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Abstract—Technological advancements in wireless communi-
cations and embedded systems have led to the proliferation of
wireless sensor network (WSN) applications, each with varying
application requirements (i.e., lifetime, throughput, reliability,
etc.). Sensor node tunable parameters enable WSN designers to
specialize/tune a sensor node to meet application requirements,
but however, parameter tuning is a challenging process that
requires designer expertise to consider sensor node complexities
and changing environmental stimuli. In this paper, we develop
lightweight, online optimization algorithms for sensor node pa-
rameter tuning, which enables dynamic optimizations to meet
application requirements and adapt to changing environmental
stimuli. Results reveal that our online optimizations quickly
converge to a near optimal solution using minimal computational
and storage resources, and are thus amenable for implementation
on resource and energy-constrained sensor nodes.

Index Terms—Wireless sensor networks; dynamic optimiza-
tion; lightweight; low-power;

I. INTRODUCTION AND MOTIVATION

A wireless sensor network (WSN) typically consists

of a set of spatially distributed sensor nodes that

wirelessly communicate with each other to collectively

accomplish an application specific task. Due to technological

advancements in wireless communications and embedded

systems, there exists a plethora of WSN applications, including

security/defense systems, industrial automation, health care,

and logistics.

Given the wide range of WSN applications, an application

designer is left with the challenging task of designing a

WSN while taking into consideration application requirements

(lifetime, throughput, reliability, etc.). Moreover, these

application requirements are affected by environmental stimuli

(e.g., poor wireless channel conditions may necessitate

increased transmission power) and can change over time

as operational situations evolve (e.g., unexpected winds

fuel a dying forest fire). Since commercial off-the shelf

(COTS) sensor nodes have limited resources (i.e., battery

lifetime, processing power, etc.), delicate design and tradeoff

considerations are necessary to meet often competing

application requirements (e.g., high processing requirements

with long lifetime requirements).

In order to meet a wide range of application requirements,

COTS sensor nodes are generically designed, but however,

tunable parameters (e.g., processor voltage, processor

frequency, sensing frequency, radio transmission power, packet

size, etc.) enable the sensor node to tune operation to meet

application requirements. Nevertheless, application designers

are left with the task of parameter tuning during WSN

design time. Parameter tuning is the process of assigning

appropriate values for sensor node tunable parameters in order

to meet application requirements. Parameter tuning involves

several challenges such as optimal parameter value selection

given large design spaces, consideration for competing

application requirements and tunable parameters, difficulties

in creating accurate simulation environments, slow simulation

times, etc. In addition, design time static determination of

these parameters leaves the sensor node with little or no

flexibility to adapt to the actual operating environment.

Furthermore, many application designers are non-experts (e.g.,

agriculturist, biologists, etc.) and lack sufficient expertise for

parameter tuning. Therefore, autonomous parameter tuning

methodologies may alleviate many of these design challenges.

Dynamic optimizations enable autonomous sensor node

parameter tuning using special hardware/software algorithms

to determine parameter values in situ according to application

requirements and changing environmental stimuli. Dynamic

optimizations require minimal application designer effort

and enable application designers to specify only high-level

application requirements without knowledge of parameter

specifics. Nevertheless, dynamic optimizations rely on fast

and lightweight online optimization algorithms for in situ

parameter tuning.

The dynamic profiling and optimization project aspires

at alleviating the complexities associated with sensor-

based system design through the use of dynamic profiling

methods capable of observing application-level behavior

and dynamic optimization to tune the underlying platform

accordingly [1]. The dynamic profiling and optimization

project has evaluated dynamic profiling methods for observing

application-level behavior by gathering profiling statistics,

but dynamic optimization methods still need exploration. In

our previous work [2], we proposed a Markov Decision

Process (MDP)-based methodology to prescribe optimal

sensor node operation to meet application requirements and

adapt to changing environmental stimuli. However, the MDP-

based policy was not autonomous because the methodology

required the application designer to orchestrate MDP-based



policy reevaluation whenever application requirements and

environmental stimuli changed. In addition, since policy

reevaluation was computationally and memory expensive, this

process was done offline on a powerful desktop machine.

