Design and Performance Analysis of Secure and
Dependable Cybercars: A Steer-by-Wire Case Study

Arslan Munir
Computer Science & Engineering Department
University of Nevada, Reno, NV, USA
Email: arslan@unr.edu

Abstract—The next generation of automobiles (also known
as cybercars) will increasingly incorporate electronic control
units (ECUs) in novel automotive control applications. Recent
work has demonstrated vulnerability of modern car control
systems to security attacks that directly impact the cybercar’s
physical safety and dependability. In this paper, we provide an
integrated approach for the design of secure and dependable
cybercars using a case study: a steer-by-wire (SBW) application
over controller area network (CAN). The challenge is to embed
both security and dependability over CAN while ensuring that
the real-time constraints of the cybercar applications are not
violated. Our approach enables early design feasibility analysis
by embedding essential security primitives (i.e., confidentiality,
integrity, and authentication) over CAN subject to the real-
time constraints imposed by the desired quality of service and
behavioral reliability. Our method leverages multi-core ECUs for
providing fault-tolerance by redundant multi-threading (RMT)
and also further enhances RMT for quick error detection. We
quantify the error resilience of our approach and evaluate the
interplay of performance, fault-tolerance, security, and scalability
for our SBW case study.

Keywords—Automotive embedded systems, multi-core, security,
dependability, fault-tolerance, x-by-wire, steer-by-wire

I. INTRODUCTION AND MOTIVATION

Modern cars consist of more than 100 electronic control
units (ECUs) to implement various distributed control
applications. The next generation of automobiles (also known
as cybercars) will further escalate the proliferation of ECUs to
enable new and exciting control and infotainment applications.
The most prevalent protocol for communication among the
ECUs in these distributed control applications is controller
area network (CAN), which has already been implemented
in billions of devices and long-lived transportation systems,
and thus likely to stay for many years to come. Emerging
automotive distributed control applications include x-by-
wire, e.g., break-by-wire, steer-by-wire (SBW), where the
electronic controllers substitute the traditional mechanical
and/or hydraulic systems.

The realization of emerging cybercar applications require
addressing dependability and security issues. The cybercar
applications have stringent dependability requirements as
stipulated by ISO 26262 [1], which require tolerance of
at least one critical fault without loss of functionality [2].
Meeting these cybercar dependability requirements poses
various challenges. Harsh operating environments coupled
with external noise and radiation render automotive electronic
systems vulnerable to permanent and transient faults. While

Farinaz Koushanfar
Electrical & Computer Engineering Department
Rice University, Houston, TX, USA
Email: farinaz@rice.edu

permanent faults can impair or stop the correct functionality
of the system, soft errors induced by transient faults
can remarkably reduce system availability. Furthermore,
automotive electronic components are susceptible to security
vulnerabilities. Since CAN messages are transmitted in plain-
text format, intruders may be able to gain access and even
alter the CAN messages creating security threats. These
security threats are exacerbated by the increasing integration of
cybercar applications with external entities such as consumer
electronics, other vehicles, and networks.

The cyber-physical attributes of modern automotive
systems directly couple security vulnerabilities to the
cybercar’s physical safety and dependability: an attacker who
is able to infiltrate any ECU can potentially circumvent
many safety-critical systems while completely ignoring the
driver input [3]. Simultaneous integration of security and
dependability in cybercars is challenging. The biggest
challenge in the simultaneous integration of security and safety
is to avoid violation of the cybercar application’s hard real-
time constraints. Timeliness (meeting timing constraints) is
perceived as the system’s quality of service (QoS), commonly
considered as a performance measure. We emphasize that the
system’s QoS must be considered as a dependability measure
that can impact the system’s availability and safety, beyond
a certain critical threshold as the driver can totally lose the
control of his/her car beyond that critical threshold [4].

The security vulnerabilities and dependability requirements
of cybercars warrant inclusion and performance analysis
of security and dependability approaches for safety-critical
applications. Although earlier work in automotive systems has
addressed certain aspects of security and dependability (e.g.,
[4], [5]), the interplay between performance, security, and
safety has not yet been explored. To overcome the limitations
of earlier work, we provide a new comprehensive approach to
the design and analysis of secure and dependable cybercars
with SBW application as a case study. Our main technical
contributions are as follows:

e A novel integrated approach that enables early design
phase feasibility and performance analysis for devising
secure and dependable cybercars. The approach is
demonstrated on a SBW application case study.

e Embedding and analyzing security primitives over
CAN while adhering to the stringent real-time
constraints for safety-critical cybercar applications.
In our analysis, we exploit advanced encryption
standard (AES) for providing message confidentiality

and hash-based message authentication code (HMAC)
for ensuring message authenticity and integrity.

e Proposal to include multi-core ECUs (instead of
conventional single-core ones) to meet the fault-
tolerance (FT) requirements (one permanent and
multiple soft-errors) under stringent cost and real-time
constraints by redundant multi-threading (RMT). We
denote this FT approach by FT-RMT.

e Further enhancement of the RMT by exploiting quick
error detection (QED) [6]. We denote this enhanced
FT approach by FT-RMT-QED.

e Quantification of the error resilience of our approach
by calculating the number of tolerable computational
and transmission errors that are manifested as response
time variations under the stringent QoS constraints.

e Analyzing the scaling properties of our secure and
dependable SBW system under different CAN bus
load conditions and message priority assignments.

