
A Queueing Theoretic Approach for Performance Evaluation
of Low-Power Multi-core Embedded Systems

Arslan Munir*, Ann Gordon-Ross*, and Sanjay Ranka+

*Department of Electrical and Computer Engineering
+Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA
Email: amunir@ufl.edu, ann@ece.ufl.edu, ranka@cise.ufl.edu

Abstract—With Moore’s law supplying billions of transistors
on-chip, embedded systems are undergoing a transition from
single-core to multi-core to exploit this high transistor density
for high performance. However, the optimal layout of these
multiple cores along with the memory subsystem (caches and
main memory) to satisfy power, area, and often stringent real-
time constraints is a challenging design endeavor. The short
time-to-market constraint of embedded systems exacerbates this
design challenge and necessitates the architectural modeling of
embedded systems to reduce the time-to-market by expediting
target applications to device/architecture mapping. In this paper,
we present a queueing theoretic approach for modeling multi-
core embedded systems that provides a quick and inexpensive
performance evaluation both in terms of time and resources
as compared to the development of multi-core simulators and
running benchmarks on these simulators. We also calculate chip
area and power consumption for different multi-core embedded
architectures with a varying number of processor cores and
cache configurations to provide a comparative analysis of multi-
core embedded architectures in terms of performance, area,
and power consumption. Our performance and power results
indicate that multi-core embedded system architectures that
leverage shared last-level caches (LLCs) provide the best LLC
performance per watt but may introduce main memory response
time and throughput bottlenecks for high cache miss rates,
whereas architectures leveraging a hybrid of private and shared
LLCs alleviate main memory bottlenecks at the expense of
reduced performance per watt.

Index Terms—Multi-core; low-power; embedded systems;
queueing theory; performance evaluation;

I. I NTRODUCTION AND MOTIVATION

With Moore’s law supplying billions of transistors on-
chip, embedded systems are undergoing a paradigm shift
from single-core to multi-core to exploit this high transistor
density for high performance. This paradigm shift has led
to the emergence of diverse multi-core embedded systems
in a plethora of application domains (e.g., high-performance
computing, dependable computing, mobile computing, etc.).
Many modern embedded systems integrate multiple cores
(whether homogeneous or heterogeneous) on-chip to satisfy
computing demand while maintaining design constraints (e.g.,
energy, power, performance, etc.). For example, a 3G mobile
handset’s signal processing requires 35-40 Giga operations
per second (GOPS). Considering the limited energy of a
mobile handset battery, these performance levels must be
met with a power dissipation budget of approximately 1W,

which translates to a performance efficiency of 25 mW/GOP
or 25 pJ/operation for the 3G receiver [1]. These demanding
and competing power-performance requirements make modern
embedded system design challenging.

Increasing customer expectations/demands for embedded
system functionality has led to an exponential increase in
design complexity. While industry focuses on increasing
the number of on-chip processor cores to meet customer
performance demands, embedded system designers face the
new challenge of optimal layout of these processor cores along
with the memory subsystem (caches and main memory) to
satisfy power, area, and stringent real-time constraints.The
shorttime-to-market(time from product conception to market
release) of embedded systems further exacerbates design
challenges. Architectural modeling of embedded systems helps
in reducing the time-to-market by enabling fast application-to-
device mapping since identifying an appropriate architecture
for a set of target applications significantly reduces the design
time of an embedded system. To ensure timely completion
of an embedded system’s design with sufficient confidence in
the product’s market release, design engineers have to make
tradeoffs between the abstraction level and the accuracy a
multi-core architecture model can attain.

Modern multi-core embedded systems allow processor cores
to share hardware structures such as last-level caches (LLCs)
(e.g., level two (L2) or level three (L3) caches), memory
controllers, and interconnection networks [2]. Since the LLC’s
configuration (e.g., size, line size, associativity) and the layout
of the processor cores (on-chip location) has a significant
impact on a multi-core embedded system’s performance
and energy, our work focuses on performance and energy
characterization of embedded architectures based on different
LLC configurations and the layout of the processor cores.
Though there is a general consensus on using private level one
(L1) instruction (L1-I) and data (L1-D) caches in embedded
systems, there has been no dominant architectural paradigmfor
private or shared LLCs. Since many embedded systems contain
an L2 cache as the LLC, we focus on the L2 cache, however,
our study can easily be extended to lower-level caches such
as L3 caches and beyond.

Since multi-core benchmark simulation requires significant
simulation time and resources, a lightweight modeling
technique for multi-core architecture evaluation is crucial



[3]. Previous work presents various multi-core system
models, however, these models become increasingly complex
with varying degrees of cache sharing [4]. Many of the
previous models assumed that sharing amongst processor
cores occurred at either the main memory level or the
processor cores all shared the same cache hierarchy, however,
multi-core embedded systems can have an L2 cache shared
by a subset of cores (e.g., Intel’s six-core Dunnington
processor has L2 caches shared by two processor cores). We
leverage for the first time, to the best of our knowledge,
queueing network theory as an alternative approach for
modeling multi-core embedded systems for performance
analysis (though queueing network models have been studied
in the context of traditional computer systems [5]). Our
queueing network model approach allows modeling the layout
of the processor cores (homogeneous or heterogeneous) with
caches of different capacities and configurations at different
cache levels. Our modeling technique only requires a high-
level workload characterization of an application (i.e., whether
the application is processor-bound (requiring high processing
resources), memory-bound (requiring a large number of
memory accesses), or mixed).

