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Abstract—Experimentation within the field of agronomy re-
lies upon maintaining a controlled operating environment to
determine various environmental factors’ effects upon a crop.
These experiments are carried out in small growth chambers
and can control limited variables such as light, temperature,
and humidity. Space is a premium inside the chambers which
limits the capacity for additional sensors and other equipment.
Field conditions are more complex than a growth chamber, which
makes it difficult to analyze the effect of factors in a more
realistic scenario. In this paper, we propose a system architecture
for a field-based controlled environment for agriculture and
experimentation. First, the overall architecture is proposed for
integrating a multitude of wired and wireless sensors, differ-
ent controllers, small unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs), and actuators to assess
and maintain environmental variables. Next, each component
is detailed for its role and responsibilities within the system.
Then, scientific applications of the system are proposed and
explored before finally analyzing a case study implementation
of the architecture.

Index Terms—agriculture, embedded systems, IoT, cyber-
physical systems, high nighttime stress

I. INTRODUCTION

The controlled-environment agriculture (CEA) is an ad-
vanced form of agriculture based on hydroponics where crops
grow inside of a controlled environment [1]. There is a grow-
ing demand for fresh produce that is high quality and organic.
Climate changes make growing desirable crops difficult when
out of season, regardless of consumer demand. The CEA
remedies these problems by recreating the desired environment
for optimal crop growth. Furthermore, agronomy experiments
are typically carried out in controlled operating environments.
Environmental factors, such as temperature and humidity, are
controlled within growth chambers to analyze their effects on
crops. These chambers, while effective, are constrained on
space and cannot accommodate more sensors or equipment.
The chambers are set to the specific requirements for the
environment and not changed. The chambers are maintained
by the control system within the chamber itself.

Current academic research on CEA focuses on individu-
alized, complex systems for analyzing single-dimension in-
teractions between crops and the environment as well as
larger-scale smart farming systems with multiple individual
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embedded devices scattered throughout the farm area. The
former exhibits reliable environmental controls at the cost of
space and complexity. Larger smart farming systems allow
complex farming areas to be examined and regulated but
are difficult to manage for environmental control decisions.
Although recent years have seen growing progress in CEA
[2], an architecture that can enable monitoring and control
of multiple environmental factors in farm-like conditions still
needs to be developed.

To overcome the limitations of small growth chambers,
and to analyze the effect of different environmental factors
on crops, we propose an architecture for large, automated,
field-based tent systems for CEA and experimentation. A
multitude of sensors, both wired and wireless, for observing
various variables can be installed and used within the tent. The
required environmental parameters for the area are designated
by the designer or user of the system. After the parameters’
specifications, the system uses the readings received from
sensors to engage or disengage actuators to maintain an
optimal environment. Our main contributions are as follows:

o We propose an architecture for large, automated, field-
based tent systems for CEA and experimentation.

o The proposed architecture is modular and scalable com-
prising of different subsystems responsible for sensing,
analytics, decision-making, and actuation. We discuss the
constituent subsystems of the proposed architecture.

o We discuss different applications of the proposed ar-
chitecture, such as CEA, phenotyping, and precision
agriculture.

o We prototype and analyze a simplified implementation
of the architecture in a wheat heat stress experiment, and
demonstrate the capability of our proposed architecture in
studying the effect of different environmental conditions
on crops in CEA settings.

II. RELATED WORK

Recent research developments in CEA focus on optimizing
horticultural lighting systems within greenhouses [2]. Cornell
University’s Greenhouse Lighting and Systems Engineering
(GLASE) consortium is continuing research into light-emitting
diode (LED) efficiencies and light wavelengths in greenhouses.



Their focus is creating integrated control systems for lighting,
carbon dioxide, temperature, and humidity. More complex
interactions, such as imaging data and aperture control, cannot
be achieved easily without further research and revisions
to existing systems. Higher-dimension data points, such as
video/image data, are becoming more important and rele-
vant in agricultural practices for increasing crop yield and
quality through the use of drones and stationary cameras. A
system architecture to manage the complex sensor systems
and integrate them together is required for more informative
experimentation.

