A One-Shot Dynamic Optimization Methodology for Wireless &nsor Networks

Arslan Munir and Ann Gordon-Ross

Susan Lysecky and Roman Lysecky

Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

University of Florida, Gainesville, Florida 32611
Email: amunir@ufl.edu, ann@chrec.org

Abstract—Wireless sensor networks (WSNSs), consisting

of autonomous sensor nodes, have emerged as ubiquitous

networks which span diverse application domains (e.g.,
health care, logistics, defense) each with varying appli¢@n
requirements (e.g., lifetime, throughput). Sensor nodes
possess tunable parameters (e.g., processor voltage, segs
frequency), which enable platform specialization for paricular
application requirements. WSN application design can be
daunting for application developers, which are oftentimesnot
trained engineers (e.g., biologists, agriculturists) whawish to
utilize the sensor-based systems within their given domain
Dynamic optimizations enable sensor-based platforms to ne
parameters in-situ to automatically determine an operatirg
state. However, rapidly changing application behavior and
environmental stimuli necessitate a lightweight and high}
responsive dynamic optimization methodology. In this pape
we propose One-Shot — a lightweight dynamic optimization
methodology that determines initial tunable parameter seings
to give a high-quality operating state in One-Shot for time-
critical and highly constrained applications. Results reeal that
One-Shot solution is within 5.92% of the optimal solution on
average. To assist dynamic optimizations in determining an
operating state, we propose an application metric estimatin
model to establish a relationship between application metcs
(e.g., lifetime) and sensor-based platform parameters.

Keywords-Wireless sensor networks; dynamic optimization;
application metric estimation

I. INTRODUCTION AND MOTIVATION

University of Arizona, Tucson, Arizona 85721
Email: {slysecky, rlysecBy@ece.arizona.edu

and frequency, sensing frequency) whose values may be
tunedfor a specific application. Faced with an overwhelming
number of tunable parameter choices, WSN design may be a
daunting task for non-experts and necessitates an autdmate
parameter tuning process for assistance.

Parameter optimizationis the process of assigning
appropriate (optimal or near-optimal) values to tunable
parameters either statically or dynamically to meet
application requirements.Static optimizations assign
parameter values at deployment and these values
remain fixed during a sensor node’s lifetime. Accurate
prediction/simulation of environmental stimuli is chaligng
and applications with changing environmental stimuli do
not benefit from static optimizationBynamic optimizations
assign parameter values during runtime and reassign/ehang
these values in accordance with changing environmental
stimuli, thus enabling closer adherence to application
requirements.

There exists much research in the area of dynamic
optimizations (e.g., [1][2][3][4]), but most previous wor
targets the memory (cache) or processor in computer
systems. Little work exists on WSN dynamic optimization,
which presents additional challenges due to a WSN's
unique design space, energy constraints, and operating
environment. Shenoy et al. [5] presented profiling methods

Wireless sensor networks (WSNs) consist of spatiallyfor dynamically monitoring sensor-based platforms and

distributed autonomous sensor

phenomenon (environment, target, etc.).

nodes that observe analyzed the associated network traffic and energy, but did
WSNs araot explore dynamic optimizations. In prior work, Munir

becoming ubiquitous due to their proliferation in diverseet al. [6] proposed a Markov Decision Process (MDP)-
application domains (e.g., defense, health care, logistic based methodology as a first step towards WSN dynamic
each with varying application requirements. For examplepptimization, but this methodology required excessive
a security/defense system may have a high throughpuwomputational resources for larger design spaces. Wang et
requirement whereas an ambient conditions monitoringl. [7] proposed an energy efficient optimization method
application may be more sensitive to lifetime. This diviersi for target tracking applications that consisted of dynamic
makes WSN design challenging using commercial-off-theawakening and an optimal sensing scheme. Khanna et al.

shelf (COTS) sensor nodes.