Our main contributions in this paper are:

• We present a novel, queueing theory-based modeling
technique for evaluating multi-core embedded
architectures that does not require architectural-level
benchmark simulation. This modeling technique enables
quick and inexpensive architectural evaluation both in
terms of design time and resources as compared to
developing and/or using existing multi-core simulators
and running benchmarks on these simulators. Based on
a preliminary evaluation using our model, architecture
designers can run targeted benchmarks to further verify
the performance characteristics of selected multi-core
architectures (i.e., our queueing theory-based model
facilitates early design space pruning).

• Our queueing theoretic approach quantifies performance
metrics (e.g., response time, throughput) for different
workload/benchmark characteristics and different cache
miss rates. Although general trends for performance
metrics could be anticipated for different cache miss
rates and workload characteristics, our work for the first
time quantifies the percentage increase and decrease in
the performance metrics for different cache miss rates
and workload/benchmark characteristics for different
architectures.

• We calculate chip area and power consumption
for different multi-core embedded architectures with
a varying number of processor cores and cache
configurations to provide a comparative analysis of multi-
core embedded architectures in terms of performance
(e.g., response time), area, and power consumption.

We point out that although queueing theory has been used
in literature for performance analysis of multi-disk systems
[5][6], we for the first time to the best of our knowledge apply

queueing theory-based modeling and performance analysis
techniques to multi-core embedded systems. Furthermore, we
develop a methodology to simulate workloads/benchmarks on
our queueing theoretic multi-core model based on probabilities
that are assigned according to workload characteristics (e.g.,
processor-bound, memory-bound, or mixed) and cache miss
rates.

Our investigation of performance and energy for different
cache miss rates and workloads is important because
cache miss rates and workloads can significantly impact
the performance and energy of an embedded architecture.
Furthermore, cache miss rates also give an indication of
the degree of cache contention between different threads’
working sets. Our performance, power, and performance
per watt results (in terms of floating point operations per
second (FLOPS) per watt (FLOPS/W)) indicate that multi-
core embedded system architectures that leverage shared LLCs
are scalable and provide the best LLC MFLOPS/W. For
example, shared LLCs can provide up to 13.8 MFLOPS/W for
a four-core architecture. However, shared LLC architectures
may introduce main memory response time and throughput
bottlenecks for high cache miss rates. Architectures that
leverage a hybrid of private and shared LLCs are scalable and
alleviate main memory bottlenecks at the expense of reduced
MFLOPS/W. For example, hybrid architectures can provide
up to 9.2 MFLOPS/W for a four-core architecture. Finally,
architectures with private LLCs exhibit less scalability but
do not introduce main memory bottlenecks at the expense
of reduced MFLOPS/W. For example, private LLCs can
provide a throughput of up to 7.6 MFLOPS/W for a four-core
architecture.

II. RELATED WORK

Previous work presents evaluation and modeling
techniques for multi-core embedded architectures for
different applications and varying workload characteristics.
Savage et al. [4] proposed a unified memory hierarchy model
for multi-core architectures that captured varying degrees of
cache sharing at different cache levels. The model, however,
only worked for straight-line computations that could be
represented by directed acyclic graphs (DAGs) (e.g., matrix
multiplication, fast Fourier transform (FFT)). Fedorova et
al. [2] studied contention-aware task scheduling for multi-
core architectures with shared resources (caches, memory
controllers, and interconnection networks). They modeled
the contention-aware task scheduler and investigated the
scheduler’s impact on application performance for multi-core
architectures.

Some previous work investigated performance and energy
aspects for multi-core systems. Kumar et al. [7] studied power,
throughput, and response time metrics for heterogeneous
CMPs. They observed that heterogeneous CMPs could
improve energy per instruction by 4-6x and throughput by
63% over an equivalent area homogeneous CMP because of
closer adaptation to the resource requirements of different
application phases. Sabry et al. [8] investigated performance,



energy, and area tradeoffs for private and shared L2 caches
for multi-core embedded systems. They proposed a SystemC-
based platform that could model private, shared, and hybrid
L2 cache architectures.

III. QUEUEING NETWORK MODELING OF MULTI -CORE

EMBEDDED ARCHITECTURES

In this section, we define queueing network terminologies
and our modeling approach in the context of multi-core
embedded architectures. We use the termjobs often instead
of tasks(decomposed workloads resulting from parallelizing a
job) to be consistent with queueing network terminology. Our
modeling approach is broadly applicable tomulti-programmed
workloadswhere multiple jobs run on a multi-core embedded
architecture as well as forparallelized applications/jobsthat
run differenttaskson a multi-core embedded architecture.

A queueing networkconsists of service centers(e.g.,
processor core, L1-I cache, L1-D cache, L2 cache, and main
memory (MM)) andcustomers(e.g., jobs/tasks). A service
center consists of one or more queues to hold jobs waiting
for service. Arriving jobs enter the service center’s queueand
a scheduling/queueing discipline(e.g., first-come-first-served
(FCFS), priority, round robin (RR), processor sharing (PS),
etc.) selects the next job to be served when a service center
becomes idle. After being serviced, a job either moves to
another service center or leaves the network.

A queueing network isopenif jobs arrive from an external
source, spend time in the network, and then depart. A
queueing network isclosed if there is no external source
and no departures (i.e., a fixed number of jobs circulate
indefinitely among the service centers). A queueing network
is a single-chainqueueing network if all jobs possess the
same characteristics (e.g., arrival rates, required service rates,
and routing probabilities for various service centers) andare
serviced by the same service centers in the same order. If
different jobs can belong to different chains, the network is a
multi-chainqueueing network. An important class of queueing
networks isproduct-formwhere the joint probability of the
queue sizes in the network is a product of the probabilities for
the individual service centers’ queue sizes.