To enable in situ autonomous WSN dynamic optimizations,

we propose an online WSN optimization methodology

which extends static design time parameter tuning [3].

Our methodology is advantageous over static design time

parameter tuning because our methodology enables the

sensor node to automatically adapt to actual changing

environmental stimuli, resulting in closer adherence to

application requirements. Furthermore, our methodology is

more amenable to non-expert application designers and

requires no application designer effort after initial WSN

deployment. Lightweight (low computational and memory

resources) online algorithms are crucial for sensor nodes

considering limited processing, storage, and energy resources

of sensor nodes. Our online lightweight optimization

algorithms impart fast design space exploration to yield an

optimal or near optimal parameter value selection.

II. RELATED WORK

There exists much research in the area of dynamic

optimizations [4][5][6][7], but however, most previous work

focuses on the processor or memory (cache) in computer

systems. Whereas these endeavors can provide valuable

insights into WSN dynamic optimizations, they are not directly

applicable to WSNs due to different design spaces, platform

particulars, and a sensor node’s tight design constraints.

In the area of WSN dynamic profiling and optimizations,

Sridharan et al. [8] obtained accurate environmental stimuli

by dynamically profiling the WSN’s operating environment,

but however, did not propose any methodology to leverage

these profiling statistics for optimizations. In our previous

work [2], we proposed an automated Markov Decision Process

(MDP)-based methodology to prescribe optimal sensor node

operation to meet application requirements and adapt to

changing environmental stimuli. Kogekar et al. [9] proposed

an approach for dynamic software reconfiguration in WSNs

using dynamically adaptive software, which used tasks to

detect environmental changes (event occurrences) and adapt

the software to the new conditions. Their work did not consider

sensor node tunable parameters.

Several papers explored dynamic voltage and frequency

scaling (DVFS) for reduced energy consumption in WSNs.

Min et al. [10] demonstrated that dynamic processor voltage

scaling reduced energy consumption by 60%. Similarly, Yuan

et al. [11] studied a DVFS system that used additional

transmitted data packet information to select appropriate

processor voltage and frequency values. Although DVFS

provides a mechanism for dynamic optimizations, considering

additional sensor node tunable parameters increases the design

space and the sensor node’s ability to meet application

requirements. To the best of our knowledge, our work is the

first to explore an extensive sensor node design space.

Some previous works in WSN optimizations explore

greedy and simulated annealing (SA)-based methods, but

these previous works did not analyze execution time and

memory requirements. Huber et al. [12] maximized the

amount of data gathered using a distributed greedy scheduling

algorithm that aimed at determining an optimal sensing

schedule, which consisted of a time sequence of scheduled

sensor node measurements. In prior work, Lysecky et al.

[3] proposed an SA-based automated application specific

tuning of parameterized sensor-based embedded systems and

found that automated tuning can improve WSN operation

by 40% on average. Verma [13] studied SA and particle

swarm optimization (PSO) methods for automated application

specific tuning and observed that SA performed better than

PSO because PSO often quickly converged to local minima.

Although previous works in WSN optimizations explore

greedy and SA-based methods, these previous works did

not analyze execution time and memory requirements.

Furthermore, the previous works did not investigate greedy

and SA algorithms as online algorithms for dynamic

optimizations. Prior work [3][13] considered a limited design

space with a few sensor node tunable parameters. To

address the deficiencies in previous work, we analyze greedy

and SA algorithms as online algorithms for performing

dynamic optimizations considering a large design space

containing many tunable parameters and values. This fine-

grained design space enables sensor nodes to more closely

meet application requirements, but exacerbates optimization

challenges considering a sensor node’s constrained memory

and computational resources.

III. DYNAMIC OPTIMIZATION METHODOLOGY

In this section, we give an overview of our dynamic

optimization methodology. We also formulate the state space,

objective function, and online lightweight optimization

algorithms/heuristics for our dynamic optimization

methodology.

