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Abstract—One of the most challenging problems in designin%
large caches is to devise efficient cache tag storage. Typica
large last-level caches often require tens of megabytes o taﬁ
storage. Consequently, this large tag storage leads to hig
latency and energy consumption for a cache tag access, which
adversely affect system performance and energy efficiency. In
this paper, we propose CT-Cache that exploits the similarity
in upper cache tag bits. Our pm'posed C1T-Cache decouples a
tag storage into a global ta% table and delta tag arrays. The
global tag table is a small fully-associative buffer that stores
upper tag patterns, which can be shared between multiple cache
lines, while the delta tag array stores lower tag bits for each
cache line. By avoiding the redundant storage, the CT-Cache
significantly reduces the cache tag storage size, which in turn
reduces latency and energy consumption of a cache tag access.
Evaluation results reveal that the CT-Cache reduces tag storage
size by 87.8%, which significantly reduces tag access latency
and energy. Owing to the tag storage reduction, the CT-Cache
improves performance by 4.7%~16.2% and reduces last-level
cache and main memory energy consumption by 20.0% ~29.7%
compared to the conventional caches that use non-compressed
tag storage.

Index Terms—Tag compression, Cache architecture, Last-Level
cache, Locality, Performance, Energy efficiency

I. INTRODUCTION

To enhance the performance of modern processors, the
number of cores housed in a single chip is increasing. How-
ever, the memory system has not kept pace in terms of
both capacity and bandwidth to supply required amount of
data to all processor cores to sustain desired performance
enhancement of processors. This discrepancy between pro-
cessor and memory performance is known as “memory wall”
and greatly influences the overall performance of computing
systems. To exacerbate the memory wall problem, modern
big data applications involve data-centric computations, which
further increases the pressure on memory system. However,
advancements in integration and device technologies (e.g., 3D-
stacking technology and embedded dynamic random access
memory) have allowed to integrate large dynamic random ac-
cess memory (DRAM) onto the processor chip. The integrated
(€)DRAM (eDRAM stands for embedded DRAM and is a
DRAM integrated on the same die as the application-specific
integrated circuit (ASIC) or multi-processor) size can be in
order of hundreds of megabytes (MB) to few gigabytes (GB).
Although, large (¢€)DRAM last-level caches (LLCs) can be
designed and realized by such novel integration and device
technologies, there are several challenges that need to be
addressed to effectively employ large caches. When the cache
size increases to hundreds of megabytes, the cache metadata,
such as tag bits, dirty/valid bit, coherency management bits,
state information for implementing cache replacement policy,
etc., also increase. For example, a cache of 256 MB would
have an associated tag size of 11.5 MB. Similarly, for a cache
size of 1024 MB, the tag size would be up to 42 MB [4]. Thus,
it is not feasible to store tags in SRAM as it would result in
high area overhead.

To resolve the tag storage overhead, several prior works [5],
[10], [14], [15] aim to address cache tag storage problem for
large caches. The work in [10], [14], and [15] stores cache
tags in (€)DRAM so that the cache tags do not require a
huge number of SRAM cells (e.g., tens of megabytes) for

tag storage, alleviating the area overhead. However, these
approaches typically have high latency mainly because the
cache tag access entails a slow (¢)DRAM access. Longer
tag access latency adversely affects system performance and
energy efficiency as the cache tag access lies in the critical
path of the cache access time in large caches that employ
sequential tag and data access. One may use large cache line
size (e.g., page-size) to reduce tag storage overhead (e.g., [5]).
However, the large cache line size would waste a huge memory
bandwidth in order to transfer large block size data when a
cache miss occurs.

In this paper, we present an efficient cache architecture
(referred to as CT-Cache) for large caches. In our proposed
architecture, the cache tags are split into two parts such that
the upper parts contain bits that are common/same among
multiple cache lines and the lower parts contain bits that
are unique/different. Since there is a significant similarity in
patterns of upper bits in memory addresses due to the principle
of locality, our cache architecture stores the common tag bit
parts in a global tag table (GTT) which is implemented in
a small buffer (~1KB). This eliminates the need for storing
multiple instances of a common/same value, which helps in
reducing storage size, area, energy, etc., of the cache tag
storage. The lower part of the cache tag, which uniquely
identifies each cache line, is stored in a separate array which
is referred to as delta tag array (DTA). For a cache hit to
occur, the upper part of the tag must match with a value in
the GTT and the lower part of the tag must match with a
value in the DTA. To efficiently manage GTT and DTA, our
proposed CT-Cache employs a flexible mapping (see Section
III-A2 for details) between the GTT entries and a set of cache
lines. Furthermore, proactive cache management in the CT-
Cache (see Section III-A4 for details) periodically rearranges
a mapping between the GTT entries and a set of cache lines
to guarantee fairness between the GTT entries. These features
further enhance cache space utilization, resulting in improved
performance and energy efficiency.