The scope of this work is to ensure that simultaneous
integration of security and dependability primitives in
cybercars does not violate stringent real-time constraints
imposed by the desired QoS. Although our proposed approach
leverages existing security and dependability techniques,
cardinal novelty of our work lies in the simultaneously
integration of both dependability and security, and the
performance and feasibility analysis of our integrated approach
over CAN. The evaluation metric for our feasibility analysis
is response time, which is constrained by the desired QoS.

II. RELATED WORK

Security for automotive embedded systems has been
studied in literature. Checkoway et al. [7] analyzed the external
attack surface of a modern automobile. The authors discovered
that remote exploitation is possible via a broad range of attack
vectors such as mechanics tools, CD players, bluetooth, and
cellular radio. Chavez et al. [5] incorporated confidentiality
service in CAN based on RC4. However, the authors did
not consider FT aspects or CAN message priorities while
analyzing the security over CAN.

Several earlier works explored dependability for
automotive embedded systems. Baleani et al. [8] discussed
various FT architectures for automotive applications including
lock-step dual processor architecture, loosely-synchronized
dual processor architecture, and triple modular redundant
architecture. Although, the authors compared various FT
architectures’ costs based on the area estimates, the study did
not quantify the architectures’ FT capabilities subject to real-
time constraints. Salewski et al. [9] compared fault-handling
measures for microcontrollers and field-programmable gate
arrays (FPGAs). However, the work did not study FT
for distributed applications where both computation and
communication errors affect dependability.

Zeng et al. [10] computed the probability distribution
of CAN message response times using statistical analysis
when only partial information about the functionality and
architecture of a vehicle was available. Although the statistical
model can predict CAN message response times, however,
many parameters required by the model, such as queueing
lengths and the time between consecutive higher priority

message bursts, are difficult to determine. Additionally, the
limitation of statistical methods for high-priority messages
motivated us for rigorous simulations of SBW systems to
provide better response time estimates than the statistical
methods.

Previous work investigated automotive x-by-wire systems
for future cybercars. Schweppe et al. [11] studied an
active braking system assisted by vehicle-2-X communication.
Wilwert et al. [4] presented an approach for evaluating
the temporal performance and behavioral reliability of an
SBW system considering the delay variation introduced
by network transmission errors. The authors evaluated the
maximum tolerable system response time and the impact of
this response time on QoS for a time division multiple access
communication protocol. However, the work considered only
communication transmission errors and not the computational
errors in ECUs. Furthermore, the authors did not consider
the system vulnerability to security attacks. In our work,
we consider security overhead while analyzing the system
response time. Moreover, the previous work did not analyze
the scalability aspects whereas our work analyzes the SBW
system’s response time under different load conditions and
message priority assignments.

III. A DEPENDABLE AND SECURE APPROACH FOR
CYBERCAR DESIGN

The design of secure and dependable cybercars is
challenging because of limited resource budgets (e.g., memory
and processing, bandwidth, cost) and real-time constraints.
In particular, the inclusion of dependability and security
primitives, and protocols must not violate the real-time
constraints. The scope of our approach is confined to error
detection and correction for dependability, and to provide
confidentiality, integrity, and authentication for security.
Fig. 1 provides an overview of our dependable and secure
approach for cybercar design. The figure shows the operations
involved at both the sending and receiving CAN nodes to
ensure dependability and security. This section elaborates the
dependability and security primitives adopted in our approach.

A. Dependability

To assist the design and production of safe automotive
systems, International Organization for Standardization (ISO)
has developed a functional safety standard, viz., ISO 26262 [1].
Current automotive systems consist of single-core ECUs that
are unable to meet the FT requirements of cybercars as outlined
in ISO 26262. To exploit the technological advancements in
silicon and accompanied low-cost of single-chip solutions,
our approach leverages multi-core ECUs to provide FT.
Our approach considers a generic dual-core architecture
that meets the low cost as well as flexibility requirements
since the architecture can adapt to various performance
and FT requirements for an application. We point out that
the dependability approaches based on specific hardware
architectures such as lock-step dual processor architecture are
expensive as compared to the generic dual-core architectures
and offer limited flexibility.

We explore two FT approaches leveraging RMT on
the dual-core architecture. The first one is FT-RMT, which
executes safety-critical computations on redundant threads and

FT-RMT: Fault-Tolerance by RMT
Sending CAN Node FT-RMT-QED: Fault-Tolerance by
RMT with QED
SHA-2: Secure Hash Algorithm-2
AES: Advanced Encryption Standard

Receiving CAN Node

Message M

SHA-2-based HMAC
[HMACR(M)]

CAN Bus

[AES Block 3| |AES Block 2] |AES Block 1|

i AES Formatting of
Decryption M & HMAC

y

—>| HMACSs(M) |—>| COmparatorl

M: Message
CAN: Controller Area Network
HMAC: Hash-Based Message
Authentication Code
ECU: Electronic Control Unit
RMT: Redundant Multi-Threading HW: Hand Wheel
QED: Quick Error Detection FAA: Front Axle Actuator

Dual-Core ECU

FT-RMT/FT-RMT-QED _ -
M's Integrity M has lost .
confirmed Integrity E

Dual-Core ECU

Fig. 1: A dependable and secure approach for cybercar design.

detects an error at the end of the computation if there is
a mismatch between the two threads’ output. The second
approach is FT-RMT-QED that enhances FT-RMT with QED
[6]. In the FT-RMT-QED, the main thread executes original
instructions and check instructions, which are inserted at
different points in the program/computation, whereas another
thread executes duplicated instructions. When an error is
detected earlier by FT-RMT-QED rather than at the end of
the computation, the erroneous computation is aborted, and
the computation is restarted to obtain an error-free result.
Error detection latencies in the FT-RMT-QED approach are
configurable and can range from a few cycles to a few
thousand cycles depending on the desired tradeoff between
error detection latency and complexity (i.e., additional software
modifications to incorporate QED checks).

