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Abstract—Semantic segmentation is one of the challenging
tasks in computer vision. Before the advent of deep learning,
hand-crafted features were used to semantically extract the
region-of-interest (ROI). Deep learning has recently achieved
enormous response in semantic image segmentation. The pre-
viously developed U-Net inspired architectures operate with
continuous stride and pooling operations, leading to spatial
data loss. Also, the methods lack establishing long-term pixels
connection to preserve context knowledge and reduce spatial loss
in prediction. This article developed encoder-decoder architecture
with a sequential block embedded in long skip-connections and
densely connected convolution blocks. The network non-linearly
combines the feature maps across encoder-decoder paths for
finding dependency and correlation between image pixels. Ad-
ditionally, the densely connected convolutional blocks are kept in
the final encoding layer to reuse features and prevent redundant
data sharing. The method applied batch-normalization to reduce
internal covariate shift in data distributions. We have used
LUNA, ISIC2018, and DRIVE datasets to reflect three different
segmentation problems (lung nodules, skin lesions, vessels) and
claim the effectiveness of the proposed architecture. The network
is also compared with other techniques designed to highlight
similar problems. It is found through empirical evidence that
our method shows promising results when compared with other
segmentation techniques.

Index Terms—deep learning, semantic segmentation, image
analysis, pixels connection, convolution neural network.

I. INTRODUCTION

IN computer vision, deep learning architectures have
achieved promising results by outperforming most shallow

learning techniques designed for image segmentation and have
widely fascinated the research community. Deep architectures
are often used in classification problems that yield a single
value to an input image. The models require massive data and
structural features such as activation and dropout function,
optimization algorithms for training and inference. It also
plays an integral role in medical diagnosis and treatment by
improving system efficiency and providing a better opportunity
to rapidly treat a large number of patients. Besides, automatic
processing is cost-effective and reduces human intervention in
analyzing imaging data. The challenge in image segmentation
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is the availability of extensive annotated data [1]–[3]. It needs
pixel-level labeling instead of image-level annotation. A fully
convolutional network was the initial effort made to apply deep
learning for image segmentation [4].

The article [5] has extended FCN to U-Net architecture
with better segmentation results on scarce input data. It mainly
involved encoding and decoding operations. The dimensions of
input samples are reduced in the encoding path and obtained
back with the same size in the decoding path. Multiple U-
Net inspired models are discussed in [6]. The most promi-
nent transformation is about skip-connections. The extracted
features are initially fed to processing before concatenation
operation in some variants, as mentioned in [7], [8]. The major
issue is the individual processing step conducted for each set
of feature maps which later concatenates together. This article
applied a sequence model in long-term skip-connection to
reuse features maps with dense convolutions. The feature maps
obtained from the encoding layer have higher dimensions,
while the maps extracted from the transpose convolutional
layer contain essential semantic details. Therefore, we have
combined feature maps with non-linear functions to obtain
precise segmentation output.

Our paper has developed a U-Net inspired encoder-decoder
architecture and added a bi-directional LSTM module within
the skip-connections to join feature maps together. Our ap-
proach has used the concept of dense connections to improve
information flow across the network. The convolutional blocks
in the final layer of the encoder path have channel-wise
concatenation such that the features learned in each block
are advanced to the subsequent block for using collective
knowledge acquired by each previous layer and prevent a
network from learning redundant features. Besides, we ap-
plied batch-normalization to avoid the internal covariate shift
and accelerate the network convergence rate. Our method is
evaluated on three distinct datasets. The results revealed that
our network demonstrates a promising response for multiple
segmentation applications.

A. Objectives and Contributions

The main objectives of our research were to avoid the
appearance of redundant features in successive convolutions,
enhance the prediction response by bringing a two-way tempo-
ral stance in decision-making and reduce the internal covariate
shift for model convergence. The main contributions include:

1) In our method, we established a dependency between
image intensities for preserving context information us-
ing bi-directional LSTM.



2) We reused features and prevented redundant data sharing
using dense convolutional blocks.