To the best of our knowledge, our work is the first one
that actually reduces the tag storage for large LLCs while not
depending on the type of memory cells used in the cache.
This independence on memory cell types means that the CT-
Cache can also be applied to large SRAM-based as well as
(e)DRAM-based caches whereas several previous proposals
depended on a certain memory cell-based caches (e.g., DRAM
caches [5], [10], [14]). Although several works introduced
cache compression schemes for large-scale caches (e.g., [11],
[16]), these works have purposed to compress cache data while
the cache tag size remains large.

The main contributions of this paper are as follows:

o We propose a novel cache architecture (CT-Cache) for
large caches by leveraging cache tag compression.

e Our proposed CT-Cache is independent of cache memory
cell technology and can be applied to any large-scale
cache (e.g., SRAM-based, (e)DRAM-based, etc.).

o Our proposed CT-Cache stores tags in 87.8% lesser area,
imparts a performance improvement of 4.7%~16.2%, and
reduces LLC and main memory energy consumption by
20.0%~29.7% as compared to conventional caches.



o Due to the flexible mapping between the GTT entries and
a set of cache lines and proactive cache management, the
CT-Cache also shows stable and consistent performance
and energy efficiency improvements compared to CT-
Static (static mapping between the GTT entries and a
set of cache lines) and CT-w/oPAD (CT-Cache without
proactive cache management).

Remainder of this paper is organized as follows. Section II
summarizes related work and Section III presents our proposed
CT-Cache architecture. Evaluation methodology and results
are presented in Section IV. Lastly, Section V concludes this

aper.
pap II. RELATED WORK

There has been work done in literature related to large cache
design particularly for efficiently storing the cache metadata.
Loh and Hill [10] proposed a DRAM cache with block size
of 64 bytes. Since the cache tags in their proposed cache
architecture were stored in DRAM, they had to address the
problem of increased miss penalty when accessing tags from
DRAM. In order to combat this problem, they used MissMap
on SRAM to keep track of DRAM content to avoid cache
misses. However, the size of MissMap was already in the
range of few MB, and thus the proposed architecture was
not feasible for implementing cache tags in SRAM. Qureshi
and Loh [14] addressed this issue with an Alloy Cache-a
direct-mapped DRAM cache which has wider data path. Their
proposed cache architecture improved the access latency as
data and tag could be accessed in a single fetch. Their model
worked good for direct-mapped caches but was inflexible for
set-associative caches.

Jevdjic et al. [5] proposed Footprint Cache which combined
the benefits of both block-based and page-based cache design.
They designed a footprint predictor which only fetched se-
lected blocks from the accessed page. They opted to only store
page tags in order to reduce tag size. However, their design
1s geared towards DRAM-based caches while it would not
be suitable for SRAM-based or eDRAM-based large caches.
Huang et al. [4] proposed ATCache that stores entire tags in
DRAM while the recently or frequently accessed tags in a
small SRAM buffer. Although, their design aimed to reduce
cache hit latency, cache tag storage size was still large (e.g.,
a 256MB DRAM cache requires 11.5 MB tag size).

Yang et al. [15] proposed a new tag scheme for DRAM
cache using eDRAM technology. In this model, the tag was
stored in eDRAM to alleviate the overhead of storing tags
in SRAM. However, this model was exclusive to eDRAM
technology and was not suitable for other technologies. TLB
index-based [6] [8] tagging approaches used TLB indexes
as cache tags instead of actual tag memory; however, this
approach was only suitable for L1 caches where TLB access
and cache access are performed simultaneously.

There have been several studies on cache compressions to
improve storage efficiency of large caches. Young et al. [16],
presented the 1dea of compressing data in DRAM caches. This
approach used extra hardware for cache index predictors to
reduce access latency. In [11], the authors presented base-
delta-immediate compression for data in cache, which im-
proves cache utilization and system performance. However, the
studies mentioned above introduced cache data compression
while the full tag bits must be stored in the storage, incurring
the huge storage overhead due to the cache tags in large
caches.