The queueing network performance metrics include
response time, throughput, and utilization. Theresponse time
is the amount of time a job spends at the service center
including the queueing delay (the amount of time a job waits
in the queue) and the service time. The service time of a job
depends on the amount of work (e.g., number of instructions)
needed by that job. Thethroughputis defined as the number
of jobs served per unit of time. In our multi-core embedded
architecture context, throughput measures the number of
instructions/data (bits) processed by the architectural element
(processor, cache, MM) per second.Utilization measures the
fraction of time that a service center (processor, cache, MM) is
busy. Little’s law governs the relationship between the number
of jobs in the queueing networkN and response timetr (i.e.,
N = λ · tr whereλ denotes the average arrival rate of jobs
admitted to the queueing network [9]).

We consider the closed product-form queueing network for
modeling multi-core embedded architectures because a typical
embedded system executes a fixed number of jobs (e.g., a
mobile phone has only a few applications to run such as
instant messaging, audio coding/decoding, calculator, graphics
interface, etc.). Furthermore, closed product-form queueing
networks assume that a job leaving the network is replaced
instantaneously by a statistically identical new job [5]. Table I
describes the multi-core embedded architectures that we
evaluate in this paper. We focus on embedded architectures
ranging from two (2P) to four (4P) processor cores to reflect
current architectures [10], however, our model is applicable
to any number of cores. Our modeled embedded architectures
contain processor cores, L1-I and L1-D private caches, L2
caches (private or shared), and MM (embedded systems are
typically equipped with DRAM/NAND/NOR Flash memory
[11][12]).

Consider a closed product-form queueing network withI

service centers where each service centeri ∈ I has a service
rate µi. Let pij be the probability of a job leaving service
center i and entering another service centerj. The relative
visit countϑj to service centerj is:

ϑj =

I∑

i=1

ϑipij (1)

The performance metrics for a closed product-form
queueing network can be calculated using amean value
analysis(MVA) iterative algorithm [13]. The basis of MVA is
a theorem stating that when a job arrives at a service center in a
closed network withN jobs, the distribution of the number of
jobs already queued is the same as the steady state distribution
of N - 1 jobs in the queue [14]. Solving (1) using MVA
recursively gives the following performance metric values:
the mean response timeri(k) at service centeri, the mean
queueing network throughputT (k), the mean throughput of
jobsti(k) at service centeri, and the mean queue lengthli(k)
at service centeri when there arek jobs in the network. The
initial recursive conditions arei = 0 such thatri(0) = T (0)
= ti(0) = li(0) = 0. The values for these performance metrics
can be calculated fork jobs based on the computed values for
k − 1 jobs as [5]:

ri(k) =
1

µi

(1 + li(k − 1)) (2)

T (k) =
k

R
=

k
∑I

i=1
ϑiri(k)

(3)

ti(k) = ϑi(T )(k) (4)

li(k) = ti(k)ri(k) (5)

To explain our modeling approach for multi-core embedded
architectures, we describe a sample queueing model for the
2P-2L1ID-2L2-1M architecture in detail (other architecture
models follow a similar explanation). Fig. 1 depicts the



TABLE I
MULTI -CORE EMBEDDED ARCHITECTURES WITH VARYING PROCESSOR CORES AND CACHE CONFIGURATIONS(P DENOTES A PROCESSOR CORE, L1ID

DENOTESL1-I AND L1-D CACHES, M DENOTES THE MAIN MEMORY, AND THE INTEGER CONSTANTS PRECEDINGP, LIID, L2, AND M DENOTE THE

NUMBER OF THESE ARCHITECTURAL COMPONENTS IN THE EMBEDDED ARCHITECTURE).

Architecture Description

2P-2L1ID-2L2-1M Multi-core embedded architecture with 2 processor cores, private L1 I/D caches, private L2 caches, and a shared M

2P-2L1ID-1L2-1M Multi-core embedded architecture with 2 processor cores, private L1 I/D caches, a shared L2 cache, and a shared M

4P-4L1ID-4L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, private L2 caches, and a shared M

4P-4L1ID-1L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, a shared L2 cache, and a shared M

4P-4L1ID-2L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, 2 shared L2 caches, and a shared M

P1

L1-I

L1-D

M

L2

P2

L1-I

L1-D

L2

Task

Scheduler

Pr
1
P
1
L1I

Pr
1
P
1
L1D

Pr
1
L1IL2

Pr
1
L1DL2

Pr
1
L2M

Pr2L2M

Pr
1
L1IP

1

Pr
1
L1DP

1

Pr
1
P
1
P
1

Pr
2P2P2

Pr2P2L1I

Pr2P2L1D

Pr2L1IP2

Pr2L1IL2

Pr2L1DL2

Pr2L1DP2

Pr
1
L2P

1

Pr2L2P2

Fig. 1. Queueing network model for the 2P-2L1ID-2L2-1M multi-core
embedded architecture.

