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Abstract. Recent developments establish the vulnerability of deep re-
inforcement learning to policy manipulation attack. In this work, we
propose a technique for mitigation of such attacks based on addition
of noise to the parameter space of deep reinforcement learners during
training. We experimentally verify the effect of parameter-space noise
in reducing the transferability of adversarial examples, and demonstrate
the promising performance of this technique in mitigating the impact of
whitebox and blackbox attacks at both test and training times.
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1 Introduction

Recent years has been the scene to growing interest and advances in deep Re-
inforcement Learning (RL). By exploiting the superior feature extraction and
processing capabilities of deep neural networks, deep RL enables the learning of
direct mappings from raw observations of the environment to actions. This en-
hancement enables the application of classic RL approaches to high-dimensional
and complex planning problems, and is shown to achieve human-level or super-
human performance in various cases such as learning to playing the game of
Go [22], playing Atari games [15], robotic manipulation [11], and autonomous
navigation of aerial [25] and ground [26] vehicles. While the interest in deep RL
solutions is extending into numerous domains such as intelligent transportation
systems [1], finance [7] and critical infrastructure [16], ensuring the security and
reliability of such solutions in adversarial conditions is only at its preliminary
stages. Recently, Behzadan and Munir [4] reported the vulnerability of deep
reinforcement learning algorithms to both test-time and training-time attacks
using adversarial examples [10]. This work was followed by a number of further
investigations (e.g., [12], [13]) verifying the fragility of deep RL agents to such
attacks. Currently, only a few reports (e.g., [5], [14], [20]) concentrate on mit-
igation and countermeasures, and are mostly focused on approaches based on
adversarial training and prediction.

In this work, we aim to further the research on countering attacks on deep RL
by proposing a potential mitigation technique based on employing parameter-
space noise exploration during the training of deep RL agents. Recent reports
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in [21] and [9] demonstrate that addition of adaptive noise to the parameters
of deep RL architectures greatly enhances the exploration behavior and conver-
gence speed of such algorithms. Contrary to classical exploration heuristics such
as ǫ-greedy [23], parameter-space noise is iteratively and adaptively applied to
the parameters of the learning model, such as weights of the neural network. Ac-
cordingly, we hypothesize that the randomness introduced via parameter noise,
not only enhances the discovery of more creative and robust policies, but also
reduces the effect of whitebox and blackbox adversarial example attacks at both
test-time and training-time.

To this end, we evaluate the performance of Deep Q-Network (DQN) models
trained with parameter noise, against the test-time and training-time adversarial
example attacks introduced in [4]. Main contributions of this work are:

1. Proposal of parameter-space noise exploration as a mitigation technique
against policy manipulation attacks at both test-time and training-time,

2. Development of an open-source platform for experimenting with adversarial
example attacks on deep RL agents,

3. Experimental analysis of parameter-space noise for mitigation of test-time
whitebox and blackbox attacks on DQN,

4. Experimental analysis of parameter-space noise for mitigation of training-
time policy induction attacks on DQN.

The remainder of this paper is organized as follows: Section 2 reviews the rel-
evant background of DQN, parameter noise training via the NoisyNet approach,
and adversarial examples. Section 3 describes the attack model adopted in this
study. Section 4 details the experiment setup, and presents the corresponding
results. Section 5 concludes the paper with remarks on the obtained results.

2 Background

In this section, we present an overview of the fundamental concepts, upon which
this work is based. It must be noted that this overview is not meant to be com-
prehensive, and thus the interested readers may refer to the suggested references
for further details.

2.1 RL and Deep Q-Networks

The generic RL problem can be formally modeled as a Markov Decision Pro-
cess (MDP), described by the tuple MDP = (S,A,R, P ), where S is the set of
reachable states in the process, A is the set of available actions, R is the map-
ping of transitions to the immediate reward, and P represents the transition
probabilities. At any given time-step t, the MDP is at a state st ∈ S. The RL
agent’s choice of action at time t, at ∈ A causes a transition from st to a state
st+1 according to the transition probability P at

st,st+1
. The agent receives a reward

rt = R(st, at) ∈ R, where R denotes the set of real numbers, for choosing the
action at at state st.
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Interactions of the agent with MDP are determined by the policy π. When
such interactions are deterministic, the policy π : S → A is a mapping between
the states and their corresponding actions. A stochastic policy π(s) represents
the probability of optimality for implementing any action a ∈ A at state s.