Petrov and Orailoglu [12] proposed a cache tag compression
technique based on static (i.e., compile time) analysis of
memory layouts. Although their proposed technique reduced
cache power consumption, it relied on compile-time infor-
mation, which made adaptive cache management at runtime
difficult. Kwak and Jeon [7] proposed a cache tag compression
scheme for embedded processors. Their proposed scheme also
aimed at reducing tag storage by sharing upper tag patterns
in a locality buffer. However, their proposed architecture still
required to store the entry number of the locality buffer in the
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Fig. 1: Cache access flow of CT-Cache. There are many
subarrays in the cache although we only show one subarray
in the figure for brevity. We call a bundle of a delta tag array
and corresponding data array as a subarray.

tag array, leading to lower tag compression ratio. Although
this architecture would be efficient in small caches, it would
not be suitable for large caches which should maintain a much
larger number of upper tag patterns.

Our proposed CT-cache efficiently compresses cache tags,
which makes storage of cache tags in SRAM feasible. Our ap-
proach permits saving space of multiple instances of redundant
cache tag bits, efficiently reducing the tag storage.

III. COMPRESSED TAG-DRIVEN CACHE ARCHITECTURE
A. Architecture Overview

1) Decoupled Tag Storage: To avoid redundant storage of
upper tag bits, we propose to decouple the conventional tag
arrays into two parts: GTT and DTA. The common upper bit
parts are stored in a small storage, which is referred to as
GTT, while the remaining unique lower bit parts are stored
in the DTA. Consequently, we need much smaller arrays for
tag storages as we remove redundant storages for upper tag
bits. The GTT is a small fully-associative buffer (in this work,
we use 32-entry GTT) that contains the upper part of the tag
bits while the DTAs contain the remaining bits of the tags
that are associated with each cache line. Since we store the
upper bit patterns in the GTT, a single GTT entry must be
shared between multiple cache lines. As we use decoupled
tag storages, the tag matching procedure of CT-Cache is also
composed of two steps: GTT access and DTA access. In the
case of both GTT hit and delta tag hit, it is regarded as a cache
hit and we perform a data array access. If either the GTT miss
or delta tag miss occurs, it is regarded as a cache miss and
the request goes to the main memory.

2) Cache Management: In our design, since a single GTT
entry must be shared among multiple cache lines, it is very
crucial to determine the mapping rule between the GTT entries
and cache lines. For efficient design, we group multiple cache
lines into a single subarray and we define the mapping rule
between the GTT entries and subarrays. A subarray logically
contains data array and corresponding DTA!. Each subarray
works as a direct mapped cache, which means data with a
certain address can be mapped to only one place in a single
subarray. Although capacity of a single subarray size can vary
depending on cache design, one subarray has 2MB of data
storage and associated delta tag storage in this work.

For a simple implementation, we could statically assign the
cache subarrays into each GTT entry. For example, if we
have a 32-entry GTT and 128 subarrays, we can statically
assign four subarrays to each GTT entry’>. However, this
static assignment may worsen cache capacity utilization in
the case where the required cache capacity for each GTT
entry is diverse. To address this problem, we dynamically
allocate and deallocate subarrays to GTT entries. As shown
in Fig. 2, GTT entries can have various number of cache
subarrays at runtime. Since a single subarray works as a
direct-mapped cache, if N subarrays are allocated to a certain
GTT entry, these subarrays work as an N-way set-associative

'As shown in Fig. 1, though we logically combine a data array and DTA
into a single subarray, the data array and DTA can be physically far apart in
the cache layout.

S 2We) will also evaluate this scheme in evaluations (referred to as ‘CT-
tatic’).
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Fig. 2: A conceptua'l block diagram of the global tag table
entries and their allocated subarrays.

cache. This dynamic allocation/deallocation enables a flexible
management of the cache capacity allocated to each GTT
entry, which in turn leads to better performance and energy
efficiency.

3) Structure and Management of Global Tag Table and
Delta Tag Array: The structure of the GTT is shown in Fig.
3(a). It can be implemented by using both CAM (content-
addressable memory) and SRAM cells. A shared tag storage
in the GTT is implemented by CAM cells to enable a fast fully-
associative search while the remaining metadata storage uses
SRAM cells. The subarray mask bits record which subarrays
are currently allocated to the GTT entry. For example, if
the subarray mask bit[0] and mask bit[1] are ‘1’ while the
remaining mask bits are ‘0’, it means that the subarray[0] and
subarray[1] are allocated to the corresponding GTT entry. In
our design, there are total 128 subarrays (although the number
of subarrays could vary depending on the cache design).
Hence, we need 128 bits for subarray mask bits of each GTT
entry.

