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Abstract—Phase-based tuning specializes a system’s tunable 

parameters to the varying runtime requirements of an 

application’s different phases of execution to meet optimization 

goals. Since the design space for tunable systems can be very 

large, one of the major challenges in phase-based tuning is 

determining the best configuration for each phase without 

incurring significant tuning overhead (e.g., energy and/or 

performance) during design space exploration. In this paper, we 

propose phase distance mapping, which directly determines the 

best configuration for a phase, thereby eliminating design space 

exploration. Phase distance mapping applies the correlation 

between a known phase’s characteristics and best configuration 

to determine a new phase’s best configuration based on the new 

phase’s characteristics. Experimental results verify that our 

phase distance mapping approach determines configurations 

within 3% of the optimal configurations on average and yields an 

energy delay product savings of 26% on average. 

Index Terms—Cache tuning, configurable architectures, 

configurable hardware, dynamic reconfiguration, phase-based 

tuning, energy savings. 

I. INTRODUCTION AND MOTIVATION 

Due to the pervasiveness of embedded systems, much 

research has focused on optimizations, such as improved 

performance and/or reduced energy consumption, to meet 

stringent design constraints imposed by physical size, battery 

capacity, cost, real-time deadlines, consumer market 

competition, etc. However, system optimization is challenging 

due to numerous tunable parameters (e.g., cache size, 

associativity and line size [20], replacement policy [22], issue 

width [2], core voltage and frequency [19], etc.), many of 

which tradeoff design constraints, such as size versus 

performance, resulting in very large design spaces with many 

Pareto optimal systems. The advent of multicore systems 

further compounds optimization challenges due to a potential 

exponential increase in the design space when considering 

dynamic core dependencies and interactions [16], which 

change during runtime based on the currently co-scheduled 

tasks. Therefore, in order to meet these increasing challenges 

for future systems, optimization methodologies must be highly 

scalable to large design spaces and must be dynamic in nature. 

Since applications have varying/dynamic requirements 

during execution (i.e., different phases of execution) [10][18], 

configurable/tunable hardware [5][20][22] enables dynamic 

adaptation to these requirements by specializing tunable 

parameters to the changing needs of the application. A phase is 

a length of execution where an application’s characteristics, 

such as cache misses, instructions per cycle (IPC), branch 

mispredictions, etc., and therefore application requirements, 

remain relatively stable. To identify phases, the application’s 

execution is broken into fixed or variable length intervals that 

are typically measured by the number of instructions executed. 

Phase classification [17][18] groups intervals with similar 

characteristics to form phases, using methods such as K-means 

clustering [13], Markov predictors [18], etc. Phase-based 

tuning evaluates the application’s characteristics and 

determines the best configuration (specific tunable parameter 

values) for each phase of execution to best meet design 

constraints. 

The interval length must be carefully defined in a phase-

based tuning approach. Intervals that are too long tend to have 

less stable characteristics, thus making it difficult to determine 

the phase’s best configuration. Intervals that are too short result 

in too frequent tuning, thus imposing significant accumulated 

tuning overhead in terms of energy and performance that may 

intrusively affect system operation/behavior. Since interval 

length selection is widely researched [6][18], and is thus not a 

focus of our work, we assume variable length intervals [6], 

which result in higher optimization potential [6]. 

A major challenge in phase-based tuning is determining the 

best configuration for each phase [10] without incurring 

significant tuning overhead. Most previous methods [20][22] 

physically explore the design space by executing different 

configurations, recording the configurations’ characteristics, 

and selecting the best configuration, however, this method 

incurs a large cumulative tuning overhead while executing 

inferior (non-optimal) configurations. To reduce tuning 



overhead, heuristics significantly prune the design space 

[7][8][16], however, these heuristics still execute inferior 

configurations and  incur tuning overhead. Analytical 

methods/models drastically reduce design space exploration by 

directly determining/calculating/predicting the best 

configuration based on the design constraints and application 

characteristics [4][9][15], however, most of these methods are 

either computationally complex (thus, adversely impacting 

performance and energy consumption) [4] or not dynamic (i.e., 

not phase-based) [9][15].  