queueing network model for 2P-2L1ID-2L2-1M. Thetask
schedulerschedules the tasks/jobs on the two processor cores
P1 andP2. We assume that the task scheduler is contention-
aware and schedules tasks with minimal or no contention on
cores sharing LLCs [2]. The queueing network consists of
two chains: chain one corresponds to processor coreP1 and
chain two corresponds to processor coreP2. The jobs serviced
by P1 either reenterP1 with probability Pr1P1P1 or enter
the L1-I cache with probabilityPr1P1L1I or L1-D cache
with probabilityPr1P1L1D. The job arrival probabilities into
the service centers depends on the workload characteristics.
The data from the L1-I and L1-D caches returns toP1 with
probabilitiesPr1L1IP1 and Pr1L1DP1, respectively, after
L1-I and L1-D cache hits. The requests from the L1-I and
L1-D caches are directed to the L2 cache with probabilities
Pr1L1IL2 andPr1L1DL2, respectively, after L1-I and L1-
D cache misses. The probability of requests enteringP1 or
the L2 cache from the L1-I and L1-D caches depends on the
miss rates of the L1-I and L1-D caches. After an L2 cache
hit, the requested data is transferred toP1 with probability
Pr1L2P1 or enters the MM with probabilityPr1L2M after
an L2 cache miss. The requests from the MM always return
to P1 with probability Pr1MP1 = 1. The queueing network
chain and path for chain two corresponding toP2 follows the
same pattern as chain one corresponding toP1. For example,
requests from the L2 cache in chain two either return toP2

with probabilityPr2L2P2 after an L2 cache hit or enter the
MM with probability Pr2L2M after an L2 cache miss.

The queueing network model probabilities for the 2P-

2L1ID-2L2-1M multi-core architecture for memory-bound
workloads (processor to processor probabilityPpp = 0.1,
processor to memory probabilityPpm = 0.9) assuming that
L1-I, L1-D, and L2 cache miss rates are 25%, 50%, and
30%, respectively, are set as:Pr1P1P1 = 0.1, Pr1P1L1I
= 0.45,Pr1P1L1D = 0.45,Pr1L1IP1 = 0.75,Pr1L1DP1

= 0.5, Pr1L1IL2 = 0.25, Pr1L1DL2 = 0.5, Pr1L2P1 =
0.7,Pr1L2M = 0.3,Pr1MP1 = 1 (different probabilities are
assigned for processor-bound or mixed workloads).

Our queueing network modeling provides a faster alternative
for performance evaluation of multi-core architectures as
compared to running complete benchmarks on multi-core
simulators (and/or trace simulators) though at the expense
of accuracy. Our queueing network models only require
simulating a subset of the benchmark’s instructions (by
specifying the job size) such that the queueing network reaches
the steady state/equilibrium (the precise minimum number
of instructions required depends on the workload behavior)
with respect to the workload behavioral characteristics
captured by the processor-to-processor and processor-to-
memory probabilities (as shown in Fig. 1).

IV. RESULTS

In this section, we present the performance evaluation
and power consumption results for the five different multi-
core embedded architectures depicted in Table I along with
the validation of our queueing network models (for brevity,
we present a subset of the results, however, our analysis
and derived conclusions are based on our complete set of
experimental results). We implement our queueing network
models for the multi-core embedded architectures using
the SHARPE modeling tool/simulator [5]. We consider the
ARM7TDMI processor core, which is a 32-bit low-power
processor with 32-bit instruction and data bus widths [15][16].
We consider the following cache parameters [17]: cache sizes
of 8 KB, 8 KB, and 64 KB for the L1-I, L1-D, and L2 caches,
respectively; associativities of direct-mapped, 2-way, and 2-
way for the L1-I, L1-D, and L2 caches, respectively; and
block/line sizes of 64 B, 16 B, and 64 B for the L1-I, L1-D,
and L2 caches, respectively. We assume a 32 MB MM for all
architectures, which is typical for mobile embedded systems
(e.g., Sharp Zaurus SL-5600 personal digital assistant (PDA))
[18]. To provide a fair comparison between architectures,
we ensure that the total L2 cache size for shared L2 cache
architectures and private L2 cache architectures remains the



5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

 

 

Core
L1−I
L1−D
L2
M

L1−I Miss Rate: 0.0001
L1−D Miss Rate: 0.05
L2 Miss Rate: 0.2

2P−2L1ID−2L2−1M

Fig. 2. Queueing network model validation demonstration — response time
(ms) for mixed workloads for 2P-2L1ID-2L2-1M for a varying number of
jobs N .

same.
We first calculate the service rates for the service centers

used in our multi-core queueing models. We assume that the
processor core delivers 15 MIPS at 16.8 MHz [15] (cycle time
= 1/(16.8 × 106) = 59.524 ns), which for 32-bit instructions
corresponds to a service rate of 480 Mbps. We assume L1-I,
L1-D, and L2 cache, and MM access latencies of 2, 2, 10, and
100 cycles, respectively [15][19]. With an L1-I cache line size
of 64 B, an access latency of 2 cycles, and a 32-bit (4 B) bus,
transferring 64 B requires 64/4 = 16 cycles, which results in
a total L1-I time (cycles) = access time + transfer time = 2 +
16 = 18 cycles, with a corresponding L1-I service rate = (64
× 8)/(18× 59.524× 10−9) = 477.86 Mbps. The service rates
for the L1-D and L2 caches and MM are calculated similarly.
We assume that each individual job/task requires processing
1 Mb of instruction and data, which ensures that the steady
state/equilibrium behavior of the queueing network for our
simulated workloads is reached.