3) Our method has non-linearly combined the feature maps
across the encoder-decoder path to find the correlation
between image pixels.

4) We applied batch-normalization to improve the informa-
tion flow for improving model convergence rate.

II. RELATED WORK

In the past few years, scientists have witnessed improved
results in image segmentation using deep learning techniques.
In [9], Kleesiek et al. proposed 3-dimensional CNN for image
segmentation. The network used multiple channels of FLAIR
contrasts, non-enhanced and contrast-enhanced T1w, and T2w
to process input data. [10] developed multi-level deep CNN
for extracting pancreas from abdominal CT scans using a
probabilistic bottom-up approach. It is observed that CNN
causes spatial loss when convolutional features are provided
to the fully connected layers during the segmentation task.
To resolve this issue, Long et al. [4] came up with the
concept of a fully connected convolutional neural network. The
network substitutes fully connected layers with convolutional
and deconvolutional layers to preserve the image dimensions
and obtain the feature maps similar to the raw input sample.
In [11], the authors performed end-to-end FCN training for
extracting anatomical structures from 3D scans. They have
conducted voxel-wise multi-class classification to assign a
label for each voxel.

[12] used short and long skip-connections to build deep
FCN with improved response. Ronneberger et al. [5] has devel-
oped U-Net model for medical image segmentation. It has used
image augmentation to operate with limited data efficiently.
The main contributions include data augmentation, separation
of joint objects, and overlapping-tile approach. The V-Net is
proposed in [13] by Milletari et al. for volumetric image analy-
sis. The network is evaluated on 3D MRI volumes for finding
the prostate condition. It also introduced a unique objective
function, applied histogram matching, and used random non-
linear transformations for image augmentation. The authors
in [14] proposed a dense volumetric 3D U-Net. The analysis
path in a network contains 3D convolutions followed by ReLU
activation and max-pool layers, whereas the synthesis path
contains 3D up-sampling with ReLU activation function. An
end-to-end feed-forward recurrent neural network is proposed
in [15]. It preserves long-term dependency between intensities
in a scene while limiting the model capacity. Zhao et al. in [16]
have proposed PSPNet with global pyramid pooling and an
efficient optimization approach for embedding critical scenery
context features. Two segmentation models, recurrent U-Net
and recurrent residual U-Net are built by Alom et al. [6]. The
encoder-decoder structure with residual and recurrent blocks
assured the improved feature representation of resultant maps.

Wang et al. [17] Proposed an end-to-end hard-attention
network with multiple decoder networks to dynamically iden-
tify hard and easy regions in an image to segment. The
deeplab architecture [18] replaced fully connected layers with

convolutions and increased feature dimension through atrous
convolutional layers. [19] has combined a fully convolutional
network with RNN to incorporate temporal information and
spatial details. Laibacher et al. [20] developed M2U-Net for
medical image segmentation. It has added pre-trained compo-
nents in the encoder part and contractive bottleneck blocks in
the decoder part. Li et al. [21] have developed an IterNet model
that contains multiple iterations of a mini-UNet and adopted
skip-connections with weight-sharing features. Hervella et
al. [22] proposed a self-supervised pre-training method to
reduce the need for extensive data and provided a multi-modal
solution for medical image segmentation. Akbar et al. [23]
have developed a bi-modular clinical decision system. The first
module used a support vector machine with an RBF kernel
for classification, and the second module performed analysis
to detect the symptoms of papilledema.

In [24], the authors defined a bi-directional attention block
for capturing the correlation between image intensities. It
helps incorporate multi-scale information and adaptively learn
a rich set of features. A LadderNet architecture proposed
in [25] contains multiple U-Nets and residual blocks with a
weight-sharing feature. The multi-path architecture supports
data throughput, and the use of residual block limits the
number of parameters. A context-encoder network developed
for 2D image segmentation was proposed to conserve spatial
information and avoid data loss caused by max-pool opera-
tion [26]. The network encompassed a modular approach and
performed dense atrous convolutions and residual multi-kernel
pooling. [27] have applied a multi-scale architecture with
a custom-designed feature extractor for data-driven analysis.
The authors in [28] have proposed a multi-modal transfer
learning approach for semantic image segmentation by defin-
ing a self-supervised method that can effectively handle data
scarcity. [29] has used the spatial-attention module to conduct
adaptive feature refinement. The process discussed in [30]
highlighted a graphical vascular structure to show a strong tie
between neighboring pixels. The research modified the neural
graphs for effective local and global representations.