In this paper, we focus on reducing the computational 

complexity and tuning overhead of dynamic phase-based 

tuning by directly determining the phases’ best configurations, 

with no design space exploration, using the correlations 

between a phase’s characteristics and the phase’s best 

configuration. We leverage these characteristic-to-

configuration correlations to determine the best configurations 

for new phases based on the new phase’s characteristics. We 

define the configuration distance as the difference between two 

configurations, where the distance is the number of different 

tunable parameter values between the two configurations, and 

we define the phase distance as the difference between the 

characteristics of two phases, where the difference is based on 

how disparate two phases’ characteristics are. Phase distance 

mapping uses the phase distance to calculate the configuration 

distance, and thus directly determines the new phase’s best 

configuration using configuration estimation. 

We exemplify and evaluate phase distance mapping using 

cache tuning for separate level one instruction and data caches. 

Cache tuning determines the best cache configuration in terms 

of total size, line size, and associativity for reduced energy 

consumption [8][10][20]. Results reveal that the phase distance 

correlates closely with the configuration distance and phase 

distance mapping can determine configurations within 3% of 

the optimal configurations and achieves an average energy 

delay product (EDP) savings of 26%. 

II. RELATED WORK 

Much previous work focuses on tuning configurable 

hardware to the best configuration for a particular application 

for reduced energy consumption and/or improved performance. 

Zhang et al. [20] proposed a configurable cache architecture 

that determined the Pareto optimal cache configurations trading 

off energy consumption and performance. Zou et al. [22] 

introduced a configuration management algorithm that 

searched the cache design space for the best configuration. 

Since each of these optimization methods physically explored 

the design space, these methods incurred tuning overhead.  

To reduce tuning overhead, several methods eliminated 

design space exploration. Gordon-Ross et al. [9] proposed a 

one-shot approach to cache configuration using a cache tuner 

that non-intrusively predicted the best cache configuration, 

without executing inferior configurations, using an oracle-

based approach [11]. However, the oracle hardware introduced 

significant tuning overhead and could only be used judiciously. 

Ghosh et al. [4] proposed a heuristic that used an analytical 

model to directly determine the cache configuration based on 

the designer’s performance constraints and application 

characteristics. However, the computational complexity of the 

analytical model still incurred overhead in terms of energy 

consumption and performance. While each of these 

optimization methods reduced the tuning overhead, these 

methods did not account for dynamically changing application 

characteristics (i.e., phases).  

To adhere to an application’s changing execution 

requirements, Hajimir et al. [10] proposed intra-task dynamic 

configuration that tuned a highly configurable cache on a per-

phase basis using a detailed cache model. Gordon-Ross et al. 

[5] investigated the benefits of phase-based tuning over 

application-based tuning (using one configuration for the entire 

run of the application) with respect to energy consumption and 

performance using a detailed cache model, and quantified the 

tuning overhead in terms of energy and performance due to 

write backs and cache flushing.  

Our work differs from previous phase-based tuning 

methods by using the correlation between phase distance and 

configuration distance to directly determine a phase’s best 

configuration, thereby eliminating design space exploration. 

Our method reduces tuning overhead and computational 

complexity by extending phase classification hardware to 

implement phase distance mapping, without incurring any 

significant hardware overhead. Furthermore, our work can be 

easily extended to optimize for multiple application 

characteristics using any tunable hardware. 

III. DESIGN SPACE AND PHASE TUNING 

ARCHITECTURE 

The design space contains all of the different 

configurations/combinations of the tunable parameter values. 

Our memory hierarchy consists of configurable, private, 

separate level one (L1) instruction and data caches. The 

configurable caches are based on Zhang et al.’s [20] highly 

configurable cache, which provides runtime-configurable total 

size, associativity, and line size using a small bit-width 

configuration register. Zhang’s configurable cache has served 

as the basis for several newer architectures [6][8] and can be 

easily extended to state of the art, more complex architectures, 

such as heterogeneous multicore systems [16].  