Current academic research focuses upon individualized,
complex systems for monitoring singular variables or inter-
actions between the crop and environment, as well as larger-
scale Internet of things (IoT) based smart farming systems with
multiple individual embedded devices scattered throughout the
area. Castafieda-Miranda et al. [3] designed an IoT system
to accurately predict frost levels in a greenhouse, and to
activate an anti-frost irrigation system to prevent damage
and crop disaster. The authors utilized an artificial neural
network (ANN) to predict the greenhouse temperature, which
is then provided as input to a fuzzy logic system to determine
the appropriate amount of anti-frost to apply to maintain
the thawed environment. The proposed architecture in [3]
can leverage our proposed architecture to create a larger,
overarching smart farm system that could monitor and control
multiple environmental parameters by integrating the appro-
priate controller(s), actuators, and communication protocols.
It follows similar thought processes but incorporates each of
the individualized subsystems into an overarching architecture
with real-time predictions and analysis to act on environmental
stimuli. Farooq et al. [4] surveyed the role of IoT in agriculture
for smart farming. They noted that agricultural trends were
individualized systems for the farm, field, and greenhouse,
which reported results to a central server, typically cloud-
based, for storing the information.

III. SYSTEM ARCHITECTURE

Figure 1 depicts our proposed system architecture for
automated field-based tent systems for CEA. The proposed
architecture comprises of the following subsystems or com-
ponents: (i) Data Node, (ii) Sensor Controllers, (iii) Wireless
Controller(s), (iv) Vehicle Controller, (v) Database Node, (vi)
Analytics Node, (vii) Decision Node, and (viii) Actuators. The
architecture is designed in a distributed control network style
(Figure 1). Each location within the farming area becomes
a subsystem of the overall architecture. Each subsystem is
compartmentalized based upon its functional role and com-
municates in fixed ways. The system has the capabilities
to automate irrigation, control temperature, monitor sunlight
conditions, and other important factors related to crop yield via
actuators and relays. The entire control system is part of a local
area network (LAN). Different sensor modalities communicate
over the internal network by sending information to their
respective controllers based on an agreed-upon protocol. The
controllers send their readings to the Data Node to coalesce

the readings and standardize them for transfer into a local
database and for processing in the Analytics Node.

The Analytics Node takes these inputs from the Data Node
and uses this input data to analyze the effect of actuation
decisions on controlled environmental conditions, and their
effect on crop health. It Node provides its output to the
Decision Node, which makes decisions about adjusting the
controlled environment, such as modifying a heating element,
maneuvering a robotic aperture device, and adjusting sensor
configuration. In the following, we discuss different subsys-
tems/components of the proposed architecture in detail.

A. Data Node

In the Data Node, sensor readings sent from their respective
controllers are aggregated and cleaned up: nil or null values
are excluded, and erroneous readings are removed from the
set. The node takes, as input, K sets of (/N x 1) vectors
of output readings from the sensor controllers in the system,
with K being the number of different sensor controllers. Data
is packaged into a nested JavaScript object notation (JSON)
format, with readings indexed by the type of sensor (i.e., CAN,
I2C, UART). Readings are aggregated by either including each
sensor value or by averaging values of the same type (e.g.,
temperature, humidity) before validation. After the multiple
readings from all controllers are validated and combined into
a single JSON document, then they are sent over the LAN
to the Analytics and Database nodes in transmission control
protocol (TCP) packets. The packets consist of a vector of size
(K x N) x 1 containing the coalesced readings. The Analytics
Node then acknowledges receipt of the data packet before
the Data Node can aggregate more readings. Any subsequent
readings received by the Data Node are kept in a buffer
pending processing. Once the buffer has reached maximum
capacity, the sensor controllers are signaled to halt sending
their packets until a certain amount of time has passed. The
backoff time increases with subsequent expirations of time
counters following a binary exponential backoff (BEB) model
from network engineering. In BEB model, once a failure (in
this case, halt signal) is detected, the amount of waiting time
for the next attempt is doubled. The proposed model translates
the Data Node’s halt signal to the controllers as the failure [5].
Thus, consecutive halt signals induce twice the delay of their
predecessors to relieve backlog in the node. The controllers
stop reporting readings until the delay time is completed, after
which they resume sending until they receive another halt
signal.

