as:

Q(s, a) = R(s, a) + γmaxa′(Q(s′, a′)) (1)

Where s′ is the state that emerges as a result of action a, and a′ is a pos-
sible action in state s′. The optimal Q value given a policy π is hence de-
fined as: Q∗(s, a) = maxπQ

π(s, a), and the optimal policy is given by π∗(s) =
arg maxaQ(s, a)

The Q-learning method estimates the optimal action policies by using the
Bellman equation Qi+1(s, a) = E[R + γmaxaQi] as the iterative update of a
value iteration technique. Practical implementation of Q-learning is commonly
based on function approximation of the parametrized Q-function Q(s, a; θ) ≈
Q∗(s, a). A common technique for approximating the parametrized non-linear Q-
function is to train a neural network whose weights correspond to the parameter
vector θ. Such neural networks, commonly referred to as Q-networks, are trained
such that at every iteration i, it minimizes the loss function

Li(θi) = Es,a∼ρ(.)[(yi −Q(s, a, ; θi))
2] (2)

where yi = E[R + γmaxa′ Q(s′, a′; θi−1)|s, a], and ρ(s, a) is a probability
distribution over states s and actions a. This optimization problem is typically
solved using computationally efficient techniques such as Stochastic Gradient
Descent (SGD) [11].

2.2 Deep Q Networks

Classical Q-networks present a number of major disadvantages in the Q-learning
process. First, the sequential processing of consecutive observations breaks the
iid (Independent and Identically Distributed) requirement of training data as
successive samples are correlated. Furthermore, slight changes to Q-values leads
to rapid changes in the policy estimated by Q-network, thus enabling policy
oscillations. Also, since the scale of rewards and Q-values are unknown, the
gradients of Q-networks can be sufficiently large to render the backpropagation
process unstable.



4 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

Input Layer 1st hidden 2nd hidden 3rd hidden

 Output 

Convolutional Network Fully Connected

4 frames 16 lters 32 lters

84×84

20×20
9×9

Fig. 1: DQN architecture for end-to-end learning of Atari 2600 game plays

A deep Q network (DQN) [6] is a multi-layered Q-network designed to miti-
gate such disadvantages. To overcome the issue of correlation between consecu-
tive observations, DQN employs a technique named experience replay : Instead of
training on successive observations, experience replay samples a random batch
of previous observations stored in the replay memory to train on. As a result,
the correlation between successive training samples is broken and the iid setting
is re-established. In order to avoid oscillations, DQN fixes the parameters of the
optimization target yi. These parameters are then updated at regulat intervals
by adopting the current weights of the Q-network. The issue of unstability in
backpropagation is also solved in DQN by clipping the reward values to the
range [−1,+1], thus preventing Q-values from becoming too large.

Mnih et al. [7] demonstrate the application of this new Q-network technique
to end-to-end learning of Q values in playing Atari games based on observations
of pixel values in the game environtment. The neural network architecture of this
work is depicted in figure 1. To capture the movements in the game environment,
Mnih et al. use stacks of 4 consecutive image frames as the input to the network.
To train the network, a random batch is sampled from the previous observation
tuples (st, at, rt, st+1), where rt denotes the reward at time t. Each observation is
then processed by 2 layers of convolutional neural networks to learn the features
of input images, which are then employed by feed-forward layers to approximate
the Q-function. The target network Q̂, with parameters θ−, is synchronized with



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 5

the parameters of the original Q network at fixed periods intervals. i.e., at every
ith iteration, θ−t = θt, and is kept fixed until the next synchronization. The
target value for optimization of DQN learning thus becomes:

y′t ≡ rt+1 + γmaxa′Q̂(St+1, a
′; θ−) (3)

Accordingly, the training process can be stated as:

minat(y
′
t −Q(st, at, θ))

2 (4)

2.3 Adversarial Examples

in [16], Szegedy et al. report an intriguing discovery: several machine learning
models, including deep neural networks, are vulnerable to adversarial examples.
That is, these machine learning models misclassify inputs that are only slightly
different from correctly classified samples drawn from the data distribution. Fur-
thermore, a wide variety of models with different architectures trained on differ-
ent subsets of the training data misclassify the same adversarial example.