To evaluate phase distance mapping, we define a base 

cache configuration for comparison purposes. The base cache 

configuration, which is an average configuration representing 

typical embedded microprocessors [20] that might execute our 

experimental applications (Section 5), is an 8 Kbyte cache 

composed of four configurable banks, each of which can 

operate as a separate way (i.e., the base cache is a 4-way set 

associative cache), and a logical line size of 64 bytes. The 

configuration register provides configurable associativity by 

logically concatenating the ways, offering an 8 Kbyte direct-

mapped or 2-way set associative cache, and/or shutting down 

ways, offering a 4 Kbyte direct-mapped or 2-way set 

associative cache or a 2 Kbyte direct-mapped cache. All cache 

sizes offer a configurable line size of 16, 32, or 64 bytes by 

using a base, physical line size of 16 bytes and fetching 

additional physical cache lines for larger, logical line sizes. We 



refer the reader to [20] for additional configurable cache 

architectural details. Given these parameters, the design space 

contains eighteen different configurations, however, phase 

distance mapping can be applied to any design space.  

Figure 1 depicts our phase tuning architecture for a sample 

dual-core system. On-chip components include the processing 

cores that are connected to private, separate L1 instruction and 

data caches and the phase characterization hardware. Without 

loss of generalization, the level one caches are directly 

connected to off-chip main memory and, since this hierarchy 

implies that there is no dependence between the caches, the 

caches can be tuned independently. Phase characterization 

hardware includes a tuner, a phase classification module that 

classifies an application’s phases, a phase distance mapping 

module, which includes a lookup table, which stores the inputs 

to the configuration estimation algorithm, and a phase history 

table. The tuner orchestrates the phase characterization process 

(Section 4.1), which includes phase distance mapping. The 

phase distance mapping module implements the configuration 

estimation algorithm (Section 4.2) to determine a phase’s best 

configuration. After phase distance mapping determines a 

phase’s best configuration, the phase is designated as a 

characterized phase and is added to the phase history table, 

along with the phase’s best configuration. We note that in the 

case of our studied cache hierarchy, the best configuration 

stored in the phase history table represents both the best 

instruction and data cache configurations. Prior research using 

similar table structures showed that these structures have very 

little or no effect on overall system area, performance, and/or 

energy consumption [18], and the work proposed herein to 

incorporate phase distance mapping will not significantly 

increase/impact these overheads, however, in future work we 

will quantify these overheads. 

IV. PHASE DISTANCE MAPPING 

Phase distance mapping reduces tuning overhead by 

directly determining a phase’s best configuration by evaluating 

the correlation between the phase distance and the 

configuration distance. In this section, we elaborate on how this 

correlation is leveraged to determine a phase’s best 

configuration and present our algorithm for configuration 

estimation using phase distance mapping. Even though we 

exemplify phase distance mapping using cache tuning, we 

generalize our discussions for any tunable hardware and 

include cache tuning specifics when necessary. 

A. Correlating Phase Distance and Configuration Distance  

Phase classification groups intervals that show similar 

characteristics into phases such that a phase’s characteristics 

are relatively stable during the execution of that phase. As a 

result of this relative stability, the same configuration can be 

used for the phase’s duration. Therefore, our foundation for 

phase distance mapping is the hypothesis that the more 

disparate two phases’ characteristics are, the more disparate the 

phases’ best configurations are likely to be, enabling the 

mapping of the distance between phases to the distance 

between the best configurations.  

We calculate the phase distance based on the phase space, 

which is the set of all of an application’s distinct phases. Since 

phase classification is not the focus of this study, we assume 

that phase classification has already been applied to the 

application (using any arbitrary method, such as offline phase 

classification [17] or online runtime phase tracking and 

prediction [18]), which produces the application’s different 

phases and the phases’ characteristics. Since we study cache 

tuning and previous work showed that cache miss rates can 

accurately determine a phase’s characteristics [16], we classify 

the different phases using the phases’ cache miss rates. Since 

comparative cache evaluation is most effective when the caches 

have the same configuration, we gathered the phases’ cache 

miss rates for the base cache configuration (Section 3). 