[8] proposed a genetic algorithm for secure and dynamic

COTS sensor nodes are mass-produced to optimize fateployment of resource-constrained multi-hop WSNs. Some
cost and are not specialized for any particular applicationprevious works [9][10] explored WSN dynamic voltage and
Furthermore, WSN application developers oftentimes ardrequency scaling (DVFS) for dynamic optimization, but
not trained engineers, but rather biologists, teachers, dDVFS only considered two sensor node tunable parameters
agriculturists who wish to utilize the sensor-based system(processor voltage and frequency).

within their given domain. Fortunately, many COTS sensor

In this paper, we explore a fine-grained design space

nodes possess tunable parameters (e.g., processor voltdge sensor-based platforms with many tunable parameters

Application Metrics Application

to more closely meet application requirements (Gordon- & Weight Factors Reguiremens
Ross et al. [11] showed that finer-grained design spaces
provide interesting design alternatives and result inéased
benefits in the cache subsystem). The exploration of a
fine-grained design space coupled with limited battery
reserves and rapidly changing application requiremends an
environmental stimuli necessitates a lightweight and lyigh
responsive dynamic optimization methodology.

We propose One-Shot — a lightweight dynamic
optimization methodology that determines appropriate
initial tunable parameter values to give a good quality
operating state (tunable parameter value settingsprie-
Shotwith minimal design exploration for highly constrained
applications. Results reveal that the One-Shot operatingigure 1 One_Shotd)}r;
state is within 5.92% of the optimal solution (obtained networks.
from exhaustive search) averaged over several differendxploration order is critical in reducing the number of eat
application domains and design spaces. To assist dynamigplored by the online optimization algorithm. The sensor
optimizations in determining an operating state, we fornpde moves directly to the operating state specified by One-
the first time, to the best of our knowledge, propose anshot. A dynamic profilerrecords profiling statistics (e.g.,
application metric estimation modehich estimates high- remaining battery energy, wireless channel conditionpigiv
level metrics (lifetime, throughput, and reliability) flo the current operating state and environmental stimuli and
sensor-based platform parameters (e.g., processor goltagasses these profiling statistics to the dynamic optintmati
and frequency, sensing frequency, transceiver transmissi controller.
power, etc.). The dynamic optimization methodology The dynamic optimization controller processes the
leverages this estimation model while comparing differentprofiling statistics to determine if the current operating
operating states for optimization purposes. state meets the application requirements. If the appdinati
requirements are not met, the dynamic optimization
controller reinvokes One-Shot to determine the new

In this section, we give an overview of One-Shot andoperating state. This feedback process continues to ensure
associated algorithm. We also formulate the state space anBe selection of an appropriate operating state to bettet me
objective function for One-Shot. application requirements.

Dynamic
Optimization
Controller

One-Shot:
Tunable
Parameter
Settings and

Per-Sensor Node
One-Shot
Dynamic

Optimization

Process

Dynamic
Profiler

Brder

Operating
State

WSN: Wireless Sensor
Network

amic optimization methodology farless sensor

II. DYNAMIC OPTIMIZATION METHODOLOGY

A. Overview B. State Space

Fig. 1 depicts our One-Shot dynamic optimization The state spaceS for One-Shot givenN tunable
methodology for WSNs. WSN designers evaluateparameters is defined as:
application requirements and capture these requirements a
high-level application metrics(e.g., lifetime, throughput, S=P xPyx---xPy 1)
reliability) and associatedeight factors The weight factors where P, denotes the state space for tunable parameter
signify the weightage/importance of each application retr , € {1,2,..., N} and x denotes the Cartesian product.

with respect to each other. One-Shot leverages an applicati éach tunable parametét consists ofn values:

metric estimation model to determine application metric
values offered by an operating state. P, =A{piy,Piss Pisr---sDi,} = |Pil=m (2)
Fig. 1 shows the per-node One-Shot process

(encompassed by the dashed circle), which is orchestratevélzlhere || denotes the tunable parametys state space

by the cynamic optmizaton comolerThe dynami "1y (e TLmberof e vavesty Sloaselel
optimization controller invokesOne-Shot wherein the P P P

sensor node operating state is directly determined usinrgy taking one tunable parameter value from each tnable

an intelligent tunable parameter value setting selectio arameter. A single n-tuple € 5'is given as:

methodology (i.e., ifOne-Shat One-Shot also determines s = (p1,,D2,+---sPN,) : Di, €D,

an exploration order (ascgndmg or descending) for Vie{l,2,....N}h,ye{1,2,....n} (3

the tunable parameters. This exploration order can be

leveraged by aronline optimization algorithnto provide We point out that some n-tuples i may not be feasible
improvements over the One-Shot solution by further desigrfsuch as invalid combinations of processor voltage and
space exploration and is the focus of our future work. Thisfrequency) and can be treated d not caretuples.