A. Queueing Network Models Validation

We validate our queueing network models for different
cache miss rates and workloads and find that the model’s
simulation results conform with expected queueing theoretical
results. For example, Fig. 2 depicts the response time for
mixed workloads (Ppp = 0.5,Ppm = 0.5) for 2P-2L1ID-2L2-
1M as the number of jobs/tasksN varies. The figure shows
that asN increases, the response time for the processor core,
L1-I, L1-D, L2, and MM increases for all of the cache miss
rates. We point out that cache miss rates could increase as
N increases due to inter-task address conflicts and increasing
cache pressure (increased number of working sets in the
cache), but we assume that the cache sizes are sufficiently
large enough so that capacity misses remain the same for the
considered number of jobs. We present the average response
time individually for the processor cores and the L1-I, L1-D,
and L2 caches. For smaller L1-I, L1-D, and L2 cache miss
rates, the processor core response time increases drastically as
N increases because most of the time jobs are serviced by the
processor core whereas for larger L1-I, L1-D, and L2 cache
miss rates, the MM response time increases drastically because
of a large number of MM accesses. These results along with
our other observed results conform with the expected queueing
theoretical results and validate the correctness of our queueing

network models for multi-core architectures. We point out that
small variations in results could be due to inaccuracies in the
SHARPE simulator, but do not change the overall trends.

B. The Effects of Cache Miss Rates on Performance

In this subsection, we present results describing the
effects of different L1-I, L1-D, and L2 cache miss rates on
the architecture response time and throughput performance
metrics for mixed, processor-bound, and memory-bound
workloads. Considering the effects of different cache miss
rates is an important aspect of performance evaluation for
multi-core embedded architectures with shared resources
because cache miss rates give an indication whether the
threads (corresponding to tasks) are likely to experience cache
contention. Threads with higher LLC miss rates are more
likely to have large working sets since each miss results in the
allocation of a new cache line. These working sets may suffer
from contention because threads may repeatedly evict the other
threads’ data (i.e.,cache thrashing) [2]. We obtained results
for cache miss rates of 0.0001, 0.05, and 0.2, up to 0.5, 0.7,
and 0.7 for the L1-I, L1-D, and L2 caches, respectively. These
cache miss rate ranges represent typical multi-core embedded
systems for a wide diversity of workloads [20][21][22].

We observed that for mixed workloads (Ppp = 0.5, Ppm

= 0.5), the response times for the processor core, L1-I, L1-D,
and MM for 2P-2L1ID-1L2-1M are very close to the response
times for 2P-2L1ID-2L2-1M, however, the L2 response time
presents interesting differences. The L2 response time for2P-
2L1ID-1L2-1M is 22.3% less than the L2 response time for
2P-2L1ID-2L2-1M when the L1-1, L1-D, and L2 cache miss
rates are 0.0001, 0.05, and 0.2, respectively, andN = 5 (similar
percentage differences were observed for other values ofN )
whereas the L2 response time for 2P-2L1ID-1L2-1M is only
6.5% less than the L2 response time when the L1-1, L1-D, and
L2 cache miss rates are 0.5, 0.7, and 0.7, respectively. This
result shows that the shared L2 cache (of comparable area as
the sum of the private L2 caches) performs better than the
private L2 caches in terms of response time for small cache
miss rates, however, the performance improvement decreases
as the cache miss rate increases. Similar trends were observed
for processor-bound workloads (Ppp = 0.9, Ppm = 0.1) and
memory-bound workloads (Ppp = 0.1,Ppm = 0.9).

For mixed workloads, the response time for the processor
core, L1-I, L1-D, and MM for 4P-4L1ID-1L2-1M is 1.2x, 1x,
1.1x, and 2.4x greater than the corresponding architectural
elements – processor core, L1-I, L1-D, and MM – for 4P-
4L1ID-4L2-1M whereas the L2 response time for 4P-4L1ID-
1L2-1M is 1.1x less than the L2 response time for 4P-4L1ID-
4L2-1M when the L1-1, L1-D, and L2 cache miss rates are
0.5, 0.7, and 0.7, respectively, andN = 5. This observation in
conjunction with our other experimental results reveal that the
architectures with private LLCs provide improved response
time for processor cores and L1 caches as compared to the
architectures with shared LLCs, however, the response time
of the LLC alone can be slightly better for architectures with
shared LLCs because of the larger effective size for each



5 10 15 20
0

5

10

15

20

25

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

 

 

Core
L1−I
L1−D
L2
M

2P−2L1ID−2L2−1M Proc. to proc. prob.: 0.7
Proc. to memory prob.: 0.3

5 10 15 20
0

5

10

15

20

25

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

 

 

Core
L1−I
L1−D
L2
M

2P−2L1ID−2L2−1MProc. to proc. prob.: 0.95
Proc. to memory prob.: 0.05

Fig. 3. The effects of processor-bound workloads on response time (ms) for 2P-2L1ID-2L2-1M for a varying number of jobsN for cache miss rates: L1-I
= 0.01, L1-D = 0.13, and L2 = 0.3

core. The results also indicate that the MM response time
could become a bottleneck for architectures with shared LLCs,
especially when the cache miss rates become high. Another
interesting observation is that shared LLCs could lead to
increased response time for processor cores as compared to the
private LLCs because of stalling or idle waiting of processor
cores for bottlenecks caused by the MM. Similar trends were
observed for processor-bound and memory-bound workloads.