Figure 2 illustrates phase characterization, which takes as 

input the classified phases and the phases’ characteristics, 

which are output from phase classification. One phase is 

designated as the base phase Pb. The base phase is the phase to 

which subsequent phases are compared to calculate the phase 

distance, and can be designated using one of two methods. 

Ideally, the base phase and the base phase’s best configuration 

should be determined at design time by the designer using any 

design space exploration method [17] and are input into the 

phase characterization process. Alternatively, the first executed 

phase can be designated as the base phase and the base phase’s 

best configuration can be determined at runtime using any 

runtime tuning method [8]. This runtime method eliminates 

designer effort, but may trade off accuracy and introduces 

additional tuning overhead. For our experiments, we 

determined the base phase’s best configuration by exhaustive 

search. 

When a phase Pi is executed, the first step in phase 

characterization is to search the phase history table for Pi. If Pi 

is in the phase history table, Pi has already been executed and 

the best configuration CPi has already been determined. The 

hardware is configured to CPi and phase Pi executes in CPi. If Pi 

is not in the phase history table, Pi is a new phase and the 

difference between Pi’s characteristics and the base phase’s 

characteristics  d (Pb, Pi) (i.e., the phase distance) is calculated. 
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Fig. 1.  Phase tuning architecture for a sample dual- cores core system 

 



The phase distance can be calculated using either a single 

phase characteristic or multiple phase characteristics. In this 

work, we use a single phase characteristic, the cache miss rate, 

to calculate d (Pb, Pi), by normalizing Pi’s instruction and data 

cache miss rates to Pb’s instruction and data cache miss rates. 

This normalization enables quick comparisons of disparate 

configurations’ miss rates. This single-characteristic method is 

suitable for tuning single components, such as private 

instruction and data caches that do not have dependencies. In 

systems with multiple tunable hardware or tunable component 

dependencies, a multi-characteristic method, such as one that 

evaluates the cache miss rates and IPC, provides a more 

holistic view of the phase characteristics and is the focus of our 

future work 

After the phase distance is calculated, the phase distance is 

used as input to configuration estimation. 

B. Configuration Estimation 

We empirically developed and refined the configuration 

estimation algorithm by studying the impact that the different 

configurations have on the phases’ characteristics. Since most 

embedded systems run single applications or a set of 

applications within the same domain, configuration estimation 

can be application domain-specialized with respect to the 

underlying tunable hardware. However, we point out that even 

though our configuration estimation is domain-specialized, the 

algorithm is generalized and can be easily adapted to different 

domains and tunable hardware. We generalized our 

configuration estimation algorithm to a variety of common 

embedded systems application domains, such as networking, 

image processing, cryptography, and data compression. 

However, since the majority of our studied applications 

involved image rotation (application details are presented in 

Section 5), we specialized the configuration estimation 

algorithm to an image processing domain by using a base phase 

from an image rotation application. 

Configuration estimation leverages the underlying tunable 

hardware by considering the impact of the different parameter 

values on the energy consumption and performance [20]. For 

example, direct-mapped caches consume less power per access 

than 4-way set associative caches since only one data array and 

one tag are read per access, rather than four data arrays and 

four tags. However, direct-mapped caches can have higher 

cache miss rates than set associative caches, resulting in more 

total energy consumption when considering the miss penalties 

in terms of stall time and power to access the next memory 

level(s). Even though increasing the cache associativity 

increases the power per access, the cache miss rate may 

decrease enough to result in an overall decrease in energy 

consumption. However, this concept suffers from diminishing 

returns as increasing the reduction in miss rate (i.e., increasing 

the set associativity) will eventually not outweigh the increase 

in power per access. Since this well-known trend is not isolated 

to cache parameters, configuration estimation must consider 

diminishing returns for all tunable parameters with similar 

trends. Our configuration estimation algorithm considers 

diminishing returns using threshold values for each tunable 

parameter.  A threshold value is the specific parameter value at 

which further increases in the parameter value may result in 

increased energy consumption or reduced performance. 