Our FT approaches on dual-core ECUs can tolerate one
permanent fault and multiple soft-errors. Multiple soft-errors
are tolerated as our approach recomputes the result on a soft-
error detection at any point in the program, and repeats this
re-computation process until an error-free result is obtained.
A major advantage of both the FT-RMT and the FT-RMT-
QED approaches is that the methods are self-checking, i.e.,
they do not require a separate golden response created through
simulation.

B. Security Threat Model

In order to better elucidate our security approach, we
characterize the likely capabilities of an adversary aiming to
infiltrate automobile’s internal networks (e.g., CAN, FlexRay).
Modern automobiles provide several interfaces, such as on-
board diagnostics port (OBD-II), entertainment systems (e.g.,
CD, USB, iPod), and short range or long range wireless access,
that provide direct or indirect access to automobile’s internal
networks [7]. Assuming that the adversary has gained access
to the car’s internal networks either directly or indirectly, this
section summarizes briefly the associated security threat model
against which our approach provides resilience.

Threat 1—Passive Eavesdropping & Traffic Analysis: An
adversary can sniff and store all the traffic in a car’s internal
network.

Threat 2—Active Eavesdropping & Message Injection:
An adversary can generate any chosen message as well as
modify the contents of a message.

We reemphasize that current automotive protocols do not
incorporate any security primitives to countermeasure the
above mentioned threats. Threats 1 and 2 are possible in
the absence or possible breaking of data confidentiality and
integrity over automotive internal networks. These threats
expose the automobile to severe vulnerabilities as the adversary
can potentially circumvent many safety-critical systems (e.g.,
brakes, engine, lights, locks) while completely ignoring the
driver’s input [3].

C. Security

To countermeasure the threats presented in Section III-B,
our approach provides confidentiality, integrity, and
authentication for CAN messages. To minimize the encryption
overhead while providing adequate security for CAN message
lifetimes, we leverage AES-128 (128-bit) encryption to
provide confidentiality and an HMAC based on SHA-2/SHA-
256 (Secure Hash Algorithm-2) to render integrity and
authenticity. The SHA-2-based HMAC module implements
SHA-256 algorithm that takes the message M as input at the
sending CAN node and outputs 256 bits, which is known as
the message digest. The 256-bit HMAC HM ACs(M) and the
message M are given as input to the AES encryption module,
which encrypts the message and H M ACs(M). Our approach
assumes that initial AES and HMAC keys are stored in secure
tamper resistant memories of participating ECUs by original
equipment manufacturers (OEMs). Furthermore, the AES
and HMAC keys are updated/refereshed deterministically
over time by participating ECUs as is done in transport
layer security (TLS) [12]. Our approach for providing
confidentiality, integrity, and authentication is inspired by
secure sockets layer (SSL) [12]. Hence, confidentiality,
integrity, and authentication can be added to a message M as

OIL{,S = calc [HMACS(M)]
+ Encrypt po [M + HMACs(M)] (1)

where function calc () denotes calculation of HM ACs(M)
of the message M by the sending node S, and O s
denotes operations at the sending CAN node S that include
encryption of the message M and the HM ACg(M) using
AES algorithm.

To determine the storage bits required for the O g
operation, let us consider an 8-byte CAN message. Hence,
M+ HMAC(M) = 64 + 256 bits = 320 bits. The encryption
of these 320 bits require three 128-bit AES blocks. The first

two AES blocks encrypt the first 256 bits whereas the third
AES block encrypts the remaining 64 bits padded by a 1
bit followed by 0 bits to make the block length of 128
bits (padding in hexadecimal looks like 0x80,0x00,. . .,0x00).
The transfer of 384 bits (3 AES blocks) of the encrypted
message requires 384/64 = 6 CAN message frames. Hence,
an unencrypted 8-byte CAN message requires six 8-byte CAN
messages on encryption. We propose to use packet sequence
number (ranging from zero to five) of an encrypted message
in the three most significant bits of the data field of each
CAN frame. This packet sequence number would help in
the message assembling and for retransmission request of an
erroneous frame in case of transmission errors.

Eq. (1) summarizes the operations at the sending CAN
node, however, additional comparison instructions are required
to implement our FT approaches. For instance, the FT-RMT-
QED requires comparison instructions to compare the threads’
output for error detection. The operations at the sending CAN
node for the FT-RMT-QED can be given as

Offs ™MT9P = cale™ =12 [HMACE: (M)
+ Eneryptits voa, |M + HMACE Y =2 ()] @)

where HM ACYE (M) denotes the HMAC calculated by thread
T; Vi=1,2 at the sending CAN node.

Fig. 1 shows that the receiving CAN node consists of
the following modules: AES decryption module, formatting
module, SHA-2-based HMAC module, and a comparator
module. The AES decryption module decrypts the received
CAN frames. The formatting module operates on the decrypted
CAN frames to retrieve the message M and HM ACg(M).
SHA-2-based HMAC module calculates the HMAC of the
received message HM ACRr(M). To verify the integrity and
authenticity of the received message, the comparator module
at the receiving CAN node compares HM ACs(M) with
HMACRr(M). If HMACs(M) is equal to HMACR(M),
then the received message is authentic otherwise the message
has lost its integrity. The operations at the receiving CAN node
can be summarized as

Omr = Decryptypg (M + HMACs(M)]
+ format[M + HM ACs(M)] + HM ACRr(M)
+ comp [HM ACs, HM ACR] 3)

where Ojps r denotes the message decryption along with
the associated operations performed at the receiving CAN
node to verify the received message’s integrity. The function
format () denotes the formatting/extraction of message M
and HMACs(M) from the received CAN frames, and the
function comp () denotes the comparison of HM ACg(M)
with HM ACRr(M). Equations describing the operations at the
receiving CAN node (similar to Eq. (2) for the sending CAN
node) for FT-RMT and FT-RMT-QED can be written based on

Eq. (3).