For mixed workloads, the response time of the L2 for 4P-
4L1ID-2L2-1M is 1.2x less than 4P-4L1ID-4L2-1M and 1.1x
greater than 4P-4L1ID-1L2-1M when the L1-1, L1-D, and L2
cache miss rates are 0.0001, 0.05, and 0.2, respectively, and
N = 5. The MM response time for 4P-4L1ID-2L2-1M is 2.3x
less than 4P-4L1ID-1L2-1M whereas the MM response time
for 4P-4L1ID-2L2-1M and 4P-4L1ID-4L2-1M is the same
when the L1-1, L1-D, and L2 cache miss rates are 0.5, 0.7,
and 0.7, respectively, andN = 5. The response times for
the processor core and L1-I/D are comparable for the three
architectures (4P-4L1ID-4L2-1M, 4P-4L1ID-2L2-1M, and 4P-
4L1ID-1L2-1M). These results along with our other results
show that having LLCs shared by fewer cores (e.g., the L2
cache shared by two cores in our considered architecture) do
not introduce MM as a response time bottleneck whereas the
MM becomes the bottleneck as more cores share the LLCs,
especially for large cache miss rates.

We evaluated the effects of cache miss rates on throughput
for processor-bound workloads (Ppp = 0.9, Ppm = 0.1) for
2P-2L1ID-2L2-1M asN varies. Results reveal that there is no
apparent increase in processor core throughput asN increases
from 5 to 20 because processors continue to operate at a
utilization close to 1 when the L1-1, L1-D, and L2 cache miss
rates are 0.3, 0.3, and 0.3, respectively (similar trends were
observed for other cache miss rates). The MM throughput
increases by 4.67% (4.67% - 1.64% = 3.03% greater than
the mixed workloads) asN increases from 5 to 20 when
L1-1, L1-D, and L2 cache miss rates are 0.5, 0.7, and 0.7,
respectively. In this case, the MM percentage throughput
increase is greater for processor-bound workloads as compared
to mixed workloads because the MM is underutilized for
processor-bound workloads (e.g., a utilization of 0.519 for
processor-bound workloads as compared to a utilization of
0.985 for mixed workloads whenN = 5). However, the MM
absolute throughput for processor-bound workloads is lessthan
the mixed workloads (e.g., MM throughput of 38.5 Mbps for

processor-bound workloads as compared to a throughput of 73
Mbps for mixed workloads whenN = 5). Similar trends were
observed for memory-bound workloads and mixed workloads
for architectures with two or four cores with private and shared
LLCs (these throughput trends would continue as the number
of cores increases).

C. The Effects of Workloads on Performance

In this subsection, we present results describing the effects
of different workloads on the response time and throughput
performance metrics when the L1-1, L1-D, and L2 cache miss
rates are held constant. We discuss the effects of varying the
computing requirementsof these workloads. The computing
requirement of a workload signifies the workload’s demand
for processor resources, which depends on the percentage
of arithmetic, logic, and control instructions in the workload
relative to the load and store instructions. The computing
requirements of workloads are captured byPpp andPpm in
our model.

Fig. 3 depicts the effects of varying computing requirements
for processor-bound workloads on response time for 2P-
2L1ID-2L2-1M as N varies where the L1-I, L1-D, and
L2 cache miss rates are 0.01, 0.13, and 0.3, respectively.
The figure depicts that asN increases, the response time
for the processor core, L1-I, L1-D, L2, and MM increases
for all values ofPpp and Pmm. The figure shows that as
Ppp increases, the response time of the processor increases
whereas the response time of L1-I, L1-D, L2, and MM is
affected negligibly because of the processor-bound nature
of the workloads. For example, the processor response time
increases by 19.8% asPpp increases from 0.7 to 0.95 whenN
= 5. The response time of L1-I, L1-D, L2, and MM decreases
by 10.8%, 14.2%, 2.2%, and 15.2%, respectively, asPpp

increases from 0.7 to 0.95 whenN = 5 because an increase in
Ppp results in a decrease in memory requests, which decreases
the response time for the caches and MM.

We observe that the response time for the processor core,
L1-I, and L1-D for 2P-2L1ID-1L2-1M is very close (within
7%) to 2P-2L1ID-2L2-1M as the computing requirements of
the processor-bound workload varies. However, 2P-2L1ID-
1L2-1M provides a 21.5% improvement in L2 response time
and a 12.3% improvement in MM response time over 2P-
2L1ID-2L2-1M whenPpp = 0.7 and a 23.6% improvement
in L2 response time and a 1.4% improvement in MM



TABLE II
AREA AND PEAK POWER CONSUMPTION FOR MULTI-CORE

ARCHITECTURES.

Architecture Area (mm2) Power (mW )

2P-2L1ID-2L2-1M 0.8528 524.896

4P-4L1ID-4L2-1M 1.7064 1049.79

2P-2L1ID-1L2-1M 0.7823 470.5

4P-4L1ID-1L2-1M 1.4874 788.472

4P-4L1ID-2L2-1M 1.5658 941.232

response time whenPpp = 0.95. Similar trends were observed
for memory-bound and mixed workloads for architectures
with two or four cores containing private or shared LLCs.
These results indicate that the shared LLCs provide more
improvement in MM response time for comparatively less
compute-intensive processor-bound workloads.

We observed the effects of varying computing requirements
for processor-bound workloads on throughput for 2P-2L1ID-
2L2-1M as N varies. AsN increases, the throughput for
the processor core, L1-I, L1-D, L2, and MM increases for
all values ofPpp and Pmm. Furthermore, asPpp increases,
the throughput of the processor core increases whereas the
throughput of L1-I, L1-D, L2, and MM decreases because
of relatively fewer memory requests. For memory-bound
workloads, the processor core, L1-I, and L1-D throughput for
2P-2L1ID-2L2-1M and 2P-2L1ID-1L2-1M are comparable,
however, 2P-2L1ID-1L2-1M improves the L2 throughput by
106.5% and 111% whereas the MM throughput decreases by
126% and 121.2% whenPpm is 0.7 and 0.95, respectively.
Similar trends were observed for processor-bound and mixed
workloads for the architectures with two and four cores
containing private or shared LLCs.