This suggests that adversarial examples expose fundamental blind spots in
machine learning algorithms. The issue can be stated as follows: Consider a
machine learning system M and a benign input sample C which is correctly
classified by the machine learning system, i.e. M(C) = ytrue. According to the
report of Szegedy [16] and many proceeding studies [13], it is possible to construct
an adversarial example A = C + δ, which is perceptually indistinguishable from
C, but is classified incorrectly, i.e. M(A) 6= ytrue.

Adversarial examples are misclassified far more often than examples that
have been perturbed by random noise, even if the magnitude of the noise is much
larger than the magnitude of the adversarial perturbation [17]. According to the
objective of adversaries, adversarial example attacks are generally classified into
the following two categories:

1. Misclassification attacks, which aim for generating examples that are classi-
fied incorrectly by the target network

2. Targeted attacks, whose goal is to generate samples that the target misclas-
sifies into an arbitrary class designated by the attacker.

To generate such adversarial examples, several algorithms have been pro-
posed, such as the Fast Gradient Sign Method (FGSM) by Goodfellow et al.,
[17], and the Jacobian Saliency Map Algorithm (JSMA) approach by Papernot
et al., [13]. A grounding assumption in many of the crafting algorithms is that
the attacker has complete knowledge of the target neural networks such as its
architecture, weights, and other hyperparameters. Recently, Papernot et al. [18]
have proposed the first black-box approach to generating adversarial examples.
This method exploits the generalized nature of adversarial examples: an adver-
sarial example generated for a neural network classifier applies to most other



6 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

neural network classifiers that perform the same classification task, regardless of
their architecture, parameters, and even the distribution of training data. Ac-
cordingly, the approach of [18] is based on generating a replica of the target
network. To train this replica, the attacker creates and trains over a dataset
from a mixture of samples obtained by observing target’s interaction with the
environment, and synthetically generated inputs and label pairs. Once trained,
any of the adversarial example crafting algorithms that require knowledge of
the target network can be applied to the replica. Due to the transferability of
adversarial examples, the perturbed samples generated from the replica network
will induce misclassifications in many of the other networks that perform the
same task. In the following sections, we describe how a similar approach can be
adopted in policy induction attacks against DQNs.

3 Threat Model

We consider an attacker whose goal is to perturb the optimality of actions taken
by a DQN learner via inducing an arbitrary policy πadv on the target DQN. The
attacker is assumed to have minimal a priori information of the target, such
as the type and format of inputs to the DQN, as well as its reward function R
and an estimate for the frequency of updating the Q̂ network. It is noteworthy
that even if the target’s reward function is not known, it can be estimated via
Inverse Reinforcement Learning techniques [19]. No knowledge of the target’s
exact architecture is considered in this work, but the attacker can estimate this
architecture based on the conventions applied to the input type (e.g. image and
video input may indicate a convolutional neural network, speech and voice data
point towards a recurrent neural network, etc.).

In this model, the attacker has no direct influence on the target’s architecture
and parameters, including its reward function and the optimization mechanism.
The only parameter that the attacker can directly manipulate is the configu-
ration of the environment observed by the target. For instance, in the case of
video game learning [6], the attacker is capable of changing the pixel values of
the game’s frames, but not the score. In cyber-physical scenarios, such pertur-
bations can be implemented by strategic rearrangement of objects or precise
illumination of certain areas via tools such as laser pointers. To this end, we
assume that the attacker is capable of changing the state before it is observed
by the target, either by predicting future states, or after such states are gener-
ated by the environment’s dynamics. The latter can be achieved if the attacker
has a faster action speed than the target’s sampling rate, or by inducing a delay
between generation of the new environment and its observation by the target.