Algorithm 1 depicts the configuration estimation algorithm 

that the phase distance mapping module implements. The 

algorithm’s inputs are: the base phase’s best configuration in 

terms of cache size Cb, associativity Ab, and line size Lb; the 

configurable cache’s minimum and maximum sizes CMIN and 

CMAX, associativities AMIN and AMAX, and line sizes LMIN and 

LMAX, respectively; size, associativity, and line size threshold 

values CTHR, ATHR, and LTHR, respectively; distance windows R1, 

through R7; and the phase distance D. The algorithm outputs 

phase Pi’s determined best cache size, Ci, associativity Ai, and 

line size Li.  

We empirically determined the threshold cache size, 

associativity, and line size values as 8 Kbyte, 2-way, and 64 

byte, respectively. For example, Figure 3 illustrates how we 

determine the associativity threshold value in terms of EDP 

(Joule seconds) for three image rotation phases from our 

studied applications (Section 5 details the EDP calculation and 

application phases). In these results, the instruction cache 

configuration is arbitrarily fixed at the base configuration and 

the data cache associativity is varied while holding the data 

cache’s size and line size fixed at the base configurations. 

Since increasing the associativity from 1-way to 2-way results 

in a decrease in EDP and further increasing the associativity to 

4-way results in an increase in EDP, the associativity threshold 

value is 2. We similarly determined the size and line size 

threshold values. Even though this is an expected result for a 

simple trend, this empirical analysis can be used for any 

tunable parameter with any number of parameter values. Even 

though the threshold values can be generalized for any 

application domain, the specific threshold values will vary 

across different application domains due to different cache 
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Fig. 2.  Phase characterization 

 



locality behavior. Therefore, for configuration estimation to be 

most effective, the threshold values should be application 

domain-specialized. We note, however, that since our 

experiments considered phases from diverse application 

domains, we used generalized threshold values, which 

underestimate the effectiveness of our configuration estimation 

algorithm.    

Distance windows are phase distance ranges that represent 

the configuration’s distance from the base phase and represent 

Pi’s configuration distance from Pb when changing a 

parameter’s value to another value (e.g., increasing the 

associativity: Ab * 2). Each distance window has an upper and 

lower bound and a phase distance D maps to the distance 

window in which D is bounded by. For our experiments, we 

created distance windows using a base phase from an image 

rotation application and evaluated how the parameter values 

changed for the different phases’ optimal configurations 

(determined by an exhaustive search) with respect to the base 

phase’s configuration. The distance windows relate directly to 

all of the characteristics used to evaluate D and are applicable 

to all the tunable parameters represented by D.  For example, 

since we use the cache miss rate to evaluate D, the distance 

window bounds relate directly to the actual cache miss rate 

values and are applicable to all of the tunable parameters 

(cache size, associativity, and line size). We determined that 

the seven distance windows: R1 = [0,0.25], R2 = (0.25,0.5], R3  = 

(0.5,0.75], R4  = (0.75,1.25], R5 = (1.25,1.5], R6 = (1.5,2.5], and 

R7 = (2.5,∞]), sufficiently cover all the phase distances between 

the base phase and all of the other phases. The distance 

windows’ bounds represent the normalized difference between 

Pi’s and Pb’s cache miss rate. The phase distance D maps to 

these distance windows such that if 0 ≤ D < 0.25, D maps to R1, 

if 0.25 ≤ D < 0.5, D maps to R2, etc. In general, the number of 

distance windows can vary based on a system’s intended 

applications and the applications’ phases, the distance windows 

are specialized based on the evaluated characteristic (e.g., IPC), 

and if a multi-characteristic method is used for evaluating D, 

only one set of distance windows is necessary to represent all 

of the tunable parameters. 