A. Methodology Overview

Fig. 1 depicts our dynamic optimization methodology. The

application designer specifies application requirements

using high-level application metrics (e.g., lifetime,

throughput, reliability), associated minimum and maximum

desired/acceptable values, and associated weight factors that

specify the importance of each high-level metric with respect

to each other.

The shaded box in Fig. 1 depicts the overall operational

flow, orchestrated by the dynamic optimization controller,

at each sensor node. The dynamic optimization controller

receives application requirements and invokes the dynamic

optimization module. The dynamic optimization module

determines the sensor node’s operating state (tunable

parameter value settings) using an online optimization

algorithm. The sensor node will operate in that state until

a state change is necessary. State changes occur to react to



Fig. 1. Dynamic optimization methodology for WSNs.

changing environmental stimuli using the dynamic profiler

module and profiling statistics processing module.

The dynamic profiler module records profiling statistics

(e.g., wireless channel condition, number of dropped packets,

packet size, radio transmission power, etc.) and the profiling

statistics processing module performs any necessary data

processing. The dynamic optimization controller evaluates

the processed profiling statistics to determine if the current

operating state meets the application requirements. If

the application requirements are not met, the dynamic

optimization controller reinvokes the dynamic optimization

module to determine a new operating state. This feedback

process continues to ensure the selection of an appropriate

operating state to best meet the application requirements.

Currently, our online algorithms do not directly consider these

profiling statistics, but that incorporation is the focus of our

future work.

B. State Space

The state space S for our dynamic optimization

methodology is defined as:

S = S1 × S2 × · · · × SN (1)

whereN denotes the number of tunable parameters, Si denotes

the state space for tunable parameter i, ∀ i ∈ {1, 2, . . . , N},
and × denotes the Cartesian product. Each tunable parameter’s

state space Si consists of n values:

Si = {si1 , si2 , si3 , . . . , sin} : |Si| = n (2)

where |Si| denotes the tunable parameter i’s state space

cardinality (the number of tunable values in Si). S is a set

of n-tuples where each n-tuple represents a sensor node state

s. Note that some n-tuples in S may not be feasible (e.g., all

processor voltage and frequency pairs are not feasible) and

can be regarded as do not care tuples.

C. Objective Function

The sensor node dynamic optimization problem can be

formulated as:

max f(s)

s.t. s ∈ S (3)

where f(s) represents the objective function and captures

application requirements and can be given as:

f(s) =
m
∑

k=1

ωkfk(s)

s.t. s ∈ S

ωk ≥ 0, k = 1, 2, . . . ,m.

ωk ≤ 1, k = 1, 2, . . . ,m.
m
∑

k=1

ωk = 1, (4)

where fk(s) and ωk denote the objective function and weight

factor for the kth application metric, respectively, given

that there are m application metrics. Our objective function

characterization considers lifetime, throughput, and reliability,

i.e., m = 3 (additional application metrics can be included)

and is given as:

f(s) = ωlfl(s) + ωtft(s) + ωrfr(s) (5)

where fl(s), ft(s), and fr(s) denote the lifetime, throughput,
and reliability objective functions, respectively, and ωl, ωt,

and ωr denote the weight factors for lifetime, throughput, and

reliability, respectively.

We consider piecewise linear objective functions for

lifetime, throughput, and reliability [3][13]. We define the

lifetime objective function (Fig. 2) in (5) as:

fl(s) =































1, sl ≥ βl

CUl
+

(Cβl
−CUl

)(sl−Ul)

(βl−Ul)
, Ul ≤ sl < βl

CLl
+

(CUl
−CLl

)(sl−Ll)

(Ul−Ll)
, Ll ≤ sl < Ul

CLl
· (sl−αl)
(Ll−αl)

, αl ≤ sl < Ll

0, sl < αl.

