
Dynamic Phase-based Tuning for Embedded Systems

Using Phase Distance Mapping

Tosiron Adegbija and Ann Gordon-Ross*

Department of Electrical and Computer Engineering

University of Florida

Gainesville, Florida, USA

*Also with the Center for High Performance Reconfigurable

Computing (CHREC) at the University of Florida

tosironkbd@ufl.edu, ann@ece.ufl.edu

Arslan Munir

Department of Electrical and Computer Engineering

Rice University

Houston, Texas, USA

arslan@rice.edu

Abstract—Phase-based tuning specializes a system’s tunable

parameters to the varying runtime requirements of an

application’s different phases of execution to meet optimization

goals. Since the design space for tunable systems can be very

large, one of the major challenges in phase-based tuning is

determining the best configuration for each phase without

incurring significant tuning overhead (e.g., energy and/or

performance) during design space exploration. In this paper, we

propose phase distance mapping, which directly determines the

best configuration for a phase, thereby eliminating design space

exploration. Phase distance mapping applies the correlation

between a known phase’s characteristics and best configuration

to determine a new phase’s best configuration based on the new

phase’s characteristics. Experimental results verify that our

phase distance mapping approach determines configurations

within 3% of the optimal configurations on average and yields an

energy delay product savings of 26% on average.

Index Terms—Cache tuning, configurable architectures,

configurable hardware, dynamic reconfiguration, phase-based

tuning, energy savings.

I. INTRODUCTION AND MOTIVATION

Due to the pervasiveness of embedded systems, much

research has focused on optimizations, such as improved

performance and/or reduced energy consumption, to meet

stringent design constraints imposed by physical size, battery

capacity, cost, real-time deadlines, consumer market

competition, etc. However, system optimization is challenging

due to numerous tunable parameters (e.g., cache size,

associativity and line size [20], replacement policy [22], issue

width [2], core voltage and frequency [19], etc.), many of

which tradeoff design constraints, such as size versus

performance, resulting in very large design spaces with many

Pareto optimal systems. The advent of multicore systems

further compounds optimization challenges due to a potential

exponential increase in the design space when considering

dynamic core dependencies and interactions [16], which

change during runtime based on the currently co-scheduled

tasks. Therefore, in order to meet these increasing challenges

for future systems, optimization methodologies must be highly

scalable to large design spaces and must be dynamic in nature.

Since applications have varying/dynamic requirements

during execution (i.e., different phases of execution) [10][18],

configurable/tunable hardware [5][20][22] enables dynamic

adaptation to these requirements by specializing tunable

parameters to the changing needs of the application. A phase is

a length of execution where an application’s characteristics,

such as cache misses, instructions per cycle (IPC), branch

mispredictions, etc., and therefore application requirements,

remain relatively stable. To identify phases, the application’s

execution is broken into fixed or variable length intervals that

are typically measured by the number of instructions executed.

Phase classification [17][18] groups intervals with similar

characteristics to form phases, using methods such as K-means

clustering [13], Markov predictors [18], etc. Phase-based

tuning evaluates the application’s characteristics and

determines the best configuration (specific tunable parameter

values) for each phase of execution to best meet design

constraints.

The interval length must be carefully defined in a phase-

based tuning approach. Intervals that are too long tend to have

less stable characteristics, thus making it difficult to determine

the phase’s best configuration. Intervals that are too short result

in too frequent tuning, thus imposing significant accumulated

tuning overhead in terms of energy and performance that may

intrusively affect system operation/behavior. Since interval

length selection is widely researched [6][18], and is thus not a

focus of our work, we assume variable length intervals [6],

which result in higher optimization potential [6].