Our security approach provides resilience against the
security threat model described in Section III-B. There is
currently no known analytical attack against AES and a brute-
force attack leveraging a supercomputer (10.51 petaFLOPS)
would require 1 billion billion (10'®) years to crack the
128-bit AES key [13]. There are also currently no known

Hand Wheel
(HW)

HW Sensors

HW HW

— hws1|:| hws2|:| hws3 Motor 1 Motor 2

HW ECU1

(o]

—— Point-to-Point Link

Unit (Dual-Core)
FAA: Front Axle Actuator

FAA FAA
Motor 1 Motor 2

fas1 |:| fas2 |:| fas3 t|

Front Axle Sensors

Fig. 2: Steer-by-wire operational architecture.

collisions or attacks against SHA-2. With reference to threat
1, an adversary may eavesdrop on traffic but the adversary
cannot decrypt the packets without knowledge of the key.
Our approach completely eliminates threat 2 because SHA-2-
based HMAC not only prevents insertion of forged messages
but also prohibits message modifications. Refreshing of AES
and HMAC keys over time by ECUs in our approach further
prevents replay attacks.

IV. STEER-BY-WIRE SYSTEM

An SBW system provides various advantages over
mechanical steering systems that motivate the adoption of
SBW systems for cybercars. An SBW system eliminates the
risk of steering column entering the cockpit in the event of a
frontal crash and thus enhances safety. Since steering column
is one of the heaviest components in the vehicle, removing
the steering column reduces the weight of the vehicle and
therefore lessens fuel consumption. SBW systems enhance
driver comfort by providing a variable steering ratio. This
section elaborates our SBW case study that leverages dual-core
ECUs to incorporate dependability and security primitives.

A. Steer-by-wire operational architecture

Fig. 2 depicts the SBW architecture that we consider for
our case study. The architecture provides FT by redundancy
at ECU-level, sensor-level, and actuator level. The architecture
consists of two dual-core hand wheel ECUs (HW ECU1 and
HW ECU2) and two dual-core front axle actuator ECUs (FAA
ECU1 and FAA ECU2). Each of the ECUs is connected to the
CAN bus. Our SBW architecture consists of three hand wheel
sensors (hwsl, hws2, and hws3) that are placed near the hand
wheel to measure the driver’s requests in terms of hand wheel
angle, hand wheel torque, and the hand wheel speed. Similarly,
three front axle sensors (fasl, fas2, and fas3) measure the
front axle position. Both the hand wheel sensors (the front
axle sensors) are connected to the HW ECUs (FAA ECUs)
by point-to-point links. Two front axle actuator (FAA) motors
(FAA motor 1 and FAA motor 2) operate in active redundancy
on the front axle while two hand wheel (HW) motors (HW
motor 1 and HW motor 2) operate in active redundancy on
the hand wheel.

An SBW system aims to provide two main services [2]:
1) Front axle control (FAC) that controls the wheel direction

in accordance with the driver’s request, and 2) Hand wheel
force feedback (HWF) that provides a mechanical-like force
feedback to the hand wheel.

1) Front axle control function: The front axle control
(FAC) function computes the orders that are given to the
front axle motor(s) according to the state of the front axle
and the driver’s requests obtained through the hand wheel.
The three HW sensors (hwsl, hws2, and hws3) measure
the driver’s requests and send these measurements to HW
ECU1. The HW ECUI cores operate either in the FT-
RMT or the FT-RMT-QED mode to perform the necessary
filtering and computations on the sensed input. After the
necessary computations, HW ECU1 cores format the computed
orders/signals in CAN message format, calculate message’s
HMAC to provide integrity, and perform encryption of the
message and the associated HMAC to provide confidentiality.
The encrypted messages are sent by the HW ECUl CAN
controllers on the CAN bus to the FAA ECU1. The FAA ECU1
placed behind the front axle consumes this data as well as the
last wheel position to determine the commands for the FAA
motor 1 and 2.

2) Hand wheel force feedback function: The hand wheel
force feedback (HWF) function computes the orders that are
given to the hand wheel motor(s) according to the speed of the
vehicle, the front axle position, and the front tie rod force. The
three front axle sensors (fasl, fas2, and fas3) send the sensed
front axle position to the FAA ECU2. The FAA ECU2 cores
perform the necessary computations, format the computed
signals/values in CAN message format, calculate HMAC, and
perform encryption of the message and the associated HMAC.
The FAA ECU2 CAN controller sends the encrypted messages
on the CAN bus, which are then consumed by the HW ECU2
to compute the commands for HW motor 1 and 2 to provide
the necessary force feedback to the HW.