(6)

where sl denotes the lifetime offered by state s, the constant

parameters Ll and Ul denote the desired minimum and

maximum lifetime, and the constant parameters αl and βl

denote the acceptable minimum and maximum lifetime. Using

both desirable and acceptable values enable the application

designer to specify the reward (gain) for operating in either

a desired range or an acceptable range, where the reward

gradient (slope) in the desired range would be greater than the

reward gradient in the acceptable range, but however, there

would be no reward for operating outside of the acceptable

range. The constant parameters CLl
, CUl

, and Cβl
in (6)

denote the lifetime objective function value at Ll, Ul, and βl,

respectively. The throughput and reliability objective functions

can be defined similar to (6).



Fig. 2. Lifetime objective function fl(s).

D. Online Optimization Algorithms

In this subsection, we present our online optimization

algorithms/heuristics for dynamic optimizations. We focus on

two main online optimization algorithms, a greedy and an SA-

based.

Input: f(s), N, n
Output: Sensor node state that maximizes f(s) and the

corresponding f(s) value
µ← initial tunable parameter values ;1

objBestSol← solution from state µ ;2

foreach Sensor Node Tunable Parameter do3

for i← 1 to n do4

objSolTemp← current state β solution ;5

if objSolTemp > objBestSol then6

objBestSol← objSolTemp ;7

µ← β ;8

else9

break ;10

end11

end12

select the next tunable parameter ;13

end14

return µ, objBestSol15

Algorithm 1: Greedy algorithm for sensor node dynamic

optimization.

1) Greedy Algorithm: Algorithm 1 depicts our greedy

algorithm, which takes as input the objective function f(s) (5),
the number of sensor node tunable parameters N , and each

tunable parameter’s design space cardinality n (the algorithm

assumes the same state space cardinality for all tunable

parameters for notational simplicity). The algorithm sets the

initial state µ with initial tunable parameter values (line 1)

and the best solution objective function value objBestSol

to the value obtained from the initial state µ (line 2). The

algorithm explores each parameter in turn, starting from the

last parameter (with state space SN in (1)), while holding all

other parameters fixed according to µ. For each parameter

values (explored in ascending order) denoted as current

state β, the algorithm computes the objective function value

objSolT emp (lines 4 and 5). If the current state results

in an improvement in the objective function value (line 6),

objSolT emp and µ are updated to the new best state (lines 6 -

8). This process continues until there is no objective function

value improvement (objSolT emp < objBestSol), at which

point that parameter value is fixed (lines 9 - 11) and the next

parameter is explored (e.g., SN−1 is explored after SN (1)).

After exploring all parameters (lines 3 - 14), the algorithm

returns the best state µ and µ’s objective function value

objBestSol (line 15).

In the greedy algorithm, the exploration order of the

Input: f(s), N , n, T0, α, c0, t0
Output: Sensor node state that maximizes f(s) and the

corresponding f(s) value
c, t, q← 0 ;1

µ← rand()%N ;2

Tq ← T0 ;3

objSolInit← solution from state µ ;4

objSolTemp← objSolInit ;5

objBestSol← objSolInit ;6

q← q + 1 ;7

while t < t0 do8

while c < c0 do9

if rand() > RAND MAX/2 then10

β ← |(µ+ rand()%N)|%N ;11

else12

β ← |(µ− rand()%N)|%N ;13

end14

objSolNew← new state β solution ;15

if objSolNew > bestSol then16

objBestSol← objSolNew ;17

ζ ← β ;18

end19

if objSolNew > objSolTemp then20

P← 1 ;21

else22

P← exp((objSolNew − objSolTemp)/Tq ) ;23

end24

rP← rand()/RAND MAX;25

if P > rP then26

objSolTemp← objSolNew ;27

ζ ← β ;28

end29

q← q + 1 ;30

c← c + 1 ;31

end32

Tq ← α · Tq ;33

t← t + 1 ;34

c← 0 ;35

end36

return ζ , objBestSol37

Algorithm 2: Simulated annealing algorithm for sensor node

dynamic optimization.

tunable parameters and parameter values (i.e., ascending or

descending) can be governed by high-level metric weight

factors to produce higher quality results and/or explore fewer

states. For example, parameters with the greatest effect on

a high-level metric with a high weight factor could be

explored first. Currently, our greedy algorithm explores tunable

parameter values in ascending order considering a generic

WSN application assuming all weight factors to be equal (i.e.,

ωl = ωt = ωr in (5)). However, our future work will explore

specializing parameter exploration with respect to high-level

metrics and weight factors.