B. Sensor Controllers

One sensor controller exists for each different protocol
that the sensors use. Each sensing instrument is directly
managed by its respective Sensor Controller, which makes
configuration changes and polls sensors for their data readings.
New sensors are registered with the system before being
able to communicate. Sensors are polled, according to their
available sampling rates and the experimental requirements,
for their raw readings by the controller. Power consumption is
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Fig. 1. Proposed architecture for controlled-environment agriculture.

minimized by using the appropriate sleep policy in each sensor
controller. Up to IV sensor readings from devices connected to
the controller are taken as input and reduced to a (N x 1) vector
output. Reduction is typically an average computation on all
readings from the managed sensors but the exact function
is specified by the experimental requirements and can be
average, max, min, or sum. Each Sensor Controller parses
configuration instructions from the Decision Node and ensures
they are valid commands before transmitting them to the
specified sensors. Any configuration changes requested by the
Decision Node are carried out by the individual controllers
directly without requiring the other controllers to receive any
extraneous messaging.

C. Wireless Controller

The Wireless Controller acts as a specialized Sensor Con-
troller and is responsible for configuring and communicat-
ing with connected wireless sensors. Each sensor acts as a
transmitter, where it reads data and transmits it back to the
controller for reading. The controller itself is a transceiver
that reads the data as well as sends configuration changes
requested by the Decision Node to the affected sensor units.
The wireless controller is also responsible for sending the data
to the Data Node for coalescing and further transmission.
Communication is done on the standard 2.4 GHz wireless
frequency band; nevertheless, sensors could be programmed to
operate at a lower frequency for power savings. Sensors follow
a previously proposed adaptive sleep methodology based on
network conditions to reduce as much power as they can [6].

D. Vehicle Controller
The Vehicle Controller communicates with and manages
the autonomous vehicles in the system. Detected vehicles

within the range of WiFi or Bluetooth signals are managed
by creating a subnet-like architecture. Robots connected to
the infrastructure can automate crucial tasks within the farm
and automatically report back via the Vehicle Controller. The
controller itself acts as the router for the subnet. To prevent
communication issues, the controller follows the BEB algo-
rithm as described in Section III-A. Failures to communicate
with a vehicle are recorded, and the controller attempts to
periodically reconnect the vehicle. More complex data types,
such as image or multimedia data, are processed at the node
with functions like object detection, annotation and labeling.

E. Database Node

The Database Node receives the aggregated data in a nested
JSON format from the Data Node. It takes the (K x N) x 1
vector of readings as input from the Data Node, and outputs
a single boolean denoting success or failure from interacting
with the database. Information in the database is directly
controlled by the Data Node, that is, data is cleaned up,
formatted, and coalesced before being transmitted for inser-
tion. Any sanitization occurs in the Database Node to deal
with unusual nonprinting characters, any irregularities not
caught and handled by the Data Node, or problems that would
inhibit insertion into the database. A NoSQL schema is used
for implementation due to being plug-and-play with different
numbers and types of sensing components. Periodic backups
would be uploaded to a cloud-based database once per day at
a minimum. Data is archived for recordkeeping and for the
potential use in future machine learning model training and
tuning.



F. Analytics Node

The Analytics Node receives the data readings from the
Data Node, in JSON format. Users instruct this node of the
functions to perform while the robots and other automaton
execute the tasks without requiring human interaction. Before
processing can occur, the JSON data is extracted and placed
into a vector format. An ANN is located at this node that takes
the vector data input and performs the analysis to provide
insights into the relationships between different controlled-
environment and actuators’ settings. Mathematically, the out-
put of a single neuron of an ANN with n neurons in the
previous layer can be expressed by:

y=F9 D wixwi | +0y, ()
=0

where each input has a weight factor w; that represents its
perceived influence on the output, and a bias b is added to
the outcome to shift the result towards a more accurate and
flexible model. The overall function on the input, f, is the
activation function that limits the output of a neuron to specific
ranges; typically, the sigmoid, hyperbolic tangent,
rectified linear unit (RELU), and softmax func-
tions are used. The model is trained and tuned based upon
previous readings recorded by the Data Node. Most of the
training data comes from archived data, while tuning is done
periodically with live data for improvements. Data from pre-
vious harvest years can be used to train the neural network
to both predict maximum yield and maintain the conditions to
achieve the best results for that field in real-time.