The objective of RL is to find the optimal policy π∗ that maximizes the
cumulative reward over time at time t, denoted by the return function R̂t =∑

∞

k=0 γ
krt+k, where γ ∈ [0, 1] is the discount factor representing the diminishing

worth of rewards obtained further in time, hence ensuring that R̂ is bounded.
One approach to this problem is to estimate the optimal value of each action,

defined as the expected sum of future rewards when taking that action and
following the optimal policy thereafter. The value of an action a in a state s is
given by the action-value function Q defined as:

Q(s, a) = R(s, a) + γmaxa′(Q(s′, a′)), (1)

where s′ is the state that emerges as a result of action a, and a′ is a possible action
in state s′. The optimal Q value given a policy π is hence defined as: Q∗(s, a) =
maxπQ

π(s, a), and the optimal policy is given by π∗(s) = argmaxa Q(s, a)
The Q-learning method estimates the optimal action policies by using the

Bellman equation Qi+1(s, a) = E[R + γmaxa Qi] as the iterative update of a
value iteration technique. Practical implementation of Q-learning is commonly
based on function approximation of the parametrized Q-function Q(s, a; θ) ≈
Q∗(s, a). A common technique for approximating the parametrized non-linear Q-
function is via neural network models whose weights correspond to the parameter
vector θ. Such neural networks, commonly referred to as Q-networks, are trained
such that at every iteration i, the following loss function is minimized:

Li(θi) = Es,a∼ρ(.)[(yi −Q(s, a, ; θi))
2], (2)

where yi = E[R+ γmaxa′ Q(s′, a′; θi−1)|s, a], and ρ(s, a) is a probability distri-
bution over states s and actions a. This optimization problem is typically solved
using computationally efficient techniques such as Stochastic Gradient Descent
(SGD) [2].

Classical Q-networks introduce a number of major problems in the Q-learning
process. First, the sequential processing of consecutive observations breaks the
iid (Independent and Identically Distributed) requirement of training data as
successive samples are correlated. Furthermore, slight changes to Q-values leads
to rapid changes in the policy estimated by Q-network, thus enabling policy
oscillations. Also, since the scale of rewards and Q-values are unknown, the
gradients of Q-networks can be sufficiently large to render the backpropagation
process unstable.

A Deep Q-Network (DQN) [15] is a training algorithm designed to resolve
these problems. To overcome the issue of correlation between consecutive obser-
vations, DQN employs a technique called experience replay: instead of training
on successive observations, experience replay samples a random batch of pre-
vious observations stored in the replay memory to train on. As a result, the
correlation between successive training samples is broken and the iid setting is
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re-established. In order to avoid oscillations, DQN fixes the parameters of a net-
work Q̂, which represents the optimization target yi. These parameters are then
updated at regular intervals by adopting the current weights of the Q-network.
The issue of unstability in backpropagation is also solved in DQN by normalizing
the reward values to the range [−1,+1], thus preventing Q-values from becoming
too large.

Mnih et al. [15] demonstrate the application of this new Q-network technique
to end-to-end learning of Q values in playing Atari games based on observations
of pixel values in the game environment. To capture the movements in the game
environment, Mnih et al. use stacks of 4 consecutive image frames as the input to
the network. To train the network, a random batch is sampled from the previous
observation tuples (st, at, rt, st+1), where rt denotes the reward at time t. Each
observation is then processed by 2 layers of convolutional neural networks to
learn the features of input images, which are then employed by feed-forward
layers to approximate the Q-function. The target network Q̂, with parameters
θ−, is synchronized with the parameters of the originalQ network at fixed periods
intervals. i.e., at every ith iteration, θ−t = θt, and is kept fixed until the next
synchronization. The target value for optimization of DQN thus becomes:

y′t ≡ rt+1 + γmaxa′Q̂(St+1, a
′; θ−) (3)

Accordingly, the training process can be stated as:

minat
(y′t −Q(st, at, θ))

2 (4)

As for the exploration mechanism, the original DQN employs ǫ-greedy, which
monotonically decreases the probability of taking random actions as the training
progresses [23].