A major challenge in phase-based tuning is determining the

best configuration for each phase [10] without incurring

significant tuning overhead. Most previous methods [20][22]

physically explore the design space by executing different

configurations, recording the configurations’ characteristics,

and selecting the best configuration, however, this method

incurs a large cumulative tuning overhead while executing

inferior (non-optimal) configurations. To reduce tuning

overhead, heuristics significantly prune the design space

[7][8][16], however, these heuristics still execute inferior

configurations and incur tuning overhead. Analytical

methods/models drastically reduce design space exploration by

directly determining/calculating/predicting the best

configuration based on the design constraints and application

characteristics [4][9][15], however, most of these methods are

either computationally complex (thus, adversely impacting

performance and energy consumption) [4] or not dynamic (i.e.,

not phase-based) [9][15].

In this paper, we focus on reducing the computational

complexity and tuning overhead of dynamic phase-based

tuning by directly determining the phases’ best configurations,

with no design space exploration, using the correlations

between a phase’s characteristics and the phase’s best

configuration. We leverage these characteristic-to-

configuration correlations to determine the best configurations

for new phases based on the new phase’s characteristics. We

define the configuration distance as the difference between two

configurations, where the distance is the number of different

tunable parameter values between the two configurations, and

we define the phase distance as the difference between the

characteristics of two phases, where the difference is based on

how disparate two phases’ characteristics are. Phase distance

mapping uses the phase distance to calculate the configuration

distance, and thus directly determines the new phase’s best

configuration using configuration estimation.

We exemplify and evaluate phase distance mapping using

cache tuning for separate level one instruction and data caches.

Cache tuning determines the best cache configuration in terms

of total size, line size, and associativity for reduced energy

consumption [8][10][20]. Results reveal that the phase distance

correlates closely with the configuration distance and phase

distance mapping can determine configurations within 3% of

the optimal configurations and achieves an average energy

delay product (EDP) savings of 26%.

II. RELATED WORK

Much previous work focuses on tuning configurable

hardware to the best configuration for a particular application

for reduced energy consumption and/or improved performance.

Zhang et al. [20] proposed a configurable cache architecture

that determined the Pareto optimal cache configurations trading

off energy consumption and performance. Zou et al. [22]

introduced a configuration management algorithm that

searched the cache design space for the best configuration.

Since each of these optimization methods physically explored

the design space, these methods incurred tuning overhead.

To reduce tuning overhead, several methods eliminated

design space exploration. Gordon-Ross et al. [9] proposed a

one-shot approach to cache configuration using a cache tuner

that non-intrusively predicted the best cache configuration,

without executing inferior configurations, using an oracle-

based approach [11]. However, the oracle hardware introduced

significant tuning overhead and could only be used judiciously.

Ghosh et al. [4] proposed a heuristic that used an analytical

model to directly determine the cache configuration based on

the designer’s performance constraints and application

characteristics. However, the computational complexity of the

analytical model still incurred overhead in terms of energy

consumption and performance. While each of these

optimization methods reduced the tuning overhead, these

methods did not account for dynamically changing application

characteristics (i.e., phases).

To adhere to an application’s changing execution

requirements, Hajimir et al. [10] proposed intra-task dynamic

configuration that tuned a highly configurable cache on a per-

phase basis using a detailed cache model. Gordon-Ross et al.

[5] investigated the benefits of phase-based tuning over

application-based tuning (using one configuration for the entire

run of the application) with respect to energy consumption and

performance using a detailed cache model, and quantified the

tuning overhead in terms of energy and performance due to

write backs and cache flushing.

Our work differs from previous phase-based tuning

methods by using the correlation between phase distance and

configuration distance to directly determine a phase’s best

configuration, thereby eliminating design space exploration.

Our method reduces tuning overhead and computational

complexity by extending phase classification hardware to

implement phase distance mapping, without incurring any

significant hardware overhead. Furthermore, our work can be

easily extended to optimize for multiple application

characteristics using any tunable hardware.

III. DESIGN SPACE AND PHASE TUNING

ARCHITECTURE

The design space contains all of the different

configurations/combinations of the tunable parameter values.