For dynamic management of GTT entries, there are 16-bit
access and replacement counters for each entry. The access
counter maintains the number of accesses to the GTT entry
within a pre-defined time interval (10 million clock cycles in
this work). When replacing the GTT entry, we refer to the
access counter for each entry and the entry with the least
access count becomes a victim (i.e., replacement choice). The
replacement counter indicates how many times the cache line
replacements from the allocated subarrays occur within the
time interval. An allocation privilege bit is set to ‘1’ if the
corresponding GTT entry is given a right to get a new subarray
allocation. Detailed usages of the counters and allocation
privilege bit will be explained in Section III-B.

To maintain the data coherency, the replacement or invalida-
tion of a GTT entry entails bulk invalidations® and flushes of
the data stored in the subarrays allocated to the evicted GTT
entry. In the case of using write-back caches as in conventional
caches, we need to perform bursty flush operations, which
would issue a huge number of write-back requests to the main
memory. These bursty flush operations may degrade system
performance mainly due to the limited write buffer size. Thus,
our proposed CT-Cache uses write-through caches so that the
write requests to the main memory can be served sporadically.

An entry structure of the DTA is also shown in Fig. 3(b).
The delta tag entry (array) is similar to the conventional
tag entry* (array) while the main differences are: 1) we
only store lower tag bits (5-bit in this work) for each tag
entry, 2) 2 bits are added to each entry for MRU (most
recently used) status bits, and 3) 16-bit hit counter and 1-
bit SA_valid bit (i.e., subarray valid bit) are added to each
subarray. Obviously, we only store the lower tag parts in the
DTAs as we already store the upper part tags in the GTT
entry. The MRU status bits are required for the victim cache

3For easier bulk invalidations, we can manage all valid bits in the subarray
within a single array. Since we use 2MB subarray with 64B cache line, we
need 4KB valid bit array per subarray. By doing so, we can reduce latency
for resetting all valid bits to ‘0’. Though it still require several cycles, it can
be carried out in background, negligibly affecting performance.

4For the coherency status bits, the length of bits depends on the cache
coherence protocol.
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Fig. 3: Structure of the global tag table entry and delta tag
entry.

line selection. In general, we can apply least recently used
(LRU) policy to select a victim. However, in our proposed
CT-Cache design, implementing LRU is not straightforward as
there can be various associativities across sets of the subarrays
associated with each GTT entry. Hence, to simplify the design,
we track only two MRU (most recently used) cache lines in
a set and a victim is randomly selected from the cache lines
except the two MRU lines. The hit counter maintains how
many cache hits occur in the subarray. This information is
used for dynamic allocation and deallocation of the subarrays
(see the following subsection for detailed usages). The 1-bit
SA_valid bit indicates whether the corresponding subarray is
currently allocated to any GTT entry or not. The SA_valid bit
is used when we search for available subarrays (i.e., subarrays
that are currently not allocated to any GTT entry). Please note
that the 16-bit hit counter and 1-bit SA_valid bit are employed
not for each entry but for each subarray.

4) Proactive Subarray Allocation and Deallocation: Our
proposed CT-Cache proactively manages allocation and deal-
location between GTT entries and subarrays for efficient cache
utilization. For example, a certain GTT entry may require more
cache subarrays to prevent conflict misses while another GTT
entry may hold the subarrays that mostly contain dead cache
lines (i.e., the cache lines that will not be used in future). We
need to allocate more subarrays to the GTT entries for the
former case while we need to deallocate subarrays from the
GTT entries for the latter case.

We make the allocation and deallocation decisions by refer-
ring to the access counter and the replacement counter of each
GTT entry. We go through replacement and access counters
of each GTT entry every 10 million clock cycle interval. If
(replacement count)/(access count) of a certain GTT entry
is more than 0.1, we set the allocation privilege bit of the
corresponding GTT entry to ‘I’. The allocation privilege bit
of ‘1’ means that the GTT entry gets a new subarray allocation
whenever a conflict miss from the subarrays allocated to the
GTT entry occurs during the next 10 million cycle interval.