Based on the input data, the Analytics Node conducts anal-
ysis of various actuator settings and their effect on controlled-
environment variables (e.g., temperature, humidity). The An-
alytics Node also classifies the controlled-environment con-
ditions in different levels (e.g., severity of frost, temperature
stress, humidity, etc.) based on the observed sensor data and
actuator settings. The Analytics Node also provides predictions
on the effects of different actuator settings, which is provided
as input to the Decision Node to assist in decision-making.
Results from the neural network can help identify important
factors affecting crop health and quality, and help improve
them through constant adjustments that are made by Decision
Node based on the analysis from the Analytics Nodes. The
system periodically performs this cycle of sense-analyze-direct
at a defined time interval to let the environment properly
respond to the prior changes (e.g., actuator settings) and
help prevent noisy and erroneous readings from affecting the
system.

G. Decision Node

The Decision Node receives the analytics from the Analytics
Node, and take decisions, such as sensor and actuator configu-
rations. The decision node produces generic commands, such
as “increase temperature”. These commands are analyzed to
extract the meaningful configuration changes that need to be
made and convert them to the appropriate syntax for each

respective controller and actuator. Bounds checks and other
data validity tests can be performed in this subsystem. The
Decision Node sends each specific configuration change to the
appropriate sensor controller and actuator as a packet which
is then consumed.

H. Actuators

Actuators can be any device ranging from a robotic aperture
used to adjust shutters for sunlight level modulation to a
propane heater for controlling temperature. Actuators receive
the commands from the Decision Node and alter the relays
connecting electrical components or adjusts the apertures
(controls) within the system to govern the environment. For
example, propane heaters, motorized blinds, and LED lighting
systems can be controlled to affect the environment in different
ways. Additionally, temperature systems, sunlight controls,
and some irrigation systems can be controlled to further
automate and regulate the system.

IV. APPLICATIONS

The proposed architecture for automated field-based tents
for CEA allows for a variety of experimental uses. A few
of the applications of the proposed architecture are discussed
below.

Controlled-Environment Agriculture: Controlled environ-
ments where a single environmental condition is analyzed
for its effect on crops has been accomplished on wheat and
rice in prior works [7]. The proposed architecture enables
control of multiple environmental conditions in tent-based
field-like settings. Simulations of different weather conditions
can be performed with the appropriate sensing and actuating
equipment. The decision center of the architecture can be
programmed with the ideal environment settings for a given
experiment. The system is able to automatically regulate a
large, controlled environment that is configurable in soft-
ware to experimental requirements. Expansion is supported
with each sensing controller accommodating several sensors
attached and the ability to add any new sensor protocol
controllers to the system. The tent system can be used for
any crop or plot system as it only depends on sensor readings
and agronomic knowledge of the experimental conditions.

Crop Phenotyping: Crop phenotyping applications can ben-
efit from the proposed system. Different sensing components
and subsystems can be integrated easily into the architecture
by the design of the sensor controllers, which would allow
multiple phenomenon to be sensed. The architecture provides
custom data logging capabilities tailored to the designer’s or
user’s needs, and allows interchangeability of components to
best suit the experiment. Paired with the Database node, col-
lecting and analyzing physiological phenomenon are stream-
lined, autonomous, and are non-invasive to the crop itself
if appropriate sensors and actuators are chosen and installed
within the operating area. Image acquisition can be done by a
UAV and processed by the Vehicle Controller to capture the
interaction between crop and environment [8]. Crop growth
stages can be identified via images and paired with the



environmental readings for further insights into physiological
effects.