Our memory hierarchy consists of configurable, private,

separate level one (L1) instruction and data caches. The

configurable caches are based on Zhang et al.’s [20] highly

configurable cache, which provides runtime-configurable total

size, associativity, and line size using a small bit-width

configuration register. Zhang’s configurable cache has served

as the basis for several newer architectures [6][8] and can be

easily extended to state of the art, more complex architectures,

such as heterogeneous multicore systems [16].

To evaluate phase distance mapping, we define a base

cache configuration for comparison purposes. The base cache

configuration, which is an average configuration representing

typical embedded microprocessors [20] that might execute our

experimental applications (Section 5), is an 8 Kbyte cache

composed of four configurable banks, each of which can

operate as a separate way (i.e., the base cache is a 4-way set

associative cache), and a logical line size of 64 bytes. The

configuration register provides configurable associativity by

logically concatenating the ways, offering an 8 Kbyte direct-

mapped or 2-way set associative cache, and/or shutting down

ways, offering a 4 Kbyte direct-mapped or 2-way set

associative cache or a 2 Kbyte direct-mapped cache. All cache

sizes offer a configurable line size of 16, 32, or 64 bytes by

using a base, physical line size of 16 bytes and fetching

additional physical cache lines for larger, logical line sizes. We

refer the reader to [20] for additional configurable cache

architectural details. Given these parameters, the design space

contains eighteen different configurations, however, phase

distance mapping can be applied to any design space.

Figure 1 depicts our phase tuning architecture for a sample

dual-core system. On-chip components include the processing

cores that are connected to private, separate L1 instruction and

data caches and the phase characterization hardware. Without

loss of generalization, the level one caches are directly

connected to off-chip main memory and, since this hierarchy

implies that there is no dependence between the caches, the

caches can be tuned independently. Phase characterization

hardware includes a tuner, a phase classification module that

classifies an application’s phases, a phase distance mapping

module, which includes a lookup table, which stores the inputs

to the configuration estimation algorithm, and a phase history

table. The tuner orchestrates the phase characterization process

(Section 4.1), which includes phase distance mapping. The

phase distance mapping module implements the configuration

estimation algorithm (Section 4.2) to determine a phase’s best

configuration. After phase distance mapping determines a

phase’s best configuration, the phase is designated as a

characterized phase and is added to the phase history table,

along with the phase’s best configuration. We note that in the

case of our studied cache hierarchy, the best configuration

stored in the phase history table represents both the best

instruction and data cache configurations. Prior research using

similar table structures showed that these structures have very

little or no effect on overall system area, performance, and/or

energy consumption [18], and the work proposed herein to

incorporate phase distance mapping will not significantly

increase/impact these overheads, however, in future work we

will quantify these overheads.

IV. PHASE DISTANCE MAPPING

Phase distance mapping reduces tuning overhead by

directly determining a phase’s best configuration by evaluating

the correlation between the phase distance and the

configuration distance. In this section, we elaborate on how this

correlation is leveraged to determine a phase’s best

configuration and present our algorithm for configuration

estimation using phase distance mapping. Even though we

exemplify phase distance mapping using cache tuning, we

generalize our discussions for any tunable hardware and

include cache tuning specifics when necessary.

A. Correlating Phase Distance and Configuration Distance

Phase classification groups intervals that show similar

characteristics into phases such that a phase’s characteristics

are relatively stable during the execution of that phase. As a

result of this relative stability, the same configuration can be

used for the phase’s duration. Therefore, our foundation for

phase distance mapping is the hypothesis that the more

disparate two phases’ characteristics are, the more disparate the

phases’ best configurations are likely to be, enabling the

mapping of the distance between phases to the distance

between the best configurations.