After we determine the GTT entry of which allocation
privilege bit is set to ‘1°, if there is at least one GTT entry of
which allocation privilege bit is ‘1’, we also try to deallocate
subarrays which are allocated to greedy GTT entries (i.e.,
considered to have much more subarrays than they actually
need). For subarray deallocations, we find the GTT entries that
satisfy the following condition: (replacement count)/(access
count) of the GTT entry is less than 0.05. From each GTT
entry that satisfies the condition’, we deallocate one subarray
which has the least hit count among the subarrays allocated to
the selected GTT entries. Obviously, a deallocation includes
invalidations of all the cache lines in the subarray and update
of the corresponding subarray mask bit and SA_valid bit (from
‘1’ to ‘0’). Please note that the deallocation only happens in
the GTT entries that have more than one subarray (i.e., >2).
We also reset the access and replacement counters of all GTT
entries every 10 million cycle interval to cope with dynamic
program behaviors. In evaluations, we will show performance
and energy impact of our proactive subarray allocation and

SIn case that there is no GTT entry that satisfies the condition, we do not
deallocate subarrays from any GTT entry.
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TABLE I: The results and cache operations of tag matching

falsg DTA miss
(cache miss)

in CT-Cache.
GTT hit GTT miss
DTA hit Cache hit .

T. Send a read (write) 1. Send a read' (write)
request to the main memory | T€duest to the main memory
in case of a read (write) miss | 1D case of a read (write) miss

DTA miss 2. Need to allocate 2. Allocate a new GTT entry
a new subarray or replace a GTT entry
for the GTT entry or 3. Allocate a subarray
need to replace a cache line for the GTT entry

deallocation by comparing the CT-Cache to the CT-Cache
without proactive allocation and deallocation (referred to as
‘CT-w/oPAD”).

B. Cache Operations

1) Tag Matching: In this subsection, we explain the tag
matching procedure of the CT-Cache in more detail. Assuming
that we have a 64-bit address space, we can divide the memory
address into four parts as shown in Fig. 4. In the conventional
cache design, both X and Y parts correspond to the tag bit
parts. In our design, we decouple the tag bits into X and
Y bits each of which will be used for GTT matching and
delta tag matching, respectively. When there is a cache access
request, we first search for GTT entries to match X bits (the
valid bit of the entry is also checked though it is not shown
in Fig. 4). If there is a matched entry (GTT hit), we then
access the DTAs with the index bit (Z) for lower tag bit (Y
part) matching. During the delta tag matching, the subarray
mask bits of the corresponding GTT entry are also accessed.
As explained before, the subarray mask bits record the cache
subarrays that are currently allocated to each GTT entry. The
subarray mask bits inform us which DTAs must be accessed
for delta tag comparison. When the accessed GTT entry holds
more than one subarray, multiple DTAs must be accessed. In
this case, the DTA accesses and comparisons are performed in
parallel across the multiple DTAs. A tag match in any DTA is
regarded as a cache hit and the data array of the corresponding
subarray is accessed.

The results of the CT-Cache tag matching are summarized
in Table I. In the case of both GTT hit and DTA hit, it is
regarded as a cache hit and the data array is accessed. Since
we use write-through caches, we also send a write request
to main memory in the case of write hit. For the remaining
cases, it is regarded as a cache miss since we cannot find
the requested data from the cache. In the case of a cache
read (write) miss, we should send a read (write) request to
the main memory®. In CT-Cache, we classify a cache miss
into two different types: GTT miss and GTT hit/DTA miss.
In the following subsections, we explain the details of cache
operations for GTT miss and GTT hit/DTA miss cases.

2) GTT Misses: In case of GTT misses, there are two
possible cases: 1) there is an available GTT entry (i.e., there
exist a GTT entry of which valid bit is ‘0’), and 2) no available

6Please recall that we use write-through caches. In the case of a write miss,
we must also update the data to the main memory as well as the CT-Cache.

GTT entry. In case 1, we can allocate a new GTT entry without
a replacement for storing the upper tag pattern which incurred
the GTT miss. In order to allocate the lower tag bits and data,
we then allocate a new subarray for the newly allocated GTT
entry. Please note that there may be a case where there is no
available subarray for allocation. In this case, we deallocate
the subarray that has the least hit count among 128 subarrays
and allocate this subarray to the new GTT entry. In case 2,
we need to select a victim GTT entry and replace it with the
new one. In order not to evict live cache blocks (i.e., cache
blocks that are likely to be accessed in near future), we choose
a GTT entry that has the least access counter as a victim (i.e.,
replacement) GTT entry. Finally, we allocate a new subarray
to the new GTT entry and allocate the data in the data array
while updating the metadata in the DTA and the GTT entry.