For each phase Pi, the configuration estimation algorithm is 

executed twice, once for the instruction cache and once for the 

data cache.  First, the algorithm assigns initial values to Ci, Ai, 

and Li as Cb, Ab, and Lb, respectively (line 1), which represent 

default values for Ci, Ai, and Li. Default values are used 

because some configuration distances in some distance 

windows require no parameter value change for some 

parameters. Next, the algorithm determines which distance 

window the phase distance D maps to (line 2) and determines 

Pi’s best configuration based on the configuration distance for 

the corresponding distance window. If a distance window does 

not specify a change to a parameter value, then Ci, Ai, and Li 

remain as the default values.  For example, if phase P2 is the 

next phase to be executed and D = 1.08, the algorithm 

determines that D maps to distance window R4 (line 14), and 

determines Ci, Ai, and Li, based on the configuration distance 

for R4 (lines 15 – 19). 

V. EXPERIMENTAL RESULTS 

We evaluate phase distance mapping by comparing a 

system that switches to the best configurations, as determined 

by phase distance mapping, for each phase to a system fixed 

with the base cache configuration.  

A. Experimental Setup 

We selected sixteen workloads from the EEMBC 

Multibench benchmark suite [3], which is an extensive suite of 

multicore benchmarks that primarily target the embedded 

market and model a wide variety of realistic applications. Each 

Multibench workload is a collection of kernels working on a 

specific dataset. Our selected workloads covered diverse 

Inputs: CB, AB, LB, CMIN, CMAX, AMIN, AMAX, LMIN, LMAX, CTHR, ATHR, 

LTHR, R1, R2, R3, R4, R5, R6, R7 
 D = d (Pb, Pi) 

 

Outputs: CI, AI, LI  
 

1 CI = CB, AI = AB, LI = LB 

2 Switch (D) { 
3       Case R1, R2, R7:  

4           CI ← CTHR 

5           break 
6      Case R3:  

7           If CB == CMIN then 

8                CI ← CB * 2 

9           Else 

10                CI ← CTHR 

11           If AB = AMIN then 
12                AI ← AB * 2 

13           break 
14      Case  R4: 
15           CI ← CTHR 

16           If AB != AMAX then  

17                AI ← AB * 2 
18           If LB != LMIN then  

19                LI ← LB/2 

20           break 
21      Case R5: 

22           CI ← CTHR 
23           If AB = 1 then  

24                AI ← ATHR 

25           break 
26      Case R6: 

27           If CB != CMAX then 

28                CI ← CMAX/2 

29           break  

30 } 

Algorithm 1: Configuration estimation 

 
Fig. 3.  Associativity threshold value determination using diminishing return 

effects on the energy delay product for varying data cache 

associativities. 

 



processing tasks, such as image rotation for different 

colors/sizes, internet protocol (IP) packet checking, IP packet 

reassembly, transmission control protocol (TCP) processing, 

md5 message-digest algorithm checksum calculation, Huffman 

decoding, etc. Since each workload represents a specific 

compute kernel, without loss of generality, we assume that 

each workload represents a different phase, and simulate each 

phase/workload a single time to completion. 

To gather cache miss rates, we use GEM5 [1] to model a 

homogeneous dual core system with separate, private L1 

instruction and data caches. We use McPAT [14] to calculate 

the system’s total power consumption and evaluate the 

system’s energy efficiency using the EDP in Joule seconds: 

 

EDP = system_power * phase_running_time
2
 

 = system_power * (total_phase_cycles/system_frequency)
2
 

 

where system_power includes the core power and cache power, 

and total_phase_cycles is the total number of cycles to execute 

a phase to completion. Table I shows some of the system’s 

microarchitectural parameters that contribute to the EDP. 

We modeled phase distance mapping and automated our 

simulations using Perl scripts. 

B. Results 

Figure 4 (a) shows the EDP savings, as compared to the 

base configuration for the optimal configuration as determined 

using an exhaustive search (Optimal) and the best configuration 

as determined by phase distance mapping (PDM) for a single 

execution of each of the sixteen phases. Phase 1, which rotates 

sixteen 4-megapixel greyscale images 90 degrees clockwise, is 

used as the base phase. On average over all phases, phase 

distance mapping achieved an EDP savings of 26%, with 

savings as high as 47% for Phase 5, and was within 3% of the 

optimal configuration. 