III. PROPOSED METHODOLOGY

The proposed model shown in the Fig. 1 has used the
strength of bi-lstm, long skip-connections, and dense con-
volutions. The encoding path consists of four convolutional
blocks. Each block includes two convolutional layers followed
by max-pool operation with a 2×2 kernel. The count of filters
increases twice at each subsequent block. The encoding path
progressively extracts spatial representations layer to layer, and
eventually, the last layer generates high dimensional repre-
sentation with semantic information. We have applied densely
connected convolutions as the final step in the encoding path to
launch an idea of collective knowledge by reusing the feature
maps through the network. We introduced a sequence of N-
blocks with two successive convolutional layers. The feature
maps obtained from all the previous layers are combined
with maps learned in the current layer and then delivered to
the subsequent layer. It avoids the appearance of redundant
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Fig. 1. The figure depicts the proposed architecture with bi-directional LSTM and dense blocks. Number of filters are mentioned under each highlighted bar.

features in successive convolutions and mitigate the risk of
vanishing gradient by benefiting from all previous features.

The decoding path performs a de-convolutional function
over the previous layer output. In the conventional U-Net ap-
proach, the model crops the feature maps in the encoding path,
copy them to the decoder, and concatenates with the output
of the de-convolutional function. However, we have applied
bi-directional lstm with long-term skip connections to process
these maps in our approach. The number of filters increases
as we move through the decoding path to get the final map
equal in size to the original input image. After up-sampling, we
performed batch-normalization to reduce the internal covariate
shift. Each hidden layer needs to adaptively learn a new
distribution during the training step. This variable activation
distribution results in a slow convergence rate. Therefore,
we have used a batch-normalization function to accelerate
the training speed and bring stability to our network with
the regularization effect. The output of batch-normalization
is provided to the bi-directional convolution LSTM layer.

The cell-gate structure helps exploit the convolution opera-
tion in input-to-state and state-to-state transitions. The method
applies convolutional LSTM for each forward and backward
path and creates a long-range pixels connection to preserve
dependency between image intensities in both directions. It
enhances the prediction response by bringing a two-way
temporal stance in decision-making. We have used the ReLU
activation function for all the hidden layers and a sigmoid
function for the output layer. The dropout function is used
to avoid overfitting. The error is measured with binary cross-
entropy, and the model is tuned with adam optimizer, keeping
the initial learning rate of λ = 10−4.

IV. EXPERIMENTATION RESULTS AND DISCUSSION

The empirical evaluation shows that our method outper-
formed all the compared techniques designed against LUNA,
ISIC2018, and DRIVE datasets. We considered multiple eval-
uation metrics to assess our method, including sensitivity
(SE), specificity (SP), F-Measure, Jaccard score (JS), accuracy
(AC), and area under the curve (AUC). We used the callback

TABLE I
COMPARISON OF THE PROPOSED METHOD WITH OTHER TECHNIQUES

DESIGNED FOR VASCULAR TREE EXTRACTION.