2) Simulated Annealing Algorithm: Algorithm 2 depicts

our SA algorithm, which takes as input the objective function

f(s) (5), the number of sensor node tunable parameters N ,

each tunable parameter’s design space cardinality n, the SA

initial temperature T0, the cooling schedule scale factor α

(which determines the annealing schedule), the number of

trials c0 performed at each temperature ti, and the total number

of temperature reductions t0. The algorithm performs the

following initializations (lines 1 – 6): the number of trials c at a

given temperature ti, the number of temperature reductions t,



and the number of states explored q are initialized to zero (line

1); the initial values for all tunable parameters µ where |µ| =
N are set pseudo-randomly (line 2) [14]; the current annealing

temperature Tq is initialized to T0 (line 3); the initial state µ’s

objective function value is assigned to the variable objSolInit

(line 4); the current state objective function value objSolT emp

and the best state objective function value objBestSol are

initialized to objSolInit (lines 5 and 6).

The algorithm begins the state exploration by first

incrementing the number of states explored q from 0 to

1 (line 7). For each trial (lines 10 – 31), the algorithm

explores new neighboring states β where |β| = N pseudo-

randomly (lines 10 – 14) in search of a better solution and

calculates the resulting objective function value objSolNew

(line 15). If the new state β offers a higher objective function

value as compared to the previous objBestSol, the new

state becomes the best solution (lines 16 – 19), otherwise

the algorithm determines the acceptance probability P of

the new state being selected as the current state using the

Metropolis-Hastings random walk algorithm (lines 20 – 29)

[15]. At high temperatures, the Metropolis-Hastings algorithm

accepts all moves (random walk) while at low temperatures,

the Metropolis-Hastings algorithm performs stochastic hill-

climbing (the acceptance probability depends on the difference

between the objective function and the annealing temperature).

At the end of each trial, the annealing temperature is decreased

exponentially (line 33) and the process continues until t→ t0
(lines 8 – 36). After all trials have completed, the algorithm

returns the current best state ζ and the resulting objective

function value objBestSol (line 37).

The selection of the SA algorithm’s parameters is critical

in determining a good quality solution for sensor node

parameter tuning. Specifically, the selection of the T0 value

is important because an inappropriate T0 value may yield

lower quality solutions. We propose to set T0 equal to

the maximal objective function difference between any two

neighboring states (i.e., T0 = max |4f(s)| where 4f(s)
denotes the objective function difference between any two

neighboring states). This proposition is an extension of T0

selection based on the maximal energy difference between

neighboring states [15][16]. However, it is not possible to

estimate max |4f(s)| between two neighboring states because
SA explores the design space pseudo-randomly. We propose

an approximation T0 ≈ |max |f(s)| − min |f(s)|| where

min |f(s)| andmax |f(s)| denote the minimum and maximum

objective function values in the design space, respectively. The

exhaustive search algorithm can be used to find min |f(s)|
and max |f(s)| by minimizing and maximizing the objective

function, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and

experimental results for greedy and simulated annealing (SA)

algorithms for different application domains. These results

evaluate the greedy and SA algorithms in terms of solution

quality and the percentage of state space explored. We also

present data memory, execution time, and energy results to

provide insights into the complexity and energy requirements

of our online algorithms.