We calculate the phase distance based on the phase space,

which is the set of all of an application’s distinct phases. Since

phase classification is not the focus of this study, we assume

that phase classification has already been applied to the

application (using any arbitrary method, such as offline phase

classification [17] or online runtime phase tracking and

prediction [18]), which produces the application’s different

phases and the phases’ characteristics. Since we study cache

tuning and previous work showed that cache miss rates can

accurately determine a phase’s characteristics [16], we classify

the different phases using the phases’ cache miss rates. Since

comparative cache evaluation is most effective when the caches

have the same configuration, we gathered the phases’ cache

miss rates for the base cache configuration (Section 3).

Figure 2 illustrates phase characterization, which takes as

input the classified phases and the phases’ characteristics,

which are output from phase classification. One phase is

designated as the base phase Pb. The base phase is the phase to

which subsequent phases are compared to calculate the phase

distance, and can be designated using one of two methods.

Ideally, the base phase and the base phase’s best configuration

should be determined at design time by the designer using any

design space exploration method [17] and are input into the

phase characterization process. Alternatively, the first executed

phase can be designated as the base phase and the base phase’s

best configuration can be determined at runtime using any

runtime tuning method [8]. This runtime method eliminates

designer effort, but may trade off accuracy and introduces

additional tuning overhead. For our experiments, we

determined the base phase’s best configuration by exhaustive

search.

When a phase Pi is executed, the first step in phase

characterization is to search the phase history table for Pi. If Pi

is in the phase history table, Pi has already been executed and

the best configuration CPi has already been determined. The

hardware is configured to CPi and phase Pi executes in CPi. If Pi

is not in the phase history table, Pi is a new phase and the

difference between Pi’s characteristics and the base phase’s

characteristics d (Pb, Pi) (i.e., the phase distance) is calculated.

Processing core 1

Processing core 2

Main
Memory

Instruction cache

Data cache
L1

Instruction cache

Data cache
L1

Phase
history
table

Phase
classifi-
cation

module

Tuner

Phase characterization hardware

On-chip
components

Phase distance
mapping module

Lookup table

Fig. 1. Phase tuning architecture for a sample dual- cores core system

The phase distance can be calculated using either a single

phase characteristic or multiple phase characteristics. In this

work, we use a single phase characteristic, the cache miss rate,

to calculate d (Pb, Pi), by normalizing Pi’s instruction and data

cache miss rates to Pb’s instruction and data cache miss rates.

This normalization enables quick comparisons of disparate

configurations’ miss rates. This single-characteristic method is

suitable for tuning single components, such as private

instruction and data caches that do not have dependencies. In

systems with multiple tunable hardware or tunable component

dependencies, a multi-characteristic method, such as one that

evaluates the cache miss rates and IPC, provides a more

holistic view of the phase characteristics and is the focus of our

future work

After the phase distance is calculated, the phase distance is

used as input to configuration estimation.

B. Configuration Estimation

We empirically developed and refined the configuration

estimation algorithm by studying the impact that the different

configurations have on the phases’ characteristics. Since most

embedded systems run single applications or a set of

applications within the same domain, configuration estimation

can be application domain-specialized with respect to the

underlying tunable hardware. However, we point out that even

though our configuration estimation is domain-specialized, the

algorithm is generalized and can be easily adapted to different

domains and tunable hardware. We generalized our

configuration estimation algorithm to a variety of common

embedded systems application domains, such as networking,

image processing, cryptography, and data compression.

However, since the majority of our studied applications

involved image rotation (application details are presented in

Section 5), we specialized the configuration estimation

algorithm to an image processing domain by using a base phase

from an image rotation application.