B. QoS and Behavioral Reliability

An SBW system is sensitive to the delay from the driver’s
request at the hand wheel to the reception of the request by the
front axle actuators. This end-to-end delay/response time 7.
is perceived as the QoS, and can impact availability and safety
in the worst case if exceeded beyond a critical threshold T, ..
The behavioral reliability is defined as the probability that
the worst-case response time is less than the critical threshold
[4]. Automotive OEMs determine 7,,,, by Matlab/Simulink
simulations and vehicle tests. The impact of T;..; variation on
vehicle’s performance and stability can be evaluated in terms
of a QoS score, denoted by S, determined by the time required
to reach the desired position and stability. There exists a linear
relation between S and the perturbation time (response time)
for instantaneous rotation of handwheel. Research reveals that
with a minimum tolerable S of 11.13, the critical limit 7,4,
for the response time is 11.5 ms [4] beyond which the vehicle
becomes unstable and the safety of the driver can be at risk.

In the following, we analytically model the response time
for the SBW functions. We also model the error resilience
provided by our adopted FT approaches (Section III) for the
SBW system subject to the implicit timing constraints imposed
by behavioral reliability.

The T;..s for the FAC function (HWF function) comprises
of the pure delay T,, the mechatronic delay T,ccp, and the
sensing delay Tsens, 1.€.,

Tres = Tp + Tmech + Tsens (4)

The pure delay comprises of ECUs’ computational delay for
processing the driver’s command, producing the actuator’s
command, and the transmission delay including the bus
arbitration. The pure delay for our SBW system also consists
of security and dependability primitives processing. The
mechatronic delay is the delay introduced by actuators such
as electric motors. The sensing delay corresponds to the delay
involved in sensing the driver’s command (front axle position)
and storing the sensed information in a memory location
accessible by HW ECUs (FAA ECUs). Since Tipecn and Teps
can be upper bounded by a constant (3.5 ms in most cases
[14]), we focus on T}, for our analysis [2]. The critical limit
for pure delay 77 ... is 8 ms corresponding to 7},4, of 11.5 ms
[4]. Systems that cannot guarantee a 7}, lower than a tolerable
upper bound TP = are considered unstable. The behavioral
reliability Pppr evaluation is based on the worst-case Tp and
not its nominal value because of the safety-critical nature of the
system, i.e., Ppr = P[Tp,,. < TP,.], where Tp,, . denotes
the worst-case Tp. The nominal Tp for the FAC function,
TEAC, is given as

TIEAC - Tecufhwl + Tecuffaal + Thwlijaalv (5)

channel

where Tecy—hw1 and Tecy—faq1 denote the computation time
at HW ECUI and FAA ECUI, respectively, and 771~ /aal
denotes the channel time to transmit secure messages from
HW ECUI to FAA ECUI. The worst-case Tp for the FAC
function, T54C, is given as

TFAC =nl- Tecu—hwl +n2- Tecu—faal +n3- Thwlffaal’

Pwc channel

nl,n2 € {1,2,...}, n3 € {1,1.167,1.33,1.5,...}, (6)

where n1 and n2 denote the number of computations required
to yield an error-free result at HW ECUI and FAA ECUI,
respectively, and n3 denotes the number of transmissions
required for error-free sending of secure messages over CAN.
n3 values follow a fractional variation as six encrypted CAN
frames are required for one unencrypted message in our SBW
system and errors can occur in transmission of any or all
frames.

For ensuring the QoS dictated by behavioral reliability, the
T'p,, . must be less than or equal to T? ... Hence, for the FAC
function

axr*

1 Tecuun + 12 Tecu—faar + 13- T 11 < Thop (7)

Eq. (7) helps in analyzing the number of computational and
transmission errors tolerated by a secure and dependable SBW
system to attain the desired QoS and behavioral reliability
corresponding to TP

max-*

Equation (7) indicates that early detection of errors in the
program can provide room for more computations to yield
the error-free result within the time constraint dictated by
the required QoS. For FT-RMT-QED, Equation (7) gives an
estimate for the maximum number of tolerable errors and the
exact number of maximum tolerable errors is determined by
inserting the computation time value for the error detected at a

particular point in the program. For example, using FT-RMT-
QED and keeping n2 and n3 fixed, actual nl - Tecy—pw1 1S
determined as

TS nl=1
nl'Tecuf wl = ecu—hwl?
e { (nl - 1) ’ Tec(ng—thl + T’eccufhwl7 nl > 2.
_ _ (®)
where TS, _,.,1 denotes the time required for the complete

computation at HW ECU1 whereas Tfﬁf_thl denotes the error

detection time for an erroneous computation at HW ECUI.
Equation (8) assumes that all errors are detected at the same
point in the program using QED, however, if errors are detected
at different points, error detection times for the errors detected
at different points in the program are to be added accordingly.
The nominal and worst-case pure delay, and the number of
maximum tolerable errors for the HWF function can be derived
similarly.

V. EVALUATION RESULTS

To experimentally evaluate our proposed approach, we
implement security and dependability primitives on an
Intel quad-core processor, with symmetric multiprocessor
architecture, and obtain the clock cycles required for execution
where dependability is enabled by FT-RMT and FT-RMT-
QED on dual cores. The Intel processor runs GNU/Linux
2.6.18-308.24.1.el5PAE version #1 SMP. Using the
clock cycles, we estimate the security primitives execution
time on a 32-bit multi-core ECU for safety-critical cybercar
applications. We adopt OpenMP [15] to provide RMT-based
FT on a multi-core architecture. We are further verifying
our security and dependability primitives implementation on
Freescale’s MPC5777M ECU (quad-core 32-bit ECU) [16].
For our case study, we assume the steering wheel sensor
sampling rate to be fixed at 420 Hz, i.e., Tsepns = 2.38 ms
[14]. We simulate our SBW system in Vector CANoe [17] with
CAN baud rate set to 1 Mbps. We use CAPL (Vector CANoe
programming language) to implement the SBW functions
on ECUs. This section first presents the timing analysis
for implementing security and dependability primitives on
a 32-bit multi-core ECU. We then quantify the number of
computational faults tolerated by ECUs for the SBW system
with given QoS and behavioral reliability constraints. Finally,
the section presents feasibility and scalability analysis for the
SBW system as the CAN bus load varies.