C. Optimization Objection Function Input: (s), N, n, m,P . .
Output: Initial tunable parameter value settings and exploration

The sensor node dynamic optimization problem can be order

1 for k — 1 to mdo
formulated as an unconstrained optimization problem: 5 for P, Py to Py do

3 fllfil «— k-metric objective function value when
max f(s Z wi fr(s parameter setting is {P; = p;,, P; = Pj,,Vi # j} ;
4 f’C «— k-metric objective function value when

parameter setting is {P; = p;,,, Pj = Pj,,Vi#j};
éfp <_fp1 _fpn’
if 5fP > 0then
explore P; in descending order ;
‘ kli] — descendmg
!

_ 9 [i] —pf,
Zwk =1 (4) 10 else

11 explore P; in ascending order ;

where f(s) denotes the objective function characterizing*? P%[’] — ascending ;

application metrics and weight factorgi(s) and wy, in 1 end URS O

(4) denote the objective function and weight factor for thess end

k™ application metric, respectively, given that there are 16 end

application metrics. Each state € S has an associated ~ return Py, Py,Vke {1,...,m}

objective function value and the optimization goal is to Algorithm 1: One-shot dynamic optimization algorithm.
determine a state that gives the maximum (optimal) objectiv
function value f°Pt(s) where f°P!(s) indicates the best
possible adherence to the application requirements ghen t
design spacé.

For our dynamic optimization methodology, we consider
three application metricsn{ = 3), which are lifetime,
throughput, and reliability, each with piecewise linear
objective functions. A piecewise linear objective funatio .
captures the desirable and acceptable ranges of a parrticulgnes 3-4).0f% Pi stores the difference betwe@ff and
application metric. For example, for a particular applizat . 3fF, = 0 means thap,, results in a greater (or equal
a lifetime metric may have an acceptable minimum vaIueWhen5fp = 0) objective function value as compareditg
of 40 days and reliability may be a more important metricfor parameter?; (i.e., the objective function value decreases
than the lifetime. The objective function delineates this@s the parameter value decreases). To reduce the number of
inter-metric relative importance and attainable appiigat States explored while considering that an online optinozat
metric values. Even though we consider piecewise linea@lgorithm (e.g., greedy-based algorithm) will typicaltps
objective functions, our methodology works well for any exploring a tunable parameter if a tunable parameter'sevalu
other objective function characterization (e.g., lineson- ~ Yields a comparatively lower (or equal) objective function

s.t. SGS
wr >0, k=1,2,...,m.
wp, <1, k=12,...,m.

0 N O

tunable parameters. The algorithm determlfyés and fp

(the k™ application metric objective function values) where
the parameter being exploref is assigned its firsp;,
and lastp;, tunable values, respectively, and the rest of the
tunable parameter ,Vj # i are assigned initial values

linear). value, P;'s exploration order must be descending (lines 6-
8). The algorithm assigng,;, as the initial value ofP;
D. One-Shot Dynamic Optimization Algorithm for the k™ application metric (line 9). Ifsff, < 0, the

In this subsection, we describe associated algorithn@lgorithm assigns the exploration order as ascendingfor
for One-Shot. The algorithm determines initial tunableandpn as the initial value setting af; (lines 11-13). This
parameter value settings and exploration order (ascendindy#, calculation procedure is repeated for allapplication
or descending). metrics and allN tunable parameters (lines 1-16).

Algorithm 1 describes One-Shot’s algorithm to determine
initial tunable parameter value settings and exploration
order. The algorithm takes as input the objective function !ll. APPLICATION METRIC ESTIMATION MODEL
f(s), the number of tunable parametehs, the number
of values for each tunable parameter the number of In this section, we propose an application metric
application metricsn, and P where P represents a vector estimation model leveraged by One-Shot. This estimation
containing the tunable parameteB,= {P;, P5,..., Px}. model estimates high-level application metrics (lifetime
For each application metrié, the algorithm calculates throughput, reliability) from sensor node parameters.{e.g
vectors P¥ and P%¥ (where d denotes the exploration processor voltage and frequency, transceiver voltage). etc
direction (ascending or descending)), which store théainit For brevity, we describe only the estimation model's key
value settings and exploration order, respectively, fa&r th elements.