A. Experimental Setup

Our experiments are based on the Crossbow IRIS motes [17]

that operate using two AA alkaline batteries with a battery

capacity of 2000 mA-h. This platform integrates an Atmel

ATmega1281 microcontroller [18], an Atmel AT-86RF230

low power 2.4 GHz transceiver [19], and a MTS400 sensor

board [20] with Sensirion SHT1x humidity and temperature

sensors [21]. In order to investigate the fidelity of our online

algorithms across small and large design spaces, we consider

two design space cardinalities (number of states in the design

space) |S| = 729 and |S| = 31, 104. The state space |S| = 729
results from six tunable parameters with three tunable values

each: processor voltage Vp = {2.7, 3.3, 4} (volts), processor

frequency Fp = {4, 6, 8} (MHz) [18], sensing frequency Fs

= {1, 2, 3} (samples per second) [21], packet transmission

interval Pti = {60, 300, 600} (seconds), packet size Ps

= {41, 56, 64} (bytes), and transceiver transmission power

Ptx = {-17, -3, 1} (dBm) [19]. The tunable parameters for

|S| = 31, 104 are Vp = {1.8, 2.7, 3.3, 4, 4.5, 5} (volts), Fp =

{2, 4, 6, 8, 12, 16} (MHz) [18], Fs = {0.2, 0.5, 1, 2, 3, 4}
(samples per second) [21], Ps = {32, 41, 56, 64, 100, 127}
(bytes), Pti = {10, 30, 60, 300, 600, 1200} (seconds), and

Ptx = {-17, -3, 1, 3} (dBm) [19]. All state space tuples are

feasible for |S| = 729, whereas |S| = 31, 104 contains 7,779

infeasible state space tuples (e.g., all Vp and Fp pairs are not

feasible).

We analyze three sample application domains: a

security/defense system, a health care application, and

an ambient conditions monitoring application. To model each

application domain, we assign application specific values for

the desirable minimum L, desirable maximum U , acceptable

minimum α, and acceptable maximum β objective function

parameter values for application metrics and associated

weight factors. We specify the objective function parameters

as a multiple of a base unit where one lifetime unit is equal

to 5 days, one throughput unit is equal to 20 kbps, and one

reliability unit is equal to 0.05 (percentage of error-free packet

transmissions). We assign application metric values for an

application considering the application’s typical requirements

[2]. For example, a health care application with a sensor

implanted into a patient to monitor physiological data (e.g.,

heart rate, glucose level, etc.) may have a longer lifetime

requirement because frequent battery replacement may be

difficult. Table I depicts the application requirements in

terms of objective function parameter values for the three

application domains.

The lifetime, throughput, and reliability objective function

values corresponding to the desirable minimum and maximum

parameter values are 0.1 and 0.9, respectively and the objective

function values corresponding to the acceptable minimum and

maximum parameter values are 0 and 1, respectively.



TABLE I
DESIRABLE MINIMUM L, DESIRABLE MAXIMUM U , ACCEPTABLE

MINIMUM α, AND ACCEPTABLE MAXIMUM β OBJECTIVE FUNCTION

PARAMETER VALUES FOR A SECURITY/DEFENSE SYSTEM, HEALTH CARE,
AND AN AMBIENT CONDITIONS MONITORING APPLICATION. ONE

LIFETIME UNIT = 5 DAYS, ONE THROUGHPUT UNIT = 20 KBPS, ONE
RELIABILITY UNIT = 0.05.

Notation Security/Defense Health Care Ambient Monitoring

Ll 8 units 12 units 6 units

Ul 30 units 32 units 40 units

αl 1 units 2 units 3 units

βl 36 units 40 units 60 units

Lt 20 units 19 units 15 unit

Ut 34 units 36 units 29 units

αt 0.5 units 0.4 units 0.05 units

βt 45 units 47 units 35 units

Lr 14 units 12 units 11 units

Ur 19.8 units 17 units 16 units

αr 10 units 8 units 6 units

βr 20 units 20 units 20 units
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Fig. 3. Objective function value normalized to the optimal solution for a
varying number of states explored for the greedy and simulated annealing
algorithms for a security/defense system where ωl = 0.25, ωt = 0.35,
ωr = 0.4, |S| = 729.

For brevity, we selected a single sample WSN platform

configuration and three application domains, but we point

out that our dynamic optimization methodology and online

optimization algorithms are equally applicable to any WSN

platform and application.