3) GTT hit/DTA Misses: In the case of DTA misses, we
first check the following conditions: 1) whether or not the
allocation privilege bit of the GTT entry that caused a GTT hit
is ‘1’, and 2) whether or not the cache miss is a conflict miss.
If both the conditions are satisfied, we allocate an additional
subarray for the corresponding GTT entry. After the subarray
allocation, the data is also stored in the newly allocated
subarray and the corresponding metadata is updated. In case
where there is no available subarray for the allocation, we have
to select a victim cache line from N victim candidates where
N is equal to the number of subarrays currently allocated to
the GTT entry. The victim selection 1s performed in a similar
manner to the pseudo-LRU (already explained in Section
III-A3). After we select a victim, we replace it with new data
in the data array and update the corresponding metadata in the
DTA. In the opposite case where either of the two conditions is
not satisfied, we also perform a cache line replacement with
pseudo-LRU while not allocating an additional subarray for
the GTT entry.

IV. EVALUATIONS
A. Evaluation Framework

For evaluation of our proposed CT-Cache, we use gem5
simulator [1] with fastforwarding 2 billion instructions and
actually running 1 billion instructions. We model a high-
performance processor equipped with four out-of-order cores
with per-core L1 data/instruction and L2 caches, a shared
8MB L3 cache, and a shared 256MB L4 cache. We employ
the CT-Cache to 256MB eDRAM-based L4 cache as large
caches generally suffer from the metadata storage overhead.
For rest of the cache hierarchy (i.e., L1, L2, and L3), we use
the conventional SRAM-based caches. Table II summarizes
the parameters for our simulated processor and system. For
energy and array latency evaluation, we use CACTI-P [9]
and DESTINY [13] with 22nm technology nodes. We first
collect cycle-level latencies of the arrays from CACTI-P and
DESTINY and then use these latencies in gem5 simulation
tool for performance evaluations. For energy evaluations, we
also gather the eDRAM-based L4 cache access statistics
from gem5, and calculate dynamic and leakage energy of
L4 caches. Since the CT-Cache may increase main memory
energy consumption as we use write-through policy, we also
evaluate DRAM main memory energy consumption by using
DRAMPower [2].

We use eight memory-intensive workloads from SPEC2006
CPU benchmark suite: 429.mcf, 433.milc, 437.leslie3d,
450.soplex, 459.GemsFDTD, 462.libquantum, 470.lbm, and
471.omnetpp. We evaluate single, quad, and mixed workload
configurations. In ‘single’ configuration, we run a single copy
of the workload in only one core while we run an identical
workload in all four cores in ‘quad’ configuration. In ‘mixed’
configuration, we run a mix of four different workloads in the
system as summarized in Table III.

In performance and energy results, we show four different
schemes for comparisons.

o Baseline: It is a conventional cache that uses non-
compressed tag storages.



TABLE II: Simulated processor and system specifications.

Categories Specification
Processor core Alpha 21364, ARM ISA
Clock frequency 4GHz

32KB per-core
L1 data and
instruction cache
256KB per-core L2

1 cycle, 2-way, LRU, write-back

3 cycles, 4-way, LRU, write-back
Sequential, 4 cycles for tag access,

7 cycles for data access,
16-way, LRU, write-back
Sequential, 36 cycles for tag access,
81 cycles for data access,
32-way, LRU, write-back
Sequential, 32 GTT entries, 128 subarrays,
1 cycle for global tag table,

7 cycles for delta tag array,

81 cycles for data access, write-through
DDR4 2400, 1 channel, 2 ranks,

16 banks per rank,
64-entry read buffer,
128-entry write buffer

TABLE III: Eight mixed workload groups used for

8MB shared L3

Baseline
256MB shared L4

CT-Cache
256MB shared L4

Main memory

evaluations.
Workloads

mixed_1 429.mcf, 437 leslie3d, 450.soplex, 471.omnetpp
mixed_2 433.milc, 459.GemsFDTD, 462.libquantum, 470.lbm
mixed_3 429.mcf, 433.milc, 437.leslie3d, 450.soplex
mixed_4 | 459.GemsFDTD, 462.libquantum, 470.lbm, 471.omnetpp
mixed_5 429.mcf, 450.soplex, 459.GemsFDTD, 470.1bm
mixed_6 433.milc, 437 leslie3d, 462.libquantum, 471.omnetpp
mixed_7 429.mcf, 433.milc, 459.GemsFDTD, 462.libquantum
mixed_8 437 leslie3d, 450.soplex, 470.lbm, 471.omnetpp

o CT-Static: It uses a GTT that statically maps four subar-
rays to each GTT entry.

o CT-w/oPAD: It is CT-Cache without the proactive sub-
array allocation and deallocation. In other words, the
subarray allocation and deallocation only happens when
a GTT miss or delta miss occurs (i.e., reactive allocation
and deallocation).

e CT-Cache: It is our proposed CT-Cache with proactive
subarray allocation and deallocation as explained in Sec-
tion III.