2.2 NoisyNets

Introduced by Fortunato et al. [9], NoisyNet is a type of neural network whose
biases and weights are iteratively perturbed during training by a parametric
function of the noise. Such a neural network can be represented by y = fθ(x),
parametrized by the vector of noisy parameters θ = µ + Σ ∗ ǫ, where τ =
(µ,Σ) is a set of vectors representing learnable parameters, ǫ is a vector of zero-
mean noise with fixed statistics, and ∗ is element-wise multiplication. In [9],
the modified DQN algorithm is proposed as follows: first, ǫ-greedy is omitted,
and instead the value function is greedily optimized. Second, the fully connected
layers of the value function are parametrized as a NoisyNet, whose parameter
values are drawn from a noisy parameter distribution after every replay step.
The noise distribution used in [9] is factorized Gaussian noise. During replay, the
current NoisyNet parameter samples are held constant, while at the optimization
of each action step, the parameters are re-sampled. The parametrized action-
value function Q(x, a, ǫ; τ) can be treated as a random variable, and is employed
accordingly in the optimization function. Further details of this approach and a
similar proposal can be found in [9] and [21], respectively.
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2.3 Adversarial Examples

In [24], Szegedy et al. report an intriguing discovery: several machine learning
models, including deep neural networks, are vulnerable to adversarial examples.
That is, these machine learning models misclassify inputs that are only slightly
different from correctly classified samples drawn from the data distribution. Fur-
thermore, it was found [19] that a wide variety of models with different archi-
tectures trained on different subsets of the training data misclassify the same
adversarial example.

This suggests that adversarial examples expose fundamental blind spots in
machine learning algorithms. The issue can be stated as follows: Consider a
machine learning system M and a benign input sample C which is correctly
classified by the machine learning system, i.e. M(C) = ytrue. According to the
report of Szegedy [24] and many proceeding studies [19], it is possible to construct
an adversarial example A = C + δ, which is perceptually indistinguishable from
C, but is classified incorrectly, i.e. M(A) 6= ytrue.

Adversarial examples are misclassified far more often than examples that
have been perturbed by random noise, even if the magnitude of the noise is much
larger than the magnitude of the adversarial perturbation [10]. According to the
objective of adversaries, adversarial example attacks are generally classified into
the following two categories:

1. Misclassification attacks, which aim for generating examples that are classi-
fied incorrectly by the target network

2. Targeted attacks, whose goal is to generate samples that the target misclas-
sifies into an arbitrary class designated by the attacker.

To generate such adversarial examples, several algorithms have been pro-
posed, such as the Fast Gradient Sign Method (FGSM) by Goodfellow et al.,
[10], and the Jacobian Saliency Map Algorithm (JSMA) approach by Papernot
et al., [19]. A grounding assumption in many of the crafting algorithms is that
the attacker has complete knowledge of the target neural networks such as its
architecture, weights, and other hyperparameters. In response, Papernot et al.
[18] proposed the first blackbox approach to generating adversarial examples.
This method exploits the transferability of adversarial examples: an adversarial
example generated for a neural network classifier applies to most other neural
network classifiers that perform the same classification task, regardless of their
architecture, parameters, and even the distribution of training data. Accord-
ingly, the approach of [18] is based on generating a replica of the target network.
To train this replica, the attacker creates and trains over a dataset from a mix-
ture of samples obtained by observing target’s interaction with the environment,
and synthetically generated inputs and label pairs. Once trained, any of the al-
gorithms that require knowledge of the target network for crafting adversarial
examples can be applied to the replica. Due to the transferability of adversar-
ial examples, the perturbed data points generated for the replica network can
induce misclassifications in many of the other networks that perform the same
task.
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3 Attack Model

We consider an attacker whose goal is to perturb the optimality of actions taken
by a DQN agent through either perturbing the observations of the agent at
the test-time, or inducing an arbitrary policy πadv on the target DQN at the
training time. In whitebox attacks, the attacker has complete knowledge of the
target. On the other hand, a blackbox attacker has no knowledge of the target’s
exact architecture and parameters, but is assumed to be capable of estimating
those based on the conventions applied to the input type (e.g., image and video
input may indicate a convolutional neural network, speech and voice data point
towards a recurrent neural network, etc.).