A. Lifetime Estimation consume energy while taking sensing measurements and

Lifetime of a sensor node is defined as the time duratiorsWitch to the idle mode for energy conservation while not
between the deployment time and the time before whict$€NSING.Es.,, IS given by:
the sensor node fails to perform the assigned task due E. —E" 4 g 9)
to sensor node failure. The sensor failure due to battery sen sen sen

energy depletion is normally taken into account for lifetim where E™ denotes the sensing measurement energy per

estimation. The sensor node typically contains AA alkalinengyr ané%li denotes the sensing idle energy per hour.

batteries whose energy depletes gradually as the senser nod o
consumes energy during operation. The critical factors irB. Throughput Estimation
determining sensor node lifetime are battery energy and

: . . In the context of dynamic optimizationtyroughputcan
energy consumption during operation.

2 . _ be interpreted relative to the state (tunable parameter

The sensor node lifetime in days, can be estimated as: value settings) that deliver the maximum quality

_ Ey 5) (rate) sensing process, processing, and transmission to
E.x 24 observe a phenomenon while minimizing the cost (energy

where E;, denotes the sensor node’s battery energy (Joulegonsumption). Three processes contribute to the throughpu
and E. denotes the sensor node’s energy Consumption pépl' sensor nodes: sensing, processing, and communication.

Ly

hour. The throughput interpretation may vary depending upon
We model E, as the sum of processing energy, the WSN application design as these throughputs can have
communication energy, and sensing energy: different relative importance for different applicatioriche
aggregate throughput (typically measured in bits/second)
Ee = Eproc + Ecom + Esen (J) (6) can be considered as a weighted sum of constituent

whereE,;oc, Ecom, and Es.,, denote processing energy per throughputs:

hour, communication energy per hour, and sensing energy, _

per hour, respectively. o
The processing energgiccounts for the energy consumed yhere R..,,, Rproe, and Re,, denote the sensing

in processing the sensed data by the sensor node’s process@foughput, processing throughput, and communication

We assume that the sensor node’s processor operates tifroughput, respectively.w,, w,, and w, denote the

two modes: active mode and idle mode [12]. We point outyeight factors for sensing, processing, and communication

that although we only consider active and idle modes, ahroughput, respectively.

processor operating in other sleep modes apart from idle The sensing throughput is the throughput due to sensing

mode (e.g., power-down, power-save, standby, etc.) can alsctivity and measures the sensing bits sampled per second.

sRsen+waproc+chcom : Ws"'wp"'wc =1 (10)

be incorporated in our modek,,,... is given by: Rge is given by:
Eproc - EZTOC + E;TOC (7) Rsen = FS : Rls)en (11)
where Ej,,. and E/ . denote the processor's energy

. . .
consumption per hour in active mode and idle modeVNere s and i, denote sensing frequency and sensing

res ; resolution bits, respectively.
pectively. . ,

The sensor nodes communicate with each other (e.g., "€ Processing throughput is the throughput due to
send packets containing the sensed data), which consumihe processor's processing of sensed measurements and
communication energyThe communication energy is the Measures the bits processed per secéi,. is given by:
sum ,of transm_|55|9n, receive, and idle energy for a sensor Ryroc = Fp/Nb (12)
node’s transceiver:
®) where F, and N® denote processor frequency and the

number of processor instructions to process one bit,
where El*, ., Eiz ., andE;, ... denote the transceiver's respectively.
transmission energy per hour, receive energy per hour, and The communication throughpu®.,,, results from the
idle energy per hour, respectively. transfer of data packets over the wireless channel and is

The energy consumption due to sensing the observegiven by:
phenomenon is termed asensing energy The sensing _ peff pkt
energy mainly depends upon the sensing (sampling) Beom = P77 < 8/t 13)
frequency and the number of sensors attached to the sensoheret”*" denotes the time to transmit one packet #fd’
board (e.g., the MTS400 sensor board [13] has Sensiriodenotes the effective packet size excluding the packetdread
SHT1x temperature and humidity sensors [14]). The sensomsverhead.