Configuration estimation leverages the underlying tunable

hardware by considering the impact of the different parameter

values on the energy consumption and performance [20]. For

example, direct-mapped caches consume less power per access

than 4-way set associative caches since only one data array and

one tag are read per access, rather than four data arrays and

four tags. However, direct-mapped caches can have higher

cache miss rates than set associative caches, resulting in more

total energy consumption when considering the miss penalties

in terms of stall time and power to access the next memory

level(s). Even though increasing the cache associativity

increases the power per access, the cache miss rate may

decrease enough to result in an overall decrease in energy

consumption. However, this concept suffers from diminishing

returns as increasing the reduction in miss rate (i.e., increasing

the set associativity) will eventually not outweigh the increase

in power per access. Since this well-known trend is not isolated

to cache parameters, configuration estimation must consider

diminishing returns for all tunable parameters with similar

trends. Our configuration estimation algorithm considers

diminishing returns using threshold values for each tunable

parameter. A threshold value is the specific parameter value at

which further increases in the parameter value may result in

increased energy consumption or reduced performance.

Algorithm 1 depicts the configuration estimation algorithm

that the phase distance mapping module implements. The

algorithm’s inputs are: the base phase’s best configuration in

terms of cache size Cb, associativity Ab, and line size Lb; the

configurable cache’s minimum and maximum sizes CMIN and

CMAX, associativities AMIN and AMAX, and line sizes LMIN and

LMAX, respectively; size, associativity, and line size threshold

values CTHR, ATHR, and LTHR, respectively; distance windows R1,

through R7; and the phase distance D. The algorithm outputs

phase Pi’s determined best cache size, Ci, associativity Ai, and

line size Li.

We empirically determined the threshold cache size,

associativity, and line size values as 8 Kbyte, 2-way, and 64

byte, respectively. For example, Figure 3 illustrates how we

determine the associativity threshold value in terms of EDP

(Joule seconds) for three image rotation phases from our

studied applications (Section 5 details the EDP calculation and

application phases). In these results, the instruction cache

configuration is arbitrarily fixed at the base configuration and

the data cache associativity is varied while holding the data

cache’s size and line size fixed at the base configurations.

Since increasing the associativity from 1-way to 2-way results

in a decrease in EDP and further increasing the associativity to

4-way results in an increase in EDP, the associativity threshold

value is 2. We similarly determined the size and line size

threshold values. Even though this is an expected result for a

simple trend, this empirical analysis can be used for any

tunable parameter with any number of parameter values. Even

though the threshold values can be generalized for any

application domain, the specific threshold values will vary

across different application domains due to different cache

Phase characteristics

New phase?
Get config, CPi from phase

history table

Search phase history table
for Pi

Calculate phase distance,
d(Pi, Pb)

No

Yes

Configuration
estimation

Pi configuration,
CPi

Add Pi to phase history
table

Phase distance mapping

Input

Execute phase Pi with CPi

Phase Pi executed

Phase
classification

Base phase, Pb

Fig. 2. Phase characterization

locality behavior. Therefore, for configuration estimation to be

most effective, the threshold values should be application

domain-specialized. We note, however, that since our

experiments considered phases from diverse application

domains, we used generalized threshold values, which

underestimate the effectiveness of our configuration estimation

algorithm.