In this model, the attacker is assumed to have minimal a priori information
of the target’s model and parameters, such as the type and format of inputs to
the DQN, as well as its reward function R and an estimate for the frequency
of updating the Q̂ network. Furthermore, the attacker has no direct influence
on the target’s architecture and parameters, including its reward function, pa-
rameter noise, and the optimization mechanism. As illustrated in Fig. 1, the
only parameter that the attacker can directly manipulate is the configuration
of the environment observed by the target. For instance, in the case of DQN
agents learning to play Atari games [15], the attacker may change pixel values
of the game’s frames, but not the score. We assume that the attacker is capable
of changing the state before it is observed by the target by predicting future
states, through approaches such as having a quicker action speed than the tar-
get’s sampling rate, or by introducing a delay between generation of the new
environment and its observation by the target. To avoid detection, we impose an
extra constraint on the attack such that the magnitude of perturbations applied
in each configuration must be smaller than a constant value denoted by λ. Also,
we do not limit the attacker’s domain of perturbations.

As discussed in Section 2, the DQN framework of Mnih et al. [15] can be
seen as consisting of two neural networks, one is the native Q-network which
performs the image processing and function approximation, and the other is the
target Q̂ network whose architecture and parameters are copies of the native
network sampled once every c iterations. DQN is trained through optimizing the
loss function of equation 4 by SGD. Behzadan and Munir [4] demonstrated that
the function approximators of DQN are also vulnerable to adversarial example
attacks. In other words, the set of all possible inputs to the approximated func-
tion Q̂ contains elements which cause the approximated functions to generate
outputs that are different from the output of the original Q function.

Consequently, the attacker can manipulate the learning process of DQN by
crafting states st such that Q̂(st+1, a; θ

−

t ) identifies an incorrect choice of optimal
action at st+1. If the attacker is capable of crafting adversarial inputs s′t and s′t+1

such that the value of equation 4 is minimized for a specific action a′, then the
policy learned by DQN at this time-step is optimized towards suggesting a′ as the
optimal action given the state st. At every time step of training this replica, the
attacker observes interactions of its target with the environment (st, at, rt, st+1).
If the resulting state is not terminal, the attacker then calculates the perturbation
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Fig. 1. Exploitation cycle of policy induction attack

vectors δ̂t+1 for the next state st+1 such that maxa′Q̂(st+1+ δ̂t+1, a
′; θ−t ) causes

Q̂ to generate its maximum when a′ = π∗

adv(st+1), i.e., the maximum reward
at the next state is obtained when the optimal action taken at that state is
determined by the attacker’s policy. The attacker then reveals the perturbed
state st+1 to the target, and re-trains the replica based on the new state and
action.

This is procedurally similar to targeted misclassification attacks described in
Section 2, which aim to find minimal perturbations to an input sample such that
the classifier assigns the maximum value of likelihood to an incorrect target class.
Therefore, the adversarial example crafting techniques developed for classifiers
such as FGSM can be employed to obtain the perturbation vector δ̂t+1.

Accordingly, Behzadan and Munir [4] divide this attack into the two phases
of initialization and exploitation. The initialization phase implements processes
that must be performed before the target begins interacting with the environ-
ment, which are:
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1. Train a DQN based on attacker’s reward function R′ to obtain the adversarial
policy π∗

adv

2. Create a replica of the target’s DQN and initialize with random parameters

The exploitation phase implements the attack process and crafting adversarial
inputs, such that the target DQN performs an action dictated by π∗

adv. This
phase constitutes an attack cycle depicted in Fig. 1. The cycle initiates with
the attacker’s first observation of the environment, and runs in tandem with the
target’s operation.