A. Timing Analysis

For timing analysis of our FT approaches, we inject soft
errors at different points in the program (security primitives
implementation). Our software-based fault injection emulates
bit flipping in the program/memory due to external noise
and/or radiation. Table I presents the timing results with FT
operational modes (FT-RMT and FT-RMT-QED) for a 32-bit
ECU operating at 200 MHz for the O ¢ computations at the
sending CAN node given by Eq. (1). We measure the clock
cycles (averaged over 10 runs to smooth any discrepancies
due to operating system overheads) using rdtsc () [18]
at the start and end of computations. Table I indicates that
incorporating FT (in any configuration: FT-RMT or FT-RMT-
QED) incurs performance overhead as compared to the single-
core implementation with no FT (NFT). For example, FT-
RMT and FT-RMT-QED incur performance overheads of 36%

TABLE I: Oy, timing results for a 32-bit ECU @ 200

MHz.

Operational Error Detection Point Clock Time
Mode Cycles (ms)
NFT N/A 163,218 816.09

FT-RMT @ end of computation 222,820 1,114.1
FT-RMT-QED @ end of computation 230,776 1,153.9
FT-RMT-QED @ HMAC calculation 158,015 790.1
FT-RMT-QED @ AES expand key operation 173,843 869.22
FT-RMT-QED (@ AES encryption (block 1) 197,524 987.6
FT-RMT-QED (@ AES encryption (block 2) 215,540 1,077.7

TABLE II: Oy, g timing results for a 32-bit ECU @ 200

MHz.

Operational Error Detection Point Clock Time
Mode Cycles (ps)
NFT N/A 169,761 848.8

FT-RMT @ end of computation 230,044 1,150.22
FT-RMT-QED @ end of computation 238,796 1,193.98
FT-RMT-QED @ AES expand key operation 89,214 446.07
FT-RMT-QED (@ AES decryption (block 1) 111,238 556.19
FT-RMT-QED (@ AES decryption (block 2) 134,101 670.5
FT-RMT-QED @ AES decryption (block 3) 164,482 822.41
FT-RMT-QED @ formatting received HMAC 182,466 912.33
FT-RMT-QED @ HMAC calculation 230,564 1,152.82

and 41%, respectively, at the sending CAN node. The FT
techniques incur performance penalty due to inherent multi-
threading overhead, and additional instructions for comparison
operations. Results verify that the FT-RMT-QED enables
earlier detection (and/or correction) of errors for O g
computations as compared to the FT-RMT depending on the
error point in the program. For example, the FT-RMT-QED
detects an error 64,805 clock cycles earlier (an improvement
of 1.4x) as compared to the FT-RMT when the error occurs at
HMAC calculation.

Table II presents the timing results for a 32-bit ECU
operating at 200 MHz for the Oy r computations at the
receiving CAN node. The FT approaches at the receiving CAN
node also incur performance overhead as compared to the
single-core NFT implementation. Results reveal that the FT-
RMT and FT-RMT-QED incur performance overheads of 36%
and 41%, respectively, at the receiving CAN node. Results
verify that the FT-RMT-QED enables early detection of errors
as compared to the FT-RMT for the Oy, g computations. For
example, the FT-RMT-QED detects an error 140,830 clock
cycles earlier (an improvement of 2.6x) as compared to the FT-
RMT when the error occurs at the AES expand key operation.

B. QoS and Behavioral Reliability

An SBW system is sensitive to the delay from the driver’s
request at the hand wheel to the corresponding response from
the front axle actuators. This delay is perceived as the QoS and
can impact availability and safety if exceeded beyond a certain
critical response time threshold 7,,,,,. The pure delay for a
stable SBW system must be less than the critical pure delay
TP .. despite re-computations (permitted by FT approaches
such as FT-RMT and FT-RMT-QED on error detection) and
retransmissions to mask off computation and transmission
errors, respectively (Section IV-B).

TABLE III: The maximum number of allowed computational
runs at HW ECUI n1 to yield correct result for the FAC

. . p o _
function with 7% . = 8 ms.
n2 & n3 nl nl nl nl nl | nl
FTy | FTy | FT. | FTq | FT. | FT;
n2=1,n3=1

n2=1,n3=1.167
n2=1,n3 = 12833
n2=1,n3=2

R S N e
NS VN V)
[o NN IR N
wmlunl oo
W || wn|wn
BN IS VN V)

TABLE 1V: The maximum number of allowed computational
runs at FAA ECUI n2 to yield correct result for the front
axle control function with 7P = 8 ms.

n2 n2 n2 n2 n2 n2
FT, | FTy | FTy | FTy | FT; | FT;
12
11
10
10

nl & n3

nl=1n3=1
nl=1,n3=1.167
nl=1,n3=1.833

nl=1,n3=2

B I RV V)
B I RV V)
[o=3 e i =) N}
N[3| oo
N[]|

We conduct experiments to determine the maximum
number of allowed re-computations at SBW ECUs to yield
error-free results subject to the critical pure delay 77 . =