Precision Agriculture: Precision agriculture can benefit from
an automated, self-learning system in tasks ranging from
variable-rate nitrogen/nutrient application (VRNA) to yield
prediction improvement. Asebedo and Mengel confirmed in
their studies on algorithms for optimal Nitrogen application
amounts that more data was required for sufficient model
accuracy [9]. Nitrogen application is a crucial step in the
farming process for optimal crop growth, yield, and quality.
Previous agronomic research has overwhelmingly shown that
VRNA is the optimal method for crop fertilization as compared
to blanket nitrogen application within a plot. Fields are thus
sub-divided, or real-time algorithms are developed, to apply
differing levels of nitrogen in different sub-fields. The primary
statistic used to determine the optimal nitrogen amount to
apply to each section, Red normalized difference vegetation
index (NDVI), is a singular data point. While being one-
dimensional, tremendous success has resulted from analyz-
ing and categorizing plots based on Red NDVI thresholds.
However, other data values, such as weather conditions, soil
information, infrared and thermal imaging may not be con-
sidered in many real-time calculations and models, which the
proposed architecture provides integration possibilities for. For
example, in winter wheat, the tillers, head size, and grain
filling are used to determine the yield and occur at different
points in the Feekes scale [10]. The Feekes stages 1 to 5 occur
when the plant is below the soil level, which mitigates pest
and other above-ground environmental issues. At Feekes 7,
Nitrogen mineralization is easier to assess and evaluate, but
has the potential for tiller abortion due to Nitrogen stress [9].
Each stage can be categorized and evaluated on a visual basis.
An immediately straightforward solution towards reducing Ni-
trogen stress is to examine and identify the plant growth stages
using the imagery available and incorporate these into the real-
time model to improve Nitrogen decisions. Temperature and
day length are determining factors for how quickly the crop
moves through the stages. Sensing instruments for these values
can be easily integrated into the system, and relationships
between them can be determined by the neural network within
the Analysis Node.

V. CASE STUDY AND EXPERIMENTS

We have developed and implemented a simplified version
of the proposed architecture to study the effects of high
nighttime temperatures (HNT) on winter wheat in Kansas [11].
The experimental thermostat controller system is installed in
custom designed tent structures that are 9.1 meters wide, 14.6
meters long, and 4.4 meters tall. Each structure is placed over
eight blocks of 40 rows of different winter wheat varieties.
The architecture is simplified and split into three pairs of
tents, with one control and one heat tent per pairing as
depicted in Figure 2. Heat tents consist of a propane heater
connected to the controller, a Raspberry Pi model 3B, via
relay, which converts the 5V input signal from the controller
to the 250V AC required to engage the heater, along with six

Fig. 2. Pairwise tent system. The tent without a heater transmits its average
indoor temperature reading to the heated tent for decision-making.

MCP9808 temperature sensors [12] and one MHZ-19 carbon
dioxide sensor [13]. Control tents contain a Raspberry Pi
model 3B and the same sensing equipment. Their purpose is
to monitor and record the ambient temperature for later use in
the heat tent decision-making.

Each pair is connected over a wireless LAN and managed by
the control tent, which acts as the router. Each tent records the
averaged indoor temperature and the carbon dioxide reading.
The control tents transmit their readings to the heater tent for
analysis, which are treated as the outdoor temperature. The
heat tent, upon receipt of the readings, averages its recorded
temperature and compares it to the received readings: above a
4°C threshold causes the controller to disengage the relay, and
below 4°C engages the relay. The goal is to maintain a 4°C
warmer temperature in each heat tent than the control tent
temperature for the duration of the experiment. The system
is programmed to read temperature data, decide on the relay
state, log sensor and actuator data to file, and sleep. This cycle
repeats once per minute to allow the change in relay state to
propagate through the environment.