D. Area and Power Consumption

In this subsection, we present area and worst-case (peak)
power consumption results for different multi-core embedded
architectures obtained using CACTI 6.5 [23] assuming a 45 nm
process. The core areas are calculated using Moore’s law and
the International Technology Roadmap for Semiconductors
(ITRS) specifications [24] (i.e., the chip area required forthe
same number of transistors reduces approximately by 1/2x
every technology node (process) generation).

Table II shows the area and peak power consumption for
different multi-core embedded architectures. These results do
not include MM area and power consumption to isolate area
and peak power consumption of the processor cores and
caches. This MM isolation from the results enables deeper
insights and a fair comparison for the embedded architectures
since we assume an off-chip MM that has the same size
and characteristics for all evaluated architectures. The results
show that 2P-2L1ID-2L2-1M requires 8.3% more on-chip
area and consumes 10.4% more power as compared to 2P-
2L1ID-1L2-1M. 4P-4L1ID-4L2-1M requires 8.2% and 12.8%
more on-chip area and consumes 10.3% and 24.9% more
power as compared to 4P-4L1ID-2L2-1M and 4P-4L1ID-1L2-
1M, respectively. These results reveal that the architectures
with shared LLCs become more area and power efficient as

TABLE III
AREA AND PEAK POWER CONSUMPTION OF THE ARCHITECTURAL

ELEMENTS FOR THE2P-2L1ID-2L2-1M.

Element Area (mm2) Power (mW )

Core 0.065 2.016

L1-I 0.11 135.44

L1-D 0.0998 79.76

L2 0.578 307.68

MM 34.22 3174.12

compared to the architectures with private or hybrid LLCs as
the number of cores in the architecture increases.

Table III shows the constituent area and peak power
consumption for the processor cores, L1-I, L1-D, L2, and
MM for 2P-2L1ID-2L2-1M. This area and power consumption
breakdown can be given similarly for other multi-core
embedded architectures and are omitted for brevity. The
results show that the MM consumes the most area and power
consumption followed by L2, L1-I, L1-D, and the processor
core. We observe that the shared L2 caches for 2P-2L1ID-
1L2-1M and 4P-4L1ID-1L2-1M require 14% and 24% less
area and consume 21.5% and 74% less power as compared to
the private L2 caches for 2P-2L1ID-2L2-1M and 4P-4L1ID-
4L2-1M, respectively. The hybrid L2 caches for 4P-4L1ID-
2L2-1M require 14% less area and consume 21.4% less power
as compared to the private L2 caches for 4P-4L1ID-4L2-1M
whereas the shared L2 cache for 4P-4L1ID-1L2-1M requires
8.7% less area and consumes 43% less power as compared
to the hybrid L2 caches for 4P-4L1ID-2L2-1M. These results
indicate that power-efficiency of shared LLCs improves as the
number of cores increases.

We emphasize that the workloads and cache miss rates have
a large influence on an architecture’s power consumption. For
example, higher cache miss rates lead to an increase in power
consumption because of more frequent requests to the power
hungry MM. The processor-bound workloads are likely to
consume less power than the mixed workloads, which in turn
consumes less power than the memory-bound workloads. The
power efficiency of processor-bound workloads stems from
the fact that workloads spend more time in power-efficient
processor cores as compared to the power hungry caches
and MM (as shown in the power breakdown of architectural
elements in Table III). Furthermore, power consumption of
an architecture increases as the number of jobs increases
because increased utilization restricts prolonged operation of
architectural elements (e.g., processor cores) in low-power
modes.

E. Performance per Watt

In this subsection, we present performance per watt results
for multi-core embedded architectures in terms of FLOPS/W
assuming 64-bit floating point operations. We observe that the
performance per watt delivered by the processor cores and
the L1-I and L1-D caches for these architectures are very
close (within 7%), however, L2 caches present interesting
results. The peak performance per watt for L2 caches is
11.8 MFLOPS/W and 14.3 MFLOPS/W for 2P-2L1ID-2L2-



1M and 2P-2L1ID-1L2-1M, respectively, when L1-I, L1-
D, and L2 cache miss rates are all equal to 0.3,Ppm

= 0.9, andN = 20. The peak performance per watt for
L2 caches is 7.6 MFLOPS/W, 9.2 MFLOPS/W, and 13.8
MFLOPS/W for 4P-4L1ID-4L2-1M, 4P-4L1ID-2L2-1M, and
4P-4L1ID-1L2-1M, respectively, when L1-I, L1-D, and L2
cache miss rates are all equal to 0.2,Ppm = 0.9, andN
= 20. These results indicate that architectures with shared
LLCs provide the highest LLC performance per watt followed
by architectures with hybrid LLCs and then private LLCs,
however, architectures with shared LLCs may potentially
introduce an MM response time bottleneck especially for
higher cache miss rates. Similar trends were observed for
processor-bound and mixed workloads.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we developed closed product-form queueing
network models for performance evaluation of multi-core
embedded architectures for different workload characteristics.
The performance evaluation results indicated that the
architectures with shared LLCs provided better cache response
time and MFLOPS/W than the private LLCs for all cache miss
rates especially as the number of cores increased. The results
also revealed the downside of shared LLCs indicating that the
shared LLCs are more likely to cause a main memory response
time bottleneck for larger cache miss rates as compared to
the private LLCs. The memory bottleneck caused by shared
LLCs may lead to increased response time for processor cores
because of stalling or idle waiting. However, results indicated
that the main memory bottleneck created by shared LLCs
can be mitigated by using a hybrid of private and shared
LLCs (i.e., sharing LLCs by a fewer number of cores though
hybrid LLCs consume more power than the shared LLCs and
deliver comparatively less MFLOPS/W. The area and power
consumption results for the multi-core embedded architectures
revealed that the multi-core architectures with shared LLCs
became more area and power efficient as compared to the
architectures with private LLCs as the number of processor
cores in the architectures increased.