Distance windows are phase distance ranges that represent

the configuration’s distance from the base phase and represent

Pi’s configuration distance from Pb when changing a

parameter’s value to another value (e.g., increasing the

associativity: Ab * 2). Each distance window has an upper and

lower bound and a phase distance D maps to the distance

window in which D is bounded by. For our experiments, we

created distance windows using a base phase from an image

rotation application and evaluated how the parameter values

changed for the different phases’ optimal configurations

(determined by an exhaustive search) with respect to the base

phase’s configuration. The distance windows relate directly to

all of the characteristics used to evaluate D and are applicable

to all the tunable parameters represented by D. For example,

since we use the cache miss rate to evaluate D, the distance

window bounds relate directly to the actual cache miss rate

values and are applicable to all of the tunable parameters

(cache size, associativity, and line size). We determined that

the seven distance windows: R1 = [0,0.25], R2 = (0.25,0.5], R3 =

(0.5,0.75], R4 = (0.75,1.25], R5 = (1.25,1.5], R6 = (1.5,2.5], and

R7 = (2.5,∞]), sufficiently cover all the phase distances between

the base phase and all of the other phases. The distance

windows’ bounds represent the normalized difference between

Pi’s and Pb’s cache miss rate. The phase distance D maps to

these distance windows such that if 0 ≤ D < 0.25, D maps to R1,

if 0.25 ≤ D < 0.5, D maps to R2, etc. In general, the number of

distance windows can vary based on a system’s intended

applications and the applications’ phases, the distance windows

are specialized based on the evaluated characteristic (e.g., IPC),

and if a multi-characteristic method is used for evaluating D,

only one set of distance windows is necessary to represent all

of the tunable parameters.

For each phase Pi, the configuration estimation algorithm is

executed twice, once for the instruction cache and once for the

data cache. First, the algorithm assigns initial values to Ci, Ai,

and Li as Cb, Ab, and Lb, respectively (line 1), which represent

default values for Ci, Ai, and Li. Default values are used

because some configuration distances in some distance

windows require no parameter value change for some

parameters. Next, the algorithm determines which distance

window the phase distance D maps to (line 2) and determines

Pi’s best configuration based on the configuration distance for

the corresponding distance window. If a distance window does

not specify a change to a parameter value, then Ci, Ai, and Li

remain as the default values. For example, if phase P2 is the

next phase to be executed and D = 1.08, the algorithm

determines that D maps to distance window R4 (line 14), and

determines Ci, Ai, and Li, based on the configuration distance

for R4 (lines 15 – 19).

V. EXPERIMENTAL RESULTS

We evaluate phase distance mapping by comparing a

system that switches to the best configurations, as determined

by phase distance mapping, for each phase to a system fixed

with the base cache configuration.

A. Experimental Setup

We selected sixteen workloads from the EEMBC

Multibench benchmark suite [3], which is an extensive suite of

multicore benchmarks that primarily target the embedded

market and model a wide variety of realistic applications. Each

Multibench workload is a collection of kernels working on a

specific dataset. Our selected workloads covered diverse

Inputs: CB, AB, LB, CMIN, CMAX, AMIN, AMAX, LMIN, LMAX, CTHR, ATHR,

LTHR, R1, R2, R3, R4, R5, R6, R7
 D = d (Pb, Pi)

Outputs: CI, AI, LI

1 CI = CB, AI = AB, LI = LB

2 Switch (D) {
3 Case R1, R2, R7:

4 CI ← CTHR

5 break
6 Case R3:

7 If CB == CMIN then

8 CI ← CB * 2

9 Else

10 CI ← CTHR

11 If AB = AMIN then
12 AI ← AB * 2

13 break
14 Case R4:
15 CI ← CTHR

16 If AB != AMAX then

17 AI ← AB * 2
18 If LB != LMIN then

19 LI ← LB/2

20 break
21 Case R5:

22 CI ← CTHR
23 If AB = 1 then

24 AI ← ATHR

25 break
26 Case R6:

27 If CB != CMAX then

28 CI ← CMAX/2

29 break

30 }

Algorithm 1: Configuration estimation

Fig. 3. Associativity threshold value determination using diminishing return

effects on the energy delay product for varying data cache

associativities.

processing tasks, such as image rotation for different

colors/sizes, internet protocol (IP) packet checking, IP packet

reassembly, transmission control protocol (TCP) processing,

md5 message-digest algorithm checksum calculation, Huffman

decoding, etc. Since each workload represents a specific

compute kernel, without loss of generality, we assume that

each workload represents a different phase, and simulate each

phase/workload a single time to completion.

To gather cache miss rates, we use GEM5 [1] to model a

homogeneous dual core system with separate, private L1

instruction and data caches. We use McPAT [14] to calculate

the system’s total power consumption and evaluate the

system’s energy efficiency using the EDP in Joule seconds:

EDP = system_power * phase_running_time
2

 = system_power * (total_phase_cycles/system_frequency)
2

where system_power includes the core power and cache power,

and total_phase_cycles is the total number of cycles to execute

a phase to completion. Table I shows some of the system’s

microarchitectural parameters that contribute to the EDP.