B. Performance

Fig. 5 shows the performance results (weighted speedup [3]
for ‘quad’ and ‘mixed’) normalized to the baseline. For single,
quad, and mixed cases, our proposed CT-Cache shows perfor-
mance improvements of 16.2%, 16.2%, and 4.7%, respectively,
over the baseline. Compared to the single and quad cases,
the mixed configurations show relatively less performance
improvement. This is because the mixed workloads have
higher possibility to have different patterns in upper address
bits. Since we have a limited number of GTT entries, the
diverse upper address patterns will lead to more GTT misses.
However, the CT-Cache still shows performance improvements
even in the case of the mixed workloads mainly due to the
reduced latency of tag accesses.

Compared to the CT-Static and CT-w/oPAD, the CT-Cache
shows better performance in case of multi-programmed work-
loads. In case of mixed (quad) workloads, CT-Cache shows
better performance by 30.4% (33.3%) and 8.1% (5.8%) on
average, compared to CT-Static and CT-w/oPAD, respectively.
On the other hand, in case of single workloads, though
CT-Cache exhibits performance improvement of 16.2% as
compared to the baseline, CT-w/oPAD shows the best per-
formance among four different schemes (21.8% performance
improvement over the baseline, on average). This is because
a single workload hardly uses all of the GTT entries. It also
means the reactive subarray management would be sufficient
for the workloads that have relatively small working sets.
However, due to the rigidity of the subarray allocation and
deallocation, the CT-Static cannot distribute the subarrays to

TABLE IV: Tag storage comparison for 256MB LLC.

Baseline | CT-Cache
Tag storage 20.5MB 2.5MB
Global Tag Table N/A 800B
Hit counters
and SA_valid bit N/A 272B
for CT-cache
Total 20.5MB 2.501MB

the GTT entries depending on their capacity requirements.
This rigidity leads to higher cache miss rates, which eventually
results in a huge performance loss compared to the baseline
(19.7% in the case of the mixed workloads). Overall, the CT-
Cache shows stable performance improvements across single,
quad, and mixed workloads as compared to the CT-Static and
CT-w/oPAD.

C. Energy

Fig. 6 depicts the LLC and main memory energy consump-
tion results for CT-Static, CT-w/oPAD, and CT-Cache normal-
ized to the baseline. The CT-Cache shows unanimous energy
reductions in all of the cases shown in Fig. 6 while the CT-
Static and CT-w/oPAD show energy consumption more than
the baseline in some cases (bars higher than 1.0 in Fig. 6). The
CT-Cache reduces LLC and main memory energy consump-
tion by 28.3%, 29.7%, and 20.0%, on average, compared to the
baseline for single, guad, and mixed workloads, respectively.
The main reasons of energy reduction can be summarized in
two-folds: 1) the reduced tag storage consumes much less
dynamic and leakage energy, and 2) reduced execution time
also reduces leakage (standby) and refresh energy of LLC and
main memory because the processor and main memory can be
transitioned into low-power modes (e.g., power gating) earlier.

Compared to CT-Static and CT-w/oPAD, the CT-Cache
shows more consistent energy reductions from the baseline
across single, quad, and mixed workloads. Considering that
CT-Static and CT-w/oPAD also use the reduced tag stor-
ages, the differences in energy consumptions across the four
schemes are mainly attributed to the differences in the exe-
cution time (i.e., performance). Comparing the energy results
(Fig. 6) with the performance results (Fig. 5), there is a strong
reverse correlation. In other words, the higher performance
a scheme shows, the lower energy consumption the scheme
tends to exhibit.