In our future work, we plan to characterize the behavior of
benchmarks (i.e., whether processor-bound, memory-bound, or
mixed) and run these benchmarks on a multi-core simulator
with a different number of cores and cache configurations
for further verification of our queueing network modeling
approach. Future work also includes enhancing our queueing
theoretic model for performance evaluation of heterogeneous
multi-core embedded architectures.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
the National Science Foundation (NSF) (CNS-0953447 and
CNS-0905308). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
NSERC and the NSF.

REFERENCES

[1] J. Balfour, “Efficient Embedded Computing,” Ph.D. dissertation, EE
Department, Stanford Univ., May 2010.

[2] A. Fedorova, S. Blagodurov, and S. Zhuravlev, “ManagingContention
for Shared Resources on Multicore Processors,”Communications of the
ACM, vol. 53, no. 2, pp. 49–57, February 2010.

[3] D. Culler, J. Singh, and A. Gupta,Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, Inc.,
1999.

[4] J. Savage and M. Zubair, “A Unified Model for Multicore Architectures,”
in Proc. of ACM IFMT, Cairo, Egypt, November 2008.

[5] R. Sahner, K. Trivedi, and A. Puliafito,Performance and Reliability
Analysis of Computer Systems: An Example-Based Approach Using the
SHARPE Software Package. Kluwer Academic Publishers, 1996.

[6] R. Jain,The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, 1991.

[7] R. Kumar and et al., “Heterogeneous Chip Multiprocessors,”IEEE
Computer, vol. 38, no. 11, pp. 32–38, November 2005.

[8] M. Sabry, M. Ruggiero, and P. Valle, “Performance and Energy Trade-
offs Analysis of L2 On-chip Cache Architectures for Embedded MP-
SoCs,” in Proc. of IEEE/ACM GLSVLSI, Providence, Rhode Island,
USA, May 2010.

[9] J. Medhi,Stochastic Models in Queueing Theory. Academic Press, An
imprint of Elsevier Science, 2003.

[10] Intel, “Dual-Core Intel Xeon Processors LV and ULV for Embedded
Computing,” March 2011. [Online]. Available: ftp://download.intel.
com/design/intarch/prodbref/31578602.pdf

[11] O. Kwon, H. Bahn, and K. Koh, “FARS: A Page Replacement Algorithm
for NAND Flash Memory Based Embedded Systems,” inProc. of IEEE
CIT, Sydney, Australia, July 2008.

[12] L. Shi andet al., “Write Activity Reduction on Flash Main Memory via
Smart Victim Cache,” inProc. of ACM GLSVLSI, Providence, Rhode
Island, USA, May 2010.

[13] M. Reiser and S. Lavenberg, “Mean Value Analysis of Closed Multi-
chain Queueing Networks,”Journal of ACM, vol. 27, no. 2, pp. 313–322,
April 1980.

[14] K. Sevcik and I. Mitrani, “The Distribution of QueueingNetwork States
at Input and Output Instants,”Journal of ACM, vol. 28, no. 2, pp. 358–
371, April 1981.

[15] ARM7TDMI, “ATMEL Embedded RISC Microcontroller Core:
ARM7TDMI,” August 2011. [Online]. Available: http://www.atmel.com/

[16] ——, “ARM7TDMI Data Sheet,” August 2011. [Online]. Available:
http://www.atmel.com/

[17] TILERA, “Tile Processor Architecture Overview,” inTILERA Official
Documentation, Copyright 2006-2009 Tilera Corporation, November
2009.

[18] L. Yang and et al., “Online Memory Compression for Embedded
Systems,”ACM TECS, vol. 9, no. 3, pp. 27:1–27:30, March 2010.

[19] Freescale, “Cache Latencies of the PowerPC MPC7451,” August 2011.
[Online]. Available: http://cache.freescale.com/files/32bit/doc/appnote/
AN2180.pdf

[20] R. Min, W.-B. Jone, and Y. Hu, “Location Cache: A Low-Power L2
Cache System,” inProc. of ACM ISLPED, Newport Beach, California,
August 2004.

[21] Y. Chen andet al., “Accelerating Video Feature Extractions in CBVIR
on Multi-core Systems,”Intel Technology Journal, vol. 11, no. 4, pp.
349–360, November 2007.

[22] P. Jain, “Software-assisted cache mechanisms for embedded systems,”
Ph.D. dissertation, EECS Department, MIT, February 2008.

[23] CACTI, “An Integrated Cache and Memory Access Time, Cycle Time,
Area, Leakage, and Dynamic Power Model ,” August 2011. [Online].
Available: http://www.hpl.hp.com/research/cacti/

[24] ITRS, “International Technology Roadmap for Semiconductors,” August
2011. [Online]. Available: http://www.itrs.net/