8 ms and T/"“!~/e1 = (737 ms, which is obtained from
Vector CANoe simulations [17]. The number of faults tolerated
at FAA ECUI1 is given by n2 — 1. Table III depicts the
maximum number of allowed re-computations at HW ECUI1
to yield correct result for the FAC function when TP . =
8 ms and T~/ = (737 ms, which is obtained from
Vector CANoe simulations [17]. n2 denotes the number of
computational runs at FAA ECU1 and n3 denotes the number
of transmissions required for error-free transmission of the
encrypted message (Section IV-B). FT', denotes FT-RMT,
FTy denotes FT-RMT-QED with error detected at the end of
computation, F'T. denotes FI-RMT-QED with error detected
at HMAC calculation, F'T'; denotes FT-RMT-QED with error
detected at AES expand key operation, F'I'. denotes FT-
RMT-QED with error detected at AES encryption of block 1,
and F'Ty denotes FT-RMT-QED with error detected at AES
encryption of block 2.

Table TV depicts the maximum number of allowed re-
computations at FAA ECUI1 to yield correct result for the
FAC function when 7%, = 8 ms and T/ /ael = (.737
ms, which is obtained from Vector CANoe simulations [17].
nl denotes the number of computational runs at HW ECUI
and n3 denotes the number of transmissions required for error-
free transmission of the encrypted message (Section IV-B).
FT, denotes FT-RMT, F'T, denotes FT-RMT-QED with error
detected at the end of computation, F'T'; denotes FT-RMT-
QED with error detected at AES expand key operation, F'T'),
denotes FT-RMT-QED with error detected at AES decryption
of block 1, FT; denotes FT-RMT-QED with error detected at
AES decryption of block 2, and F'T'; denotes FT-RMT-QED
with error detected at AES decryption of block 3.

Results indicate that the FT-RMT-QED permits more (or
at least equal) re-computations than the FT-RMT, depending
on the error detection point at FAA ECUI, to yield correct
result within the time constraints imposed by the desired QoS.
For example, when nl = 1, n3 = 2, and 7% . = 8 ms, the

FT-RMT-QED tolerates 150% more faults (n2 — 1) than the
FT-RMT (10 allowed re-computations for the FT-RMT-QED
as compared to 4 for the FT-RMT) when the FT-RMT-QED
detects an error at AES expand key operation.

C. Feasibility and Scalability Analysis

Feasibility analysis of the SBW system determines if
the system’s end-to-end response time and pure delay are
within the hard real-time constraints imposed by the desired
QoS. Scalability analysis assesses system’s performance for
a projected addition of new components/messages later in the
design process. Our scalability analysis assists cybercar’s early
design phases where tactical decisions such as message priority
assignments are to be made in the presence of incomplete
and estimated information such as bus load. To investigate
the scalability of our secure and dependable SBW system
over CAN, we measure the Tp and T,., both for the FAC
function and the HWF function (£ AC and THWE denote
the pure delay for the FAC function and the HWF function,
respectively). First, we analyze the system feasibility without
any additional messages on the CAN bus. After feasibility
analysis, we study the effect of additional messages on the
CAN bus. For comprehensive scalability study of the SBW
system, we add messages both with higher priority as well
as lower priority than the SBW application’s messages on the
CAN bus (in the rest of this paper, we denote these messages
as high-priority and low-priority for brevity).

Feasibility Analysis: To investigate the feasibility of CAN
for safety-critical real-time constrained cybercar applications,
we simulate our SBW system with no additional messages
on the CAN bus carrying the SBW application’s messages.
We assume FT-RMT-QED for computations at SBW ECUs
and accordingly take Tecy—pwi and Teey—faq2 to be 1.15
ms (Table I), and Tecy—faa1r and Tecy—pw2 to be 1.19 ms
(Table IT). We observe response times, pure delays, and channel
times both for the FAC function and the HWF function for the
SBW system with FT-RMT-QED over the run of the SBW
application to capture the overall timing behavior of the SBW
system. Vector CANoe measurements for our SBW system
indicate the channel time, pure delay, and response time for
the FAC function to be 0.737 ms, 3.077 ms, and 6.457 ms,
respectively, over the entire run of the SBW application. The
channel time, pure delay, and response time for the HWF
function varies over the run of the SBW application, i.e., the
channel time for the HWF function varies between 0.718 ms
and 1.455 ms, the pure delay varies between 3.058 ms and
3.795 ms, and the response time varies between 6.438 ms and
7.175 ms. However, these delay delay variations are still well
within T,,,.. The variations in channel time for the HWF
function as compared to no variations for the FAC function
are due to the lower priority of the HWF function’s messages
than the FAC function’s messages. Results verify that the pure
delay for both the FAC and the HWF functions are much less
than the typical critical delay for an SBW system (of the order
of few milliseconds to tens of milliseconds). These results
establish the feasibility of our secure and dependable SBW
system implementation over the CAN bus.

Effect of Additional Messages & Bus Load: Our experiments
with high-priority and low-priority messages on the CAN bus

AC
~ T,
WF
I
E£100 |
T |
5 |
8 |
L 1o |
a 4 S e
2
4L ; ; ; ;

20 30 40 50 60 70 80 90 100
Average Bus Load (%)

Fig. 3: Effect of increasing bus load due to high-priority
messages on pure delay of the SBW application.

reveal that additional lower priority messages than the SBW
application’s messages have negligible effect on pure delay of
the SBW application. However, higher priority messages can
drastically impact pure delay of the SBW application.