To avoid detection and minimize influence on the environment’s dynamics,
we impose an extra constraint on the attack such that the magnitude of pertur-
bations applied in each configuration must be smaller than a set value denoted
by ε. Also, we do not limit the attacker’s domain of perturbations (e.g. in the case
of video games, the attacker may change the value of any pixel at any position
on the screen).



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 7

Algorithm 1: Exploitation Procedure

Input : adversarial policy π∗adv, initialized replica DQNs Q′, Q̂′, synchronization
frequency c, number of iterations N

Output: perturbed states s′t+1

1 for observation = 1, N do

2 Observe current state st, action at, reward rt, and resulting state st+1

3 if st+1 is not terminal then

4 set a′adv = π∗adv(st+1)

5 Calculate perturbation vector δ̂t+1 = Craft(Q̂′, a′adv, st+1)

6 s′t+1 ← st+1 + δ̂t+1

7 Reveal s′t+1 to target
8 if observation mod c = 0 then θ′− ← θ′ ;
9 Set yt = (rt +maxa′ Q̂

′(st+1 + δ̂t+1, a
′; θ′−)

10 Perform SGD on (yt −Q′(st, at, θ′))2 w.r.t θ′

11 end

12 end

4 Attack Mechanism

As discussed in Section 2, the DQN framework of Mnih et al. [7] can be seen as
consisting of two neural networks, one is the native network which performs the
image classification and function approximation, and the other is the auxiliary
Q̂ network whose architecture and parameters are copies of the native network
sampled once every c iterations. Training of DQN is performed optimizing the
loss function of equation 4 by Stochastic Gradient Descent (SGD). Due to the
similarity of this process and the training mechanism of neural network classi-
fiers, we hypothesize that the function approximators of DQN are also vulnerable
to adversarial example attacks. In other words, the set of all possible inputs to
the approximated function Q̂ contains elements which cause the approximated
functions to generate outputs that are different from the output of the original
Q function. Furthermore, we hypothesize that similar to the case of classifiers,
the elements that cause one DQN to generate incorrect Q values will incur the
same effect on other DQNs that approximate the same Q-function.

Consequently, the attacker can manipulate a DQN’s learning process by craft-
ing states st such that Q̂(st+1, a; θ−t ) identifies an incorrect choice of optimal
action at st+1. If the attacker is capable of crafting adversarial inputs s′t and
s′t+1 such that the value of Equation 4 is minimized for a specific action a′, then
the policy learned by DQN at this time-step is optimized towards suggesting a′

as the optimal action given the state st.
Considering that the attacker is not aware of the target’s network architecture

and its parameters at every time step, crafting adversarial states must rely on
black-box techniques such as those introduced in [18]. The attacker can exploit
the transferability of adversarial examples by obtaining the state perturbations
from the replica Q′ and Q̂′ networks that correspond to the target’s Q and Q̂
networks, respectively. Algorithm 1 details the procedural flow of this phase.



8 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

At every time step of training this replica, the attacker observes the interac-
tion of its target with the environment (st, at, rt, st+1) (step 2). If the resulting

state is not terminal, the attacker then calculates the perturbation vectors δ̂t+1

for the next state st+1 such that maxa′Q̂(st+1 + δ̂t+1, a
′; θ−t ) causes Q̂ to gener-

ate its maximum when a′ = π∗adv(st+1), i.e., the maximum reward at the next
state is obtained when the optimal action taken at that state is determined by
the attacker’s policy (steps 4-6). The attacker then reveals the perturbed state
st+1 to the target (step 7), and re-trains the replica based on the new state and
action (steps 8-10).

This is procedurally similar to targeted misclassification attacks described in
Section 2 that aim to find minimal perturbations to an input sample such that
the classifier assigns the maximum value of likelihood to an incorrect target class.
Therefore, the adversarial example crafting techniques developed for classifiers,
such as the Fast Gradient Sign Method (FGSM) and the Jacobian Saliency Map

Algorithm (JSMA), can be applied to obtain the perturbation vector δ̂t+1.
The procedure of this attack can be divided into the two phases of initializa-

tion and exploitation. The initialization phase implements processes that must
be performed before the target begins interacting with the environment, which
are:

1. Train a DQN based on attacker’s reward function r′ to obtain the adversarial
policy π∗adv

2. Create a replica of the target’s DQN and initialize with random parameters

The exploitation phase implements the attack processes such as crafting ad-
versarial inputs. This phase constitutes an attack cycle depicted in figure 2. The
cycle initiates with the attacker’s first observation of the environment, and runs
in tandem with the target’s operation.