Upon startup, the system detects the type of sensors con-
nected and initializes the main controller for interfacing with
the thermostat system. Two options for the main controller
exist for the system: one for the heat tents, and one for the
control tents; the system, at boot, selects the correct one.
Each controller initializes the sensors, reboot error counter,
and initiates system logging for diagnostic purposes. Once
initialization is completed, the main logic loop begins with
calibrating the CO, sensor to the current environment. Next,
the MCP9808 sensors that were detected previously are polled
on the I?C bus by address with the exclusion of user-
defined reserved addresses for the clock module and erroneous
addresses. Any errors that occurred are logged to file and
the error counter is incremented. Once a programmed level
is reached with the error counter, the system automatically
restarts itself to resolve the hardware issue. A programmed
number of maximum restarts prevents the system from con-
tinuously restarting in order to keep the controllers online
for sending data and to maintain the HNT environment on
the crops even if the temperature threshold is exceeded. The
temperature of the heat tents is compared to the control tents
and used to determine the relay status, which is engaged by the



Raspberry Pi’s GPIO pins. Each step in the process is logged
for troubleshooting and archival purposes.

Both the heat and control tents act as a fusion of several
of the components within the proposed architecture. They
contain the following components, which are present indirectly
in software as code chunks or Python classes: Data Node,
Analysis Node, Decision Node, and Sensor Controller. Each
tent reads the data from their sensors. In our experiments, the
Sensor Controllers do not send configuration commands to the
sensors, instead the default configuration and error resolution
mechanisms are employed to a satisfactory level. Control tents
send their data to their heat tent partners for analysis, similarly
to the Analytics Node. There is no neural network present, and
the decision was a choice based on a linear model, carried out
by the controller itself. Data is logged to an Excel spreadsheet
file and not imported into a database. The copies of the data are
stored locally via replication on several different disk drives.
Instead of a dynamic sleep schedule, a static minute of sleep
is used in our experimental setup. The selected sleep interval
is sufficient to allow the heat change to propagate through
the system. The experimental implementation does not have
the capabilities for image and video processing. Additional
computing hardware is required for these tasks, and a redesign
of the pairwise architecture is recommended.

In our experiments, the system was able to achieve a
controlled environment of, on average, 3.773 °C warmer than
the control areas for the duration of the heat stress as depicted
in Figure 3. The three respective heat tents (H1, H2, H3) were
analyzed independently. Heat loss was primarily due to gaps
in the plastic walls used to seal the tents. The inaccuracies
in sensing implements also occurred but were within the
manufactured tolerance of 0.25 °C. Heat tents 1 and 3 achieved
greater than +3.8 °C temperature while heat tent 2 exhibited
+3.6273 °C temperature primarily due to early relay activation
issues that were resolved with replacement hardware. Heat tent
2 would engage the relay, which in turn was supposed to turn
the heater on. However, the relay was faulty and would engage
only a fraction of the time. This caused the heater to remain
offline for extended periods and not reach the 4 °C threshold
required to maintain the heat stress. After identifying and
diagnosing the fault to the relay, replacement relay sets were
installed, and the issue was resolved. Additional results and
data are available online regarding the system’s performance
measured by the crop response [11].

VI. CONCLUSIONS

While sensor systems design in agriculture are sufficient for
individual, specialized experiments, there is a growing demand
for an overarching architecture that is versatile, and can ob-
serve, analyze, and control multiple environmental conditions.
Agronomic experiments require, and rely on, a high quantity of
data that current experimental architectures are not equipped to
collect, manage, and analyze in real-time. Agricultural models
can be improved with additional data and sensing implements
and require a solidified architecture and framework to succeed.
The proposed design packages components based upon role
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Fig. 3. Average recorded temperature differential in heat tent combinations.

and can accommodate a variety of sensing instruments, actu-
ators, and autonomous robots with little effort. The proposed
architecture can be utilized for a variety of applications, such
as controlled-environment agriculture in field-like settings,
crop phenotyping, precision agriculture, and experimentation
for agricultural and agronomical research. We have developed
and deployed a prototype of the proposed architecture, which
demonstrates that the proposed architecture can monitor and
control the nighttime temperature stress as well as other
environmental conditions for winter wheat.
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