We modeled phase distance mapping and automated our

simulations using Perl scripts.

B. Results

Figure 4 (a) shows the EDP savings, as compared to the

base configuration for the optimal configuration as determined

using an exhaustive search (Optimal) and the best configuration

as determined by phase distance mapping (PDM) for a single

execution of each of the sixteen phases. Phase 1, which rotates

sixteen 4-megapixel greyscale images 90 degrees clockwise, is

used as the base phase. On average over all phases, phase

distance mapping achieved an EDP savings of 26%, with

savings as high as 47% for Phase 5, and was within 3% of the

optimal configuration.

To evaluate the effects that a different base phase has on the

EDP savings, Figure 4 (b) shows the EDP savings, as

compared to the base configuration, using Phase 7 as the base

phase. Phase 7 executes Huffman decoding on seven datasets.

On average over all phases, phase distance mapping achieved

an average EDP savings of 22%, with savings as high as 38%

for Phase 15, and was within 7% of the optimal configuration.

Phase 8 had the lowest EDP savings (2%), as compared to the

optimal (21%), because our algorithm selected a smaller line

size than required. However, phase distance mapping still

achieved some EDP savings over the base phase. Using Phase

7 instead of Phase 1 as the base phase resulted in a 4%

reduction in average EDP savings, while Phase 5’s EDP

savings dropped by 15%. This reduction in average EDP

savings is due to the fact that Phase 7 is the only phase that

performs any type of data compression where as six of the

phases perform image rotation. To verify this application-

domain dependence when designating a base phase, we used

Phase 5, another image processing phase, as the base phase.

For brevity, we omit the detailed results, but the results

revealed that phase distance mapping using Phase 5 as the base

phase achieved EDP savings that varied by less than 1% as

compared to using Phase 1 as the base phase.

These analyses reveal that the magnitude of savings is

highly application-domain dependent, and that even though

good savings can be achieved by using any base phase,

carefully considering the application domain when designating

the base phase can significantly increase the EDP savings.

Designating the base phase for a small, application-domain-

specialized system with a small phase space can be done

manually during design time, however, this manual designation

is infeasible for large, general-purpose systems with a large

phase space. For large systems, designers can use cluster

analysis (e.g., k-means clustering [12] or graph-based models

[21]) to partition the phase space into different domains, and

the phase that most closely represents the largest cluster (most

prominent domain) can be designated as the base phase.

VI. CONCLUSION AND FUTURE WORK

Phase-based tuning specializes a system’s configurations to

varying runtime application characteristics to meet design

constraints. One of the major challenges of phase-based tuning

is determining the phases’ best configurations without

incurring significant tuning overhead. In this paper, we

proposed phase distance mapping, a phase-based tuning

method that directly determines the best configuration for a

phase with no design space exploration. On average, phase

distance mapping determined configurations within 3% of the

optimal configuration, with an average energy delay product

(EDP) savings of 26%.

Future work includes making the configuration estimation

algorithm more adaptable to runtime application execution

requirements and a wider variety of application domains,

incorporating a feedback mechanism to improve the

configuration estimation’s accuracy, and modeling more

complex systems (e.g., heterogeneous cores with more tunable

parameters). Additionally, we will quantify and evaluate the

area, energy, and performance overheads of phase distance

mapping.

TABLE I. CORE MICROARCHITECTURAL PARAMETERS

Architectural Configuration

Processing

Cores
2

Clock Rate 2 GHz

Functional

Units

2 IntAlu, 1 FPAlu, 1

Mult/DivAlu

Issue Width 1

Physical

Registers
32 Int, 32 FP

L1 Instruction and Data Caches

Cache size 2 Kbyte – 8 Kbyte

Associativity 1-way – 4-way

Line size 16 byte – 64 byte

TABLE II.