5 Experimental Verification

To study the performance and efficacy of the proposed mechanism, we examine
the targeting of Mnih et al.’s DQN designed to learn Atari 2600 games [7]. In
our setup, we train the network on a game of Pong implemented in Python using
the PyGame library [12]. The game is played against an opponent with a modest
level of heuristic artificial intelligence, and is customized to handle the delays in
DQN’s reaction due to the training process. The game’s backened provides the
DQN agent with the game screen sampled at 8Hz, as well as the game score (+1
for win, -1 for lose, 0 for ongoing game) throughout each episode of the game.
The set of available actions A = {UP,DOWN,Stand} enables the DQN agent
to control the movements of its paddle. Figure 3 illustrates the game screen of
Pong used in our experiments.

The training process of DQN is implemented in TensorFlow [20] and executed
on an Amazon EC2 g2.2xlarge instance [21] with 8 Intel Xeon E5-2670 CPU cores
and a NVIDIA GPU with 1536 CUDA cores and 4GB of video memory. Each



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 9

2. Attacker estimates best action 

according to adversarial policy

Fig. 2: Exploitation cycle of policy induction attack

state observed by the DQN is a stack of 4 consecutive 80x80 gray-scale game
frames. Similar to the original architecture of Mnih et al. [7], this input is first
passed through two convolutional layers to extract a compressed feature space
for the following two feed-forward layers for Q function estimation. The discount
factor γ is set to 0.99, and the initial probability of taking a random action is
set to 1, which is annealed after every 500000 actions. The agent is also set to
train its DQN after every 50000 observations. Regular training of this DQN takes
approximately 1.5 million iterations (∼16 hours on the g2.2xlarge instance) to
reach a winning average of 51% against the heuristic AI of its opponent. As
expected, longer training of this DQN leads to better results. After a 2-week
period of training we verified the convergent trait of our implementation by
witnessing winning averages of more than 80%.



10 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

Fig. 3: Game of Pong

Following the threat model presented in Section 3, this experiment considers
an attacker capable of observing the states interactions between his target DQN
and the game, but his domain of influence is limited to implementation of minor
changes on the environment. Considering the visual representation of the envi-
ronment in this setup, the minor changes incurred by attacker take the form of
perturbing pixel values in the 4 consecutive frames of a given state.

5.1 Evaluation of DQN’s Vulnerability to Adversarial Examples

1.28 1.3 1.32 1.34 1.36

No. iterations x 1e6

0

20

40

60

80

100

S
u
c
c
e
s
s
 R

a
te

 %

FGSM

JSMA

1.26

Fig. 4: Success rate of crafting adversarial examples for DQN

Successful implementations of the proposed policy induction attack mecha-
nisms rely on the vulnerability of DQNs to targeted adversarial perturbations.
To verify the existence of this vulnerability, the Q̂ networks of target were sam-
pled at regular intervals during training in the game environment. In the next
step, 100 observations comprised of a pair of consecutive states (st, st+1) were
randomly selected from the experience memory (i.e., the pool of previous state-
action observations) of DQN, to ensure the possibility of their occurrence in the
game. Considering st+1 to be the variable that can be manipulated by the at-
tacker, it is passed along with the model Q̂ to the adversarial example crafting
algorithms. To study the extent of vulnerability, we evaluated the success rate



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 11

of both FGSM and JSMA algorithms for each of the 100 random observations in
inducing a random game action other than the current optimal a∗t . The results,
presented in Figure 4, verify that DQNs are indeed vulnerable to adversarial
example attacks. It is noteworthy that the success rate of FGSM with a fixed
perturbation limit decreases by one percent per 100000 observations as the num-
ber of observations increases, which in practice, does not constrain the viability
of this attack. Yet, JSMA seems to be more robust to this effect as it maintains
a success rate of 100 percent throughout the experiment.