_ tx rT 7
ECOm - Etrans + Etrans + Etrans

C. Reliability Estimation and maximum values of application metrics and their

The reliability metric measures the number of packets2SSociated weight factors considering typical applicatio

transferred reliably (i.e., error free packet transmissio eduirements [18]. , _ _

over the wireless channel. Accurate reliability estimatio !N order to evaluate One-Shots 5?'“?'90 quality, we
is challenging because the various factors involved®®MpPare thg solution from One.-Shots initial parameter
change dynamically, such as network topology, number opettingsZ with the solutions obtained from the following

neighboring sensor nodes, wireless channel fading, sensffur Potential initial parameter value settings (althowgty
network traffic, packet size, etc. The two main factorsfeasible n-tuples € S can be taken as the initial parameter

that affect reliability are transceiver transmission powe S€ltings):Z: assigns the first parameter value for each
P,, and receiver sensitivity. For example, the AT86RF230tuUnable parameter (i.eZ; = p;,, Vi€ {1,2,...,N}); I
transceiver [15] has a receiver sensitivity of -101 dBm with@SSigns the last parameter value for each tunable parameter
corresponding packet error rate (PER)1% for additve (-€» 7o = pi,, ¥V i € {1,2,...,N}); T assigns the
white Gaussian noise (AWGN) channel with physical servicgMiddle parameter value for each tunable parameter (i.e.,
data unit (PSDU) equal to 20 bytes. Reliability can beZs = [Pi./2], Vi € {1,2,...,N}); Z, assigns a random
estimated using Friis free space transmission equatiop [18/@U€ for each tunable parameter (i€, = pi, : ¢ =

for different P, values, distance between transmittingrand() %on, Vie{l,2,....N}).

and re(.:eiving. sensor node;, _a}nd fading models (e.9g Results

shadowing fading model). Reliability values can be assigne

corresponding td?, values such that the highé},. values We implemented One-Shot in C++. We compare our

give higher reliability. However, more accurate reliatyili rgsult.s with four(;jﬁferentl.mln?]l patr)gm(_aterfarra_ngemﬁnt
estimation requires profiling statistics for the number of(ection IV-A) and normalize the objective function value

packets transmitted and the number of packets received. corresponding to the operating state attained by One-Shot
with respect to the optimal solution obtained using an

IV. EXPERIMENTAL RESULTS exhaustive search. We compare the relative complexity
of One-Shot with two other dynamic optimization
methodologies.

We base our experimental setup on the Crossbow IRIS 1) Percentage Improvements over other Initial Parameter
mote platform [17], which has a battery capacity of 2000Settings: Table | depicts the percentage improvements
mA-h with two AA alkaline batteries. The IRIS mote attained by One-Shot parameter settingsover other
platform integrates an Atmel ATmegal281 microcontrollerparameter settings for different application domains. We
[12], an Atmel AT-86RF230 low power 2.4 GHz transceiver observe that some arbitrary settings may give a comparable
[15], an MTS400 sensor board [13] with Sensirion SHT1xsolution for a particular application domain, application
temperature and humidity sensors [14]. metric weight factors, and design space cardinality, but

We analyze six tunable parameters: processor voltagthat arbitrary setting would not scale to other application
Vp, processor frequencyF,, sensing frequencyFs, domains, application metric weight factors, and desigrespa
packet size P,, packet transmission intervaP,;, and cardinalities. For examplel; achieves the same solution
transceiver transmission powe?.,. In order to evaluate quality as ofZ for AC, but yields 73.27% and 147.87%
our methodology across small and large design spaces, wewer quality solutions thaff for HC and S/D, respectively,
consider two design space cardinalities (hnumber of states ifor |S| = 31,104. FurthermoreZ; yields a 51.85% lower
the design space)S| = 729 and|S| = 31,104 (|S| =729 quality solution thar¥ for AC when|S| = 729. The average
is a subset of S| = 31,104). The tunable parameters for percentage improvement attained Byover all application
|S| = 31,104 areV,, = {1.8, 2.7, 3.3, 4, 4.5, 5(volts), F), domains and design spaces is 44.79%. In summary, results
={2, 4,6, 8, 12, 18 (MHz) [12], F; = {0.2, 0.5, 1, 2, 3, reveal that on averadg€ gives a solution within 5.92% of
4} (samples per second) [14R; = {32, 41, 56, 64, 100, the optimal solution obtained from exhaustive search.