D. Area

Table IV summarizes tag storage comparison between the
baseline and CT-Cache. We omit the metadata (e.g., valid
bit, coherence status bit, etc.) for each cache line in this
comparison as the metadata are included in both baseline and
CT-Cache. Please note that this is a conservative comparison as
the CT-Cache only maintains 2-bits for replacement policy (5-
bits are required for the baseline which employs LRU policy)
and does not also require a dirty bit’. For the baseline, we
need 41-bits tag for each cache line when using 64-bit address
space. Since the baseline cache has 4M cache lines, we need
a total of 20.5MB for tag storage. In the case of CT-Cache,
we need 5-bits delta tag storage for each cache line, leading to
a total of 2.5MB delta tag storage for 256MB LLC. We also
require 200-bits (25-Bytes) for each entry of the GTT storage,
resulting in total 800-Bytes for the 32-entry GTT. Furthermore,
the CT-Cache maintains the hit counter and SA_valid bit
for each subarray, which corresponds to 272-Bytes (17*128-
bits). In total, the CT-Cache reduces the tag storage by 87.8%
compared to the baseline. Due to the reduced tag storages, one
can obtain latency and energy reduction for tag access, which
eventually results in better performance and energy efficiency
as shown in Sections IV-B and IV-C.

V. CONCLUSION

In this paper, we have proposed CT-Cache—a cache design
based on tag compression. Our proposed CT-Cache decouples

) 7Sin.ce'CT—Cache uses write-through policy, we do not need to maintain a
dirty bit in each cache line.



N
<)

g O CT-Static O CT-w/oPAD B CT-Cache
g 2
©
€
S
©
515
o
el
81
©
£
5 05
Z H
0
5 £ B X 0o g £ 2 € B £ W x Ao £ € 2 € - ®© ® ¥ © © N~ o c
EEE%EES%SE.EE%EEﬂggg‘g‘g‘g'g‘g‘g‘g‘g
8 ¢ 3 8§ L s 2 £ E @ ¢ 3 § ¥ s g £ E %X £ X X £ X X £ E
S ¥ 82 g ¢ 3§ § g S % & g 2 3§ 5 ¢ E E E E E E E E Q
s 5 ° =2 - © ® <+ @ =2 - 9]
< o g 5 E ~ o 3 5 E IS
3 ¢ 3 2 < 3 ]
$ v ® < T [} o
single quad mixed
Workloads

Fig. 5: Performance

1.8

(weighted speedup) results of CT-Static, CT-w/oPAD, and CT-Cache normalized to the baseline.

c .
S 46 n OCT-Static @ CT-w/oPAD B CT-Cache
Q _ -
S
£ 14 —
2
S 1.2
©
>
<
?:,0.8 N
w 0.6
el
O 0.4
N
T 02
£
S 0
z 5 %} el P [a) £ £ aQ c b3 [3) =] P [a) IS £ a c - o~ ™ < 0 © ~ © c
o 1 Q -
£ € E %_ E 2 2 % 3 £ E E % E 2 2 % 3 o o < B o o < < 3
g 8 g § & § g £ E & 4 ¥ g r § ¢ £ E £ 2 2 2 2 %2 x x E
§ 2 L 5 2 205 5 g ¥ &£ g5 2 3N 5 2 E E E E E E E E @
5 ? s 2 < ® 5 2 s 2 < B ©
< o I~ ~ £ < o ~ ~ £ £
g O o8 3 8 o8 8
EEA & < ¥ & [
single quad mixed
Workloads

Fig. 6: Energy consumption results of CT-Static, CT-w/oPAD, and CT-Cache normalized to the baseline.
[2] K. Chandrasekar et al. DRAMPower: Open-source DRAM Power &

tag storages into the global tag table and delta tag arrays.
By sharing the upper-bit tag storage, we can significantly
reduce tag storage required for large last-level caches. Our pro-
posed CT-Cache shows performance improvement and energy
reduction of 4.7%~16.2% and 20.0%~29.7%, respectively,
compared to the baseline (conventional caches that use non-
compressed tag storage). The evaluation results verify that the
CT-Cache shows stable and consistent performance improve-
ments and energy reductions over the baseline as compared
to the CT-Static and CT-w/oPAD (the two variants of our
proposed CT-Cache). As our future work, we plan to (i)
investigate the impact of full system environment including
the operating systems on our proposed CT-Cache, (ii) perform
sensitivity studies on various cache configurations (e.g., cache
hierarchy and size, etc.), (iii) evaluate our proposed CT-Cache
technique using write-back caches and provide performance
and energy consumption comparison with the currently used
write-through caches, (iv) devise a technique to reduce mem-
ory bandwidth requirements due to the write-through policy,
and (v) develop formal methods to determine the design
parameters in the CT-Cache.
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