4 Experimental Verification

To evaluate the effectiveness of NoisyNet in mitigation of adversarial example at-
tacks, we study the performance of this architecture in comparison to the original
DQN setup. Following the standard benchmarks of DQN, our experimental envi-
ronments consist of 3 Atari 2600 games, namely Enduro, Assault, and Breakout.
We train 4 models for each environment, 2 models based on the original DQN
and ǫ-greedy exploration, and 2 models based on the NoisyNet architecture. The
neural network configuration of both models follows that of the original DQN
proposal by Mnih et al. [15], while the parameter noise configuration is based
on the setup presented in [9].

We implemented the experimentation platform in TensorFlow using OpenAI
Gym [6] for emulating the game environment and Cleverhans [17] for crafting
the adversarial examples. Our DQN implementation is a modified version of the
module in OpenAI Baselines [8], while the NoisyNet implementation is based
on the algorithm described in [9]. We have published our platform at [3] for
open-source use in further research in this area.

For the purposes of this study, we consider FGSM for crafting non-targeted
adversarial examples, with the perturbation limit λ = 1.0/255.0. Similar to the
work in [13], the initiation of attacks occurs after the learned Q-function begins
converging towards the optimal value.

4.1 Test-time Attacks

Parameter noise training in NoisyNet is expected to enhance the exploration
criteria of the agent and hence facilitate learning more creative and accurate
policies. Accordingly, we hypothesize that the action-value function learned in
NoisyNet is better generalized than the original, and can be more resilient to
non-targeted adversarial example attacks at test-time. Similarly, the addition of
random noise to the parameters of NoisyNet can potentially impede the trans-
ferability of adversarial examples, and hence enhance the resilience of NoisyNet
to blackbox attacks. To test this hypothesis, we compare the performance of
NoisyNet and DQN models to whitebox and blackbox attacks after 2e8 itera-
tions of training.

Fig. 2 presents the results of this experiment. It is observed that in all three
environments, the impact of adversarial example perturbation in the perfor-
mance of NoisyNet is less severe than that of the original DQN, thereby verifying
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Fig. 2. Comparison of whitebox and blackbox attacks at test-time

our general hypothesis. Furthermore, comparison of performance under blackbox
attacks demonstrates significant improvements in Noisynets, as depicted in all
three cases. A preliminary interpretation of this observation is that the random-
ization of model parameters reduces the transferability of adversarial examples
generated for a replicated model.

4.2 Training-time Attacks

In [4] and [13], the impact of training-time adversarial example attacks on
the policy learning is demonstrated. Similar to the case of test-time attacks,
we hypothesize that the reduced transferability and enhanced generalization of
NoisyNet can potentially provide greater resilience to blackbox adversarial ex-
ample attacks during training. To this end, we investigated the performance of
NoisyNet and DQN to the training-time attack methodology described in Sec-
tion 3 [4].

Fig. 3 presents the results of this experiment. It can be seen that in all three
environments, performance of the original DQN consistently deteriorates under
training-time attacks, as reported in [4] and [13]. On the other hand, while
the performance of NoisyNet is also subject to deterioration, it demonstrates
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Fig. 3. Comparison of blackbox attacks at training-time

significantly stronger resilience to this attack, and in the case of Assault remains
almost unaffected by adversarial perturbations. These results verify the original
hypothesis, and hence the efficacy of parameter noise in mitigating the impact
of training-time attacks.

5 Conclusion

Through experimental analysis, we have investigated the effect of parameter
noise in mitigation of adversarial example attacks on Deep Q-Networks (DQN).
Considering the reported enhancing effect of parameter noise in reinforcement
learning and exploration, as well as the inherent randomization of such tech-
niques, we have demonstrated that compared to the original DQN, noisy DQN
architectures provide better resilience to adversarial perturbations at test-time,
and reduce susceptibility to transferability of adversarial examples. Furthermore,
we have demonstrated that noisy DQN is significantly more resilient to blackbox
attacks at training-time, and learn in a considerably more robust manner in com-
parison to plain DQN architectures. These results present a promising starting
point for further experimental and analytical analysis of employing parameter-
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space noise exploration for enhancement of resilience and robustness in deep
reinforcement learning.
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