127} (bytes),P;; = {10, 30, 60, 300, 600, 120(seconds), 2) Comparison with Greedy- and SA-based Dynamic
and P, = {-17, -3, 1, 3 (dBm) [15]. All state space tuples Optimization MethodologiesiIn order to investigate the
are feasible folS| = 729, whereas S| = 31,104 contains effectiveness of One-Shot, we compare the One-Shot
7,779 infeasible state space tuples (e.g.}aland F, pairs solution’s quality (indicated by the attained objective
are not feasible). function value) with two other dynamic optimization

We model three application domains (a security/defensenethodologies, which leverage SA-based and greedy-based
system (S/D), a health care application (HC), and an ambier(tenoted by GE° where asc stands for ascending order of
conditions monitoring application (AC)) to evaluate the parameter exploration) design space exploration. We mssig
robustness of One-Shot across different applications. Waitial parameter value settings for greedy and SA-based
assign objective function parameter values such as minimumnethodologies ag; and Z,, respectively. For brevity we

A. Experimental Setup

Table |
PERCENTAGE IMPROVEMENTS ATTAINED BYZ OVER OTHER INITIAL PARAMETER SETTINGS FORS| = 729 AND |S| = 31, 104.

— |S| =729 |S| = 31,104
Application Domain o | . | Is T4 T, | . | Iz | T
Security/Defense System (S/D) 154.9% | 10.25% | 56.62% | 29.18% | 147.87% | 0.318% | 9.72% 91.88%
Health Care (HC) 77.6% 6.66% | 30.73% | 10.86% | 73.27% | 0.267% | 9.62% 45.17%
Ambient Conditions Monitoring (AC)| 51.85% | 6.17% | 20.39% | 6.85% 0% 75.5% | 50.97% | 108.31%

-

T T — T T T T T T T — T T T
Il One-Shot Il One-Shof]
Ecp™* 3 Himlepe

i [sA i || sA

il

7 8 10 11 12 50 100 400
Number of States Explored

© © o o o o
2 0 o N » o
— 117

Normalized Objective Function
g
T

Normalized Objective Function

o o
BN

o
T

1 2 3 4 4 11 12 50 100 400

6 7 8 9 10
Number of States Explored

Figure 2. Obijective function value normalized to the optiswution for Figure 4. Objective function value normalized to the optisution for
S/D wherew; = 0.25, wy = 0.35, wyr = 0.4, |S| = 729. AC wherew; = 0.4, wy = 0.5, wr = 0.1, |S| = 729.

the optimal solution versus number of states explored for

I One-Shof

Eoo] HC for | S| = 31, 104. One-shot’s solution is within 1.5% of

CIsA

explores 6 states (0.019% of the design space) to yield
a better quality solution than One-shot’s solution. These
results reveal that the greedy exploration of parametegs ma
not necessarily attain a better quality solution than OhetS
Fig. 4 shows the objective function value normalized
S ombor of Staes aplosy L 2 0 10 40 to the optimal solution versus number of states explored
Figure 3. Objective function value normalized to the optismiution for ~ fOr AC for |S| = 729. One-Shot solution is within 7.7%
HC wherew; = 0.25, w; = 0.35, w, = 0.4, | S| = 31, 104. of the optimal solution. The figure shows that &band
SA converge to an equivalent or better quality solution
present results foffl; and Z,, but results forZ, and Z3 than One-Shot solution after exploring 4 states (0.549%
revealed similar trends. of the design space) and 10 states (1.37% of the design
Fig. 2 shows the objective function value normalized tospace), respectively. These results show that greedy and SA
the optimal solution versus the number of states explored focan provide improved results over One-Shot, but require
One-Shot, GB*, and SA algorithms for S/D fopS| = 729. additional state exploration.
One-Shot’s solution is within 1.8% of the optimal solution. 3) Computational ComplexityTo verify that One-Shot
The figure shows that GB¥ and SA explore 11 states (Section II) is lightweight, we compared the data memory
(1.51% of the design space) and 10 states (1.37% of theequirements and execution time of One-Shot with greedy-
design space), respectively, to attain an equivalent detbet and SA-based dynamic optimization methodologies.
quality solution than the One-Shot solution. Although giee The data memory analysis revealed that One-Shot requires
and SA explore few states to reach a comparable solutioonly 150, 188, 248, and 416 bytes for (number of tunable
as that of One-Shot, One-Shot is suitable when desigparametersN, number of application metricsn) equal
space exploration is not an option due to an extremelyo (3, 2), (3, 3), (6, 3), and (6, 6), respectively. Greedy
large design space and/or extremely stringent computtion requires 458, 528, 574, 870, and 886 bytes, whereas SA
memory, and timing constraints. These results reveal thaiequires 514, 582, 624, 920, and 936 bytes of storage
other arbitrary initial value settings do not provide a goodfor |S| = 8,81,729,31104, 46656, respectively. The data
quality operating state and necessitate additional desigmemory analysis shows that SA has comparatively larger
space exploration to provide a good quality operating statememory requirements than greedy. Our analysis reveals
Fig. 3 shows the objective function value normalized tothat the data memory requirements for One-Shot increases