5.2 Verification of Transferability of Adversarial Examples

To measure the transferability of adversarial examples between models, we trained
another Q-network with a similar architecture on the same experience memory
of the game at the sampled instances of the previous experiment. It is note-
worthy that due to random initializations, the exploration mechanism, and the
stochastic nature of SGD, even similar Q-networks trained on the same set of
observations will obtain different sets of weights. The second Q-network was
tested to measure its vulnerability to the adversarial examples obtained from
the last experiment. Figure 5 shows that more than 70% of the perturbations
obtained from both FGSM and JSMA methods also affect the second network,
hence verifying the transferability of adversarial examples between DQNs.

1.26 1.28 1.3 1.32 1.34 1.36

No. iterations x 1e6

0

20

40

60

80

100

Tr
a
n
s
fe

r 
S
u
c
c
e
s
s
 R

a
te

 % FGSM

JSMA

Fig. 5: Transferability of adversarial examples in DQN

5.3 Performance of Proposed Policy Induction Attack

Our final experiment tests the performance of our proposed exploitation mech-
anism. In this experiment, we consider an adversary whose reward value is the
exact opposite of the game score, meaning that it aims to devise a policy that
maximizes the number of lost games. To obtain this policy, we trained an ad-
versarial DQN on the game, whose reward value was the negative of the value
obtained from target DQN’s reward function. With the adversarial policy at
hand, a target DQN was setup to train on the game environment to maximize
the original reward function. The game environment was modified to allow per-
turbation of pixel values in game frames by the adversary. A second DQN was
also setup to train on the target’s observations to provide an estimation of the



12 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

target DQN to enable blackbox crafting of adversarial example. At every obser-
vation, the adversarial policy obtained in the initialization phase was consulted
to calculate the action that would satisfy the adversary’s goal. Then, the JSMA
algorithm was utilized to generate the adversarial example that would cause the
output of the replica DQN network to be the action selected by the adversarial
policy. This example was then passed to the target DQN as its observation. Fig-

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
 R
e
w
a
rd
 p
e
r 
E
p
o
ch

Unperturbed
Attacked

Fig. 6: Comparison of rewards between unperturbed and attacked DQNs

ure 6 compares the performance of unperturbed and attacked DQNs in terms
of their reward values, measured as the difference of current game score with
the average score. It can be seen that the reward value for the targeted DQN
agent rapidly falls below the unperturbed case and maintains the trend of losing
the game throughout the experiment. This result confirms the efficacy of our
proposed attack mechanism, and verifies the vulnerability of Deep Q-Networks
to policy induction attacks.

6 Discussion on Current Counter-Measures

Since the introduction of adversarial examples by Szgedey, et al. [16], various
counter-measures have been proposed to mitigate the exploitation of this vul-
nerability in deep neural networks. Goodfellow et. al. [17] proposed to retrain
deep networks on a set of minimally perturbed adversarial examples to prevent
their misclassification. This approach suffers from two inherent short-comings:
Firstly, it aims to increase the amount of perturbations required to craft an
adversarial example. Second, this approach does not provide a comprehensive



Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks 13

counter-measure as it is computationally inefficient to find all possible adversar-
ial examples. Furthermore, Papernot et al. [18] argue that by training the net-
work on adversarial examples, the emerging network will have new adversarial
examples and hence this technique does not solve the problem of exploiting this
vulnerability for critical systems. Consequently, Papernot, et al [14] proposed
a technique named Defensive Distillation, which is also based on retraining the
network on a dimensionally-reduced set of training data. This approach, too,
was recently shown to be insufficient in mitigating adversarial examples [22].
It is hence concluded that the current state of the art in countering adversar-
ial examples and their exploitation is incapable of providing a concrete defense
against such exploitations.