Dataset DRIVE STARE

Method ACC AUC ACC AUC
Azzopardi [31] 0.9442 0.9614 0.9497 0.9563
Zhuo [32] − 0.9754 − −
Alom [33] − 0.9784 − 0.9815
Shin [30] − 0.9801 − −
Laibacher [20] − 0.9714 − −
Ronneberger [5] 0.9531 0.9755 0.9690 0.9898
Orlando [34] − 0.9507 − −
Zhuang [25] 0.9561 0.9793 − −
Yan [35] 0.9542 0.9752 0.9612 0.9901
Zhang [36] 0.9476 0.9636 0.9554 0.9748
Liu [37] − 0.9798 − −
Mou [38] − 0.9796 − −
Proposed Architecture 0.9708 0.9891 0.9724 0.9915

function and monitored a validation loss for ten consecutive
epochs to halt the training process on plateau response. The
DRIVE dataset provides 40 fundus images with a size of
565x584 [39]. These images are divided into train/test splits,
such as each split containing 20 images. The STARE dataset
contains 20 fundus images in PPM format with 700x605
dimension and captured at 35◦ angle [40]. The number of
images is not sufficient to train our network. Therefore, we
took help from previous literature to perform patch-based
training. Each image is divided into a number of patches. One
thousand patches are randomly selected from each image for
model training. We have applied the batch-size of 32x32.

The ISIC18 dataset is taken from the lesion segmentation
challenge [41]. It contains 2594 color images with 700x900
dimensions. Our experiment used 1815 samples for training,
259 samples kept for validation, and the remaining 520 images
were used for testing. We applied the essential pre-processing
by reducing the image size to 256x256. The data comes in
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Fig. 2. The figure demonstrates the prediction results on LUNA, ISIC18 and DRIVE. Here, a) color input image, b) groundtruth image, c) output prediction.

RGB images with corresponding ground-truth images. The
lung images are collected from the LUNA competition [42].
The data contains CT scans of 512x512 pixel resolution. We
have used 70% of data for training and validation, whereas
30% is used for testing. Since the scans also include unwanted
regions of interest like bones, we extracted new masks with
standard pre-processing steps for model training. We have
obtained promising results shown in Fig. 2. It is found that
the network with dense units and bi-directional LSTM has
outperformed other alternatives mentioned in Table I and
Table II. It is observed during experimentation that our model
started converging rapidly after 25 epochs on DRIVE and
STARE datasets.

Initially, our model was overly fitted on fundus data. Later,
the successive attempts with distinct dropout values helped
us overcome this issue. We also observed a fast convergence
rate for ISIC18 and LUNA datasets, similar to retinal datasets.
The segmentation results were not impressive initially but
gradually advanced after 50 epochs. In Table I and Table II, it
is visible that the bi-directional LSTM and dense connectivity
have improved the results for all the modalities. We combined
encoding-decoding features to capture local spatial and fine
semantic information. The batch-normalization helped control
the mean and variance distribution to reduce generalization
cost. Moreover, the dense connections enabled the network to
share feature maps between convolution blocks. It produces di-
verse features and expands the efficacy of deeper architectures.
The dense block supported backward supervision to propagate
the error signals directly to the earlier network layers and
reduce the chances of vanishing gradient.

V. CONCLUSION AND FUTURE WORKS

In conclusion, we have proposed a deep neural architecture
to create a long-range pixels connection for context-aware
semantic segmentation. We found that inserting dense con-
volutions and embedding bi-directional convolutional LSTM
in long-term skip connections reduces the redundant feature
representations and enables the network to capture essen-

tial discriminative features. It is also found that the batch-
normalization function helped in rapid convergence and reg-
ularized our training process. The results obtained on three
benchmark dataset has shown that our method has a better
response than other compared techniques. In the future, the
method would be evaluated against other modalities. Also, the
impact of generative adversarial networks would be analyzed
by making architectural modifications.

TABLE II
COMPARISON OF THE PROPOSED METHOD WITH OTHER TECHNIQUES

DESIGNED FOR LUNG AND LESION SEGMENTATION.

Dataset LUNA ISIC18

Method ACC F-Measure ACC F-Measure
Ronneberger [5] 0.9872 0.9658 0.8906 0.6472
RU-Net [33] 0.9836 0.9638 0.9367 0.8799
Oktay [7] − − 0.8976 0.6658
Zhang [43] 0.9868 − − −
Gu [26] 0.9900 − − −
R2U-Net [33] 0.9918 0.9832 0.9372 0.8823

Proposed Architecture 0.9943 0.9853 0.9462 0.8868
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