Normalized Objective Function

] the optimal solution. The figure shows that &bconverges
| to a lower quality solution than One-Shot'’s solution after
1 exploring 8 states (0.026% of the design space) and SA

linearly as the number of tunable parameters and theomplexity analysis revealed that One-Shot used 203.94%
number of application metrics increases. The data memorgnd 457.94% less memory and required 18.325% less
requirements for greedy and SA increases linearly as thexecution time on average as compared to greedy- and
number of tunable parameters and tunable values (and thi®A-based methodologies. Execution time and data memory
the design space) increases. The data memory analyssalysis confirmed that One-Shot is lightweight and sugtabl
verifies that although One-Shot, greedy, and SA havdor time-critical or highly constrained applications.

low data memory requirements (on the order of hundreds Future work includes incorporating profiling statistictoin

of bytes), One-Shot requires 203.94% and 457.94% les®ne-Shot to provide feedback with respect to changing
memory on average as compared to greedy and SAgnvironmental stimuli.

respectively.

We measured the execution time for One-Shot, greedy,
and SA averaged over 10,000 runs (to smooth any This work was supported by the National Science
discrepancies in execution time due to operating systerfroundation (CNS-0834080). Any opinions, findings, and
overheads) on an Intel Xeon CPU running at 2.66 GHz [19]00nclusi0ns or recommendations expressed in this material
using the Linux/Unixt i me command [20]. We scaled the are those of the author(s) and do not necessarily reflect the

ACKNOWLEDGMENTS

execution time to the Atmel ATmegal281 microcontroller Views of the National Science Foundation.

[12] running at 8 MHz. Although microcontrollers have
different instruction set architectures and scaling doats n
provide 100% accuracy, scaling enables relative compasiso
and provides reasonable runtime estimates. Results showe(ilz]
that One-Shot required 1.66 ms both fgf| = 729 and

|S| = 31,104. Greedy explored 10 states and required 0.887
ms and 1.33 ms on average to converge to the solution for®!
|S| = 729 and|S| = 31,104, respectively. SA took 2.76 ms

and 2.88 ms to explore the first 10 states (to provide a fair [
comparison with greedy) folS| = 729 and |S| = 31, 104,
respectively. The execution time analysis revealed that [5]
our dynamic optimization methodologies required executio
times on the order of milliseconds, and One-Shot required [g]
18.325% less execution time on average as compared to
greedy and SA. One-Shot required 66.26% and 73.49% lessyy
execution time than SA whej$| = 729 and|S| = 31, 104,
respectively. These results indicate that the design spaceg
cardinality affects the execution time linearly for greedy
and SA whereas One-Shot's execution time is affected [
negligibly by the design space cardinality and hence One-
Shot’'s advantage increases as the design space cardinality
increases. [11]

(1

V. CONCLUSIONS ANDFUTURE WORK [12]

In this paper, we proposed One-Shot — a dynamic
optimization methodology for highly-constrained WSNsttha [13]
provides a high-quality operation state using intelligent
initial tunable parameter value settings. We also propose
an application metric estimation model to estimate high- [15]
level metrics from sensor node parameters. This estimation
model was leveraged by One-Shot and provided a
prototype model for application metric estimation. To [16]
evaluate the effectiveness of initial parameter settings,[17
we compared One-Shot's solution quality with four other
typical initial parameter settings. Results revealed that[8l
the percentage improvement attained by One-Shot overg
other initial parameter settings was as high as 154.9%
and within 5.92% of the optimal solution. Computational 20

REFERENCES

K. Hazelwood and M. Smith, “Managing Bounded Code CadheBynamic
Binary Optimization Systems, ACM Trans. on Architecture and Code Opti-
mization vol. 3, no. 3, pp. 263-294, Sep. 2006.