In the context of policy induction attacks, we conjecture that the temporal
features of the training process may be utilized to provide protection mecha-
nisms. The proposed attack mechanism relies on the assumption that due to the
decreasing chance of random actions, the target DQN is most likely to perform
the action induced by adversarial inputs as the number of iterations progress.
This may be mitigated by implementing adaptive exploration-exploitation mech-
anisms that both increase and decrease the chance of random actions according
to the performance of the trained model. Also, it may be possible to exploit
spatio-temporal pattern recognition techniques to detect and omit regular per-
turbations during the pre-processing phase of the learning process. Investigating
such techniques is the priority of our future work.

7 Conclusions and Future Work

In this work, we established the vulnerability of reinforcement learning based
on Deep Q-Networks to policy induction attacks. Furthermore, we proposed an
attack mechanism which exploits the vulnerability of deep neural networks to
adversarial examples, and demonstrated its efficacy and impact through experi-
ments on a game-learning DQN.

This preliminary work solicitates a wide-range of studies on the security of
Deep Reinforcement Learning. As discussed in Section 6, novel countermeasures
need to be investigated to mitigate the effect of such attacks on DQNs deployed in
cyber-physical and critical systems. Also, an analytical treatment of the problem
to establish the bounds and relationships of model parameters, such as network
architecture and exploration mechanisms, with DQN’s vulnerability to policy
induction will provide deeper insight and guidelines into designing safe and secure
deep reinforcement learning architectures.

References

1. R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, vol. 135. MIT
Press Cambridge, 1998.

2. I. Ghory, “Reinforcement learning in board games,” Department of Computer Sci-
ence, University of Bristol, Tech. Rep, 2004.

3. X. Dai, C.-K. Li, and A. B. Rad, “An approach to tune fuzzy controllers based
on reinforcement learning for autonomous vehicle control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 6, no. 3, pp. 285–293, 2005.



14 Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks

4. L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Transactions on Systems, Man, And Cybernetics-
Part C: Applications and Reviews, 38 (2), 2008, 2008.

5. R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct
adaptive optimal control,” IEEE Control Systems, vol. 12, no. 2, pp. 19–22, 1992.

6. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

7. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

8. S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation,” arXiv preprint arXiv:1610.00633, 2016.

9. T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies
for autonomous aerial vehicles with mpc-guided policy search,” arXiv preprint
arXiv:1509.06791, 2015.

10. A. Hussein, M. M. Gaber, and E. Elyan, “Deep active learning for autonomous
navigation,” in International Conference on Engineering Applications of Neural Net-
works, pp. 3–17, Springer, 2016.

11. L. Baird and A. W. Moore, “Gradient descent for general reinforcement learning,”
Advances in neural information processing systems, pp. 968–974, 1999.

12. W. McGugan, Beginning game development with Python and Pygame: from novice
to professional. Apress, 2007.

13. N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 372–387, IEEE, 2016.

14. N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a de-
fense to adversarial perturbations against deep neural networks,” arXiv preprint
arXiv:1511.04508, 2015.

15. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
arXiv preprint arXiv:1608.04644, 2016.

16. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

17. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

18. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik, and A. Swami,
“Practical black-box attacks against deep learning systems using adversarial exam-
ples,” arXiv preprint arXiv:1602.02697, 2016.

19. Y. Gao, J. Peters, A. Tsourdos, S. Zhifei, and E. Meng Joo, “A survey of inverse
reinforcement learning techniques,” International Journal of Intelligent Computing
and Cybernetics, vol. 5, no. 3, pp. 293–311, 2012.

20. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

21. M. Gilani, C. Inibhunu, and Q. H. Mahmoud, “Application and network perfor-
mance of amazon elastic compute cloud instances,” in Cloud Networking (CloudNet),
2015 IEEE 4th International Conference on, pp. 315–318, IEEE, 2015.

22. N. Carlini and D. Wagner, “Defensive distillation is not robust to adversarial ex-
amples,” arXiv preprint, 2016.