Fig. 3 depicts the effect of increasing bus load due to high-
priority messages on the average pure delay for the SBW
application. Results show that both the average 7% AC and
THWE increase as the bus load grows. Results indicate that
TEAC and TH™W'F increases by 58.4% and 78%, respectively,
as the average bus load due to high-priority messages increases
from 45% to 88%. Fig. 3 shows that this delay increase is not
linear and shoots up drastically above the average bus load of
97%. Results reveal that average bus load due to high-priority
messages should be less than 88% for a stable SBW system
that conforms to the QoS constraints imposed by 77 = = 8
ms.

Scalability analysis suggests that safety-critical and time-
constrained systems such as SBW incorporating security and
dependability primitives can be implemented over CAN with
careful selection of security and FT approaches as well as
prudent priority assignment of SBW application’s messages. In
particular, for a stable SBW system over CAN, the bus load
due to higher priority messages than the SBW application’s
messages needs to be monitored and controlled. One way of
message monitoring and control is to implement firewall and
authentication services in gateway nodes that connect different
automotive functional domains.

VI. CONCLUSIONS

In this paper, we provide an integrated approach for the
design of secure and dependable cybercars focusing on steer-
by-wire (SBW) over controller area network (CAN) as a
case study. The challenge is to embed both security and
dependability over CAN while ensuring that the real-time
constraints of the cybercar applications are not violated. Our
design leverages dual-core electronic control units (ECUs)
to provide fault-tolerance (FT) to the system by redundant
multi-threading (FT-RMT) and FT-RMT with quick error
detection (FT-RMT-QED). Results reveal that the FT-RMT-
QED can detect errors maximally 140,830 clock cycles earlier
(a2 maximum improvement of 2.6x) as compared to the
FT-RMT. We quantify the number of computational errors
permitted by the FT-RMT and FT-RMT-QED within the SBW
system’s worst-case response time threshold imposed by the
desired quality of service (QoS) and behavioral reliability.
Results show that the FT-RMT-QED can tolerate 150% more
faults than the FT-RMT within the time constraints imposed
by the desired QoS. Results verify the feasibility of our

secure and dependable SBW system implementation over
CAN. Scalability analysis suggests that for a stable SBW
system over CAN, the bus load due to additional high-priority
messages must be restricted to less than 88%.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research
(ONR R17460) and SRC GRC Freescale grant (R65000).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ONR and the SRC GRC.

REFERENCES

[1] 1S026262, “Road vehicles — Functional safety,” April 2013. [Online].
Available: http://www.iso.org/iso/catalogue_detail?csnumber=43464

[2] C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, Design
of Automotive X-by-Wire Systems. The Industrial Communication
Technology Handbook CRC Press, 2005.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, and T. Kohno, “Experi-
mental Security Analysis of a Modern Automobile,” in Proc. of IEEE
Symposium on Security and Privacy, May 2010.

[4] C. Wilwert, Y.-Q. Song, F. Simonot-Lion, Loria-Trio, and T. Clément,
“Evaluating Quality of Service and Behavioral Reliability of Steer-by-
Wire Systems,” in Proc. of IEEE ETFA, September 2003.

[S] M. L. Chavez, C. H. Rosete, and F. R. Henriquez, “Achieving Confi-
dentiality Security Service for CAN,” in Proc. of IEEE International
Conference on Electronics, Communications, and Computers (CONI-
ELECOMP), March 2005.

[6] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick Error Detection
Tests for Effective Post-Silicon Validation,” in Proc. of ITC, November
2010.

[7]1 S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in Proc. of the
20th USENILX conference on Security (SEC), August 2011.

[8] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-Tolerant Platforms for Automotive
Safety-Critical Applications,” in Proc. of ACM CASES, October-
November 2003.

[9] F. Salewski and S. Kowalewski, “Hardware/Software Design Consider-
ations for Automotive Embedded Systems,” IEEE Trans. on Industrial
Informatics, vol. 4, no. 3, pp. 156-163, August 2008.

[10] H. Zeng, M. D. Natale, P. Giusto, and A. Sangiovanni-Vincentelli,
“Using Statistical Methods to Compute the Probability Distribution of
Message Response Time in Controller Area Network,” [EEE Trans. on
Industrial Informatics, vol. 6, no. 4, pp. 678-691, November 2010.

[11] H. Schweppe, T. Gendrullis, M. S. Idress, Y. Roudier, B. Weyl, and
M. Wolf, “Securing Car2X Applications with Effective Hardware-
Software Co-Design for Vehicular On-Board Networks,” in Proc. of
Joint VDI/VW Automotive Security Conference, Berlin, Germany, Oc-
tober 2011.

[12] R. Oppliger, SSL and TLS: Theory and Practice. Artech House, 2009.

[13] EETimes, “How secure is AES against brute force attacks?” 2013.
[Online]. Available: http://en.wikipedia.org/wiki/Brute-force_attack

[14] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller, “Timing Modeling
and Analysis for AUTOSAR-Based Software Development - A Case
Study,” in Proc. of DATE, March 2010.

[15] OpenMP, “The OpenMP API Specification for Parallel Programming,”
November 2012. [Online]. Available: http://openmp.org/wp/

[16] Freescale, “MPC5777M: Qorivva 32-bit Multicore MCU for
Powertrain,” September 2013. [Online]. Available: http://www.freescale.
com/webapp/sps/site/prod_summary.jsp?code=MPC5777M

[17] Vector, “ECU Development and Test with CANoe,” November 2012.
[Online]. Available: http://www.vector.com/vi_canoe_en.html

[18] “Time-stamp counter,” November 2012. [Online]. Available: http:
/lwww.mes.anl.gov/~kazutomo/rdtsc.html