To evaluate the effects that a different base phase has on the 

EDP savings, Figure 4 (b) shows the EDP savings, as 

compared to the base configuration, using Phase 7 as the base 

phase. Phase 7 executes Huffman decoding on seven datasets. 

On average over all phases, phase distance mapping achieved 

an average EDP savings of 22%, with savings as high as 38% 

for Phase 15, and was within 7% of the optimal configuration. 

Phase 8 had the lowest EDP savings (2%), as compared to the 

optimal (21%), because our algorithm selected a smaller line 

size than required. However, phase distance mapping still 

achieved some EDP savings over the base phase. Using Phase 

7 instead of Phase 1 as the base phase resulted in a 4% 

reduction in average EDP savings, while Phase 5’s EDP 

savings dropped by 15%. This reduction in average EDP 

savings is due to the fact that Phase 7 is the only phase that 

performs any type of data compression where as six of the 

phases perform image rotation. To verify this application-

domain dependence when designating a base phase, we used 

Phase 5, another image processing phase, as the base phase. 

For brevity, we omit the detailed results, but the results 

revealed that phase distance mapping using Phase 5 as the base 

phase achieved EDP savings that varied by less than 1% as 

compared to using Phase 1 as the base phase.  

These analyses reveal that the magnitude of savings is 

highly application-domain dependent, and that even though 

good savings can be achieved by using any base phase, 

carefully considering the application domain when designating 

the base phase can significantly increase the EDP savings. 

Designating the base phase for a small, application-domain-

specialized system with a small phase space can be done 

manually during design time, however, this manual designation 

is infeasible for large, general-purpose systems with a large 

phase space. For large systems, designers can use cluster 

analysis (e.g., k-means clustering [12] or graph-based models 

[21]) to partition the phase space into different domains, and 

the phase that most closely represents the largest cluster (most 

prominent domain) can be designated as the base phase. 

VI. CONCLUSION AND FUTURE WORK 

Phase-based tuning specializes a system’s configurations to 

varying runtime application characteristics to meet design 

constraints. One of the major challenges of phase-based tuning 

is determining the phases’ best configurations without 

incurring significant tuning overhead. In this paper, we 

proposed phase distance mapping, a phase-based tuning 

method that directly determines the best configuration for a 

phase with no design space exploration. On average, phase 

distance mapping determined configurations within 3% of the 

optimal configuration, with an average energy delay product 

(EDP) savings of 26%.  

Future work includes making the configuration estimation 

algorithm more adaptable to runtime application execution 

requirements and a wider variety of application domains, 

incorporating a feedback mechanism to improve the 

configuration estimation’s accuracy, and modeling more 

complex systems (e.g., heterogeneous cores with more tunable 

parameters). Additionally, we will quantify and evaluate the 

area, energy, and performance overheads of phase distance 

mapping. 

TABLE I.  CORE MICROARCHITECTURAL PARAMETERS 
 

Architectural Configuration 

Processing 

Cores 
2 

Clock Rate 2 GHz 

Functional 

Units 

2 IntAlu, 1 FPAlu, 1 

Mult/DivAlu 

Issue Width 1 

Physical 

Registers 
32 Int, 32 FP 

L1 Instruction and Data Caches 

Cache size 2 Kbyte – 8 Kbyte 

Associativity 1-way – 4-way  

Line size 16 byte – 64 byte 

TABLE II.   
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(a)       (b) 

Fig. 4.  EDP savings for the optimal configuration (Optimal) and the best configuration determined by phase distance mapping (PDM), as compared 

with the base configuration, when using (a) Phase 1 and (b) Phase 7 as the base phase. Phase distance mapping is also used to determine the 
configurations for the base phases, which shows the worst-case scenario for the base phases. 

 