S. Hu, M. Valluri, and L. John, “Effective Management ofulliple Config-
urable Units using Dynamic OptimizationACM Trans. on Architecture and
Code Optimizationvol. 3, no. 4, pp. 477-501, Dec. 2006.

S. Patel and S. Lumetta, “rePLay: A Hardware Framework Byynamic
Optimization,” [EEE Trans. on Computersol. 50, no. 6, pp. 590-608, June
2001.

C. Zhang, F. Vahid, and R. Lysecky, “A Self-Tuning Cachecliitecture for
Embedded SystemsACM Trans. on Embedded Computing Systevos 3,
no. 2, pp. 407—425, May 2004.

A. Shenoy, J. Hiner, S. Lysecky, R. Lysecky, and A. GordRwss, “Evaluation
of Dynamic Profiling Methodologies for Optimization of SensNetworks,”
IEEE Embedded Systems Lettersl. 2, no. 1, pp. 10-13, Mar. 2010.

A. Munir and A. Gordon-Ross, “An MDP-based Applicatiorriénted Opti-
mal Policy for Wireless Sensor Networks,” froc. ACM CODES+ISSS'09
October 2009.

X. Wang and et al., “Distributed Energy Optimization féarget Tracking in
Wireless Sensor NetworkslEEE Trans. on Mobile Computingol. 9, no. 1,
pp. 73-86, Jan. 2009.

R. Khanna, H. Liu, and H.-H. Chen, “Dynamic OptimizatiohSecure Mobile
Sensor Networks: A Genetic Algorithm,” iRroc. IEEE ICC’07 June 2007.
R. Min, T. Furrer, and A. Chandrakasan, “Dynamic \olt&@maling Techniques
for Distributed Microsensor Networks,” iRroc. IEEE WVLSI'00April 2000.

] L. Yuan and G. Qu, “Design Space Exploration for EneEgfficient Secure

Sensor Network,” irProc. IEEE ASAP’02July 2002.

A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast ConfigueaBlache Tuning With
a Unified Second-Level CachdEEE Trans. on Very Large Scale Integration
(VLSI) Systemsvol. 17, no. 1, pp. 80-91, Jan. 2009.

Atmel, “ATMEL ATmegal281 Microcontroller with 256K Bgs In-System
Programmable Flash,” 2010. [Online]. Available: httpww.atmel.com/dyn/
resources/prodiocuments/2549S.pdf

Crossbow, “MTS/MDA Sensor Board Users Manual,” Julyl@0 [Online].
Available: http://www.xbow.com/

14] Sensirion, “Datasheet SHT1x (SHT10, SHT11, SHT15) fitlity and Tem-

perature Sensor,” July 2010. [Online]. Available: httpuAv.sensirion.com/
Atmel, “ATMEL AT86RF230 Low Power 2.4 GHz Transceiverorf
ZigBee, IEEE 802.15.4, 6LoWPAN, RF4CE and ISM Applicatidns
July 2010. [Online]. Available: http://www.atmel.comiuyesources/prod
documents/doc5131.pdf

H. Friis, “A Note on a Simple Transmission Formul&toc. IRE vol. 34, p.
254, 1946.

] Crossbow, “Crossbow IRIS Datasheet,” July 2010. [@e]i Available: http:

Ilwww.xbow.com/

I. Akyildiz and et al., “Wireless Sensor Networks: A Say,” Elsevier
Computer Networksvol. 38, no. 4, pp. 393-422, Mar. 2002.

“Intel Xeon Processor E5430,” July 2010. [Online]. Aeble: http://
processorfinder.intel.com/details.aspx?sSpec=SLANU

“Linux Man Pages,” July 2010. [Online]. Available: ptt/linux.die.net/man/