ACKNOWLEDGMENT

This work was supported by the National Science

Foundation (CNS-0953447). Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[1] N. Binkert, et. al, “The gem5 simulator,” Computer Architecture

News, May, 2011.

[2] D. Folegnani, “Energy-effective issue logic,” 28th Annual

International Symposium on Computer Architecture, 2001.

[3] S. Gal-On and M. Levy, “Measuring multicore performance,”

Computer, November, 2008.

[4] A. Ghosh and T. Givargis, “Cache optimization for embedded

processor cores: an analytical approach,” International

Conference on Computer Aided Design, November, 2003.

[5] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-based cache

reconfiguration for a highly-configurable two-level cache

hierarchy,” ACM Great Lakes Symposium on VLSI, May, 2008.

[6] A. Gordon-Ross and F. Vahid, “A self-tuning configurable

cache,” IEEE Design Automation Conference, July, 2007.

[7] A. Gordon-Ross, F. Vahid, and N. Dutt, “Automatic tuning of

two-level caches to embedded applications,” in Proceedings of

the Conference on Design, Automation and Test in Europe,

February, 2004.

[8] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-

cache tuning with a unified second level cache,” International

Symposium on Low Power Electronics and Design, August,

2005.

[9] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros,

“A one-shot configurable cache tuner for improved energy and

performance,” IEEE/ACM Design, Automation and Test in

Europe, April 2007.

[10] H. Hajimir and P. Mishra, “Intra-task dynamic cache

reconfiguration,” International Conference on VLSI Design,

January, 2012

[11] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant

network,” SIGCOMM, 2004.

[12] T. Kanungo, et. al, “An efficient k-means clustering algorithm:

Analysis and implementation,” IEEE Trans. Pattern Analysis

and Machine Intelligence, 2002.

[13] J. Lau, “Structures for phase classification,” International

Symposium on Performance Analysis of Systems and Software,

2004.

[14] S. Li, et. al, “McPAT: an integrated power, area, and timing

modeling framework for multicore and manycore architectures,”

42nd Annual IEEE/ACM International Symposium on

Microarchitecture, December, 2009.

[15] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, “A

one-shot dynamic optimization methodology for wireless sensor

networks,” International Conference on Mobile Ubiquitous

Computing, October, 2010.

[16] M. Rawlins and A. Gordon-Ross, “An application classification

guided cache tuning heuristic for multi-core architecture,” Asia

and South Pacific Design Automation Conference, January,

2012.

[17] T. Sherwood, E. Perelman, and B. Calder, “Basic block

distribution analysis to find periodic behavior and simulation

points in applications,” International Conference on Parallel

Architectures and Compilation Techniques, September, 2001.

[18] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and

prediction,” 30th International Symposium on Computer

Architecture, December, 2003.

[19] L. Tee, S. Lee, and C. Tsai, “A scheduling with DVS

mechanism for embedded multicore real-time systems,”

International Journal of Digital Content Technology and its

Applications, April, 2011.

[20] C. Zhang, F. Vahid and W. Najjar, “A highly-configurable cache

architecture for embedded systems,” 30th Annual International

Symposium on Computer Architecture, May 2003.

[21] Y. Zhou, H. Cheng, and J. Yu, “Graph clustering based on

structural/attribute similarities,” VLDB Endowment Journal,

August, 2009.

[22] X. Zou, J. Lei, and Z. Liu, “Dynamically reconfigurable cache

for low-power embedded system,” Third International

Conference on Natural Computation, August, 2007.

(a) (b)

Fig. 4. EDP savings for the optimal configuration (Optimal) and the best configuration determined by phase distance mapping (PDM), as compared

with the base configuration, when using (a) Phase 1 and (b) Phase 7 as the base phase. Phase distance mapping is also used to determine the
configurations for the base phases, which shows the worst-case scenario for the base phases.