B. Results

We implemented our greedy and SA-based online

optimization algorithms in C++ and evaluated the algorithms

in terms of the percentage of the design space explored,

the quality (objective function value) of each algorithm’s

determined best state as compared to the optimal state

determined using an exhaustive search, and the total execution

time. We also performed data memory and energy analysis to

analyze scalability for different design space sizes.

Fig. 3 shows the objective function value normalized to the

optimal solution for the SA and greedy algorithms versus the

number of states explored for a security/defense system for

|S| = 729 where ωl = 0.25, ωt = 0.35, and ωr = 0.4. The SA
parameters are calculated as outlined in Section III-D2 (e.g.,

T0 = |max |f(s)|−min |f(s)|| = |0.7737−0.1321|= 0.6416
and α = 0.8 [15]). Fig. 3 shows that the greedy and SA
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Fig. 4. Objective function value normalized to the optimal solution for a
varying number of states explored for the greedy and simulated annealing
algorithms for a health care application where ωl = 0.25, ωt = 0.35, ωr =
0.4, |S| = 729.

algorithms converged to a steady state solution after exploring

11 and 400 states, respectively. These convergence results

show that the greedy algorithm converged to the final solution

faster than the SA algorithm, exploring only 1.51% of the

design space, whereas the SA algorithm explored 54.87%

of the design space. The figure reveals that the average

growth rate for increasing solution quality was faster in the

initial iterations than in the later iterations. Fig. 3 shows an

average growth rate of approximately 22.96% and 52.56%

for the initial iterations for the greedy and SA algorithms,

respectively, and decreased to 12.8% and 0.00322% for the

later iterations of the greedy and SA algorithms, respectively.

Both the algorithms converged to the optimal solution as was

obtained from an exhaustive search of the design space.

Fig. 4 shows the objective function value normalized to the

optimal solution for the SA and greedy algorithms versus the

number of states explored for a health care application for

|S| = 729 where ωl = 0.25, ωt = 0.35, and ωr = 0.4. The
SA parameters are T0 = |0.7472 − 0.2254| = 0.5218 and

α = 0.8 [15]. Fig. 4 shows that the greedy and SA algorithms

converged to a steady state solution after exploring 11 states

(1.51% of the design space) and 400 states (54.87% of the

design space), respectively. The SA algorithm converged to

the optimal solution after exploring 400 states whereas the

greedy algorithm’s solution quality after exploring 11 states

was within 0.027% of the optimal solution. Fig. 4 shows

an average growth rate of approximately 11.76% and 5.22%

for the initial iterations for the greedy and SA algorithms,

respectively, and decreased to 2.27% and 0.001% for the later

iterations of the greedy and SA algorithms, respectively.

Fig. 5 shows the objective function value normalized to the

optimal solution for the SA and greedy algorithms versus the

number of states explored for an ambient condition monitoring

application for |S| = 31, 104 where ωl = 0.6, ωt = 0.25,
ωr = 0.15. The SA parameters are T0 = |0.8191− 0.2163| =
0.6028 and α = 0.8 [15]. Fig. 5 shows that the greedy and SA
algorithms converged to a steady state solution after exploring

9 states (0.029% of the design space) and 400 states (1.29%

of the design space), respectively (this represents a similar

trend as for the security/defense and health care applications).

The greedy and SA algorithms’ solutions after exploring 9
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Fig. 5. Objective function value normalized to the optimal solution for a
varying number of states explored for the greedy and simulated annealing
algorithms for an ambient conditions monitoring application where ωl = 0.6,
ωt = 0.25, ωr = 0.15, |S| = 31, 104.

and 400 states are within 6.6% and 0.5% of the optimal

solution, respectively. Fig. 5 shows an average growth rate

of approximately 5.02% and 8.16% for the initial iterations

for the greedy and SA algorithms, respectively, and 0.11%

and 0.0017% for the later iterations of the greedy and SA

algorithms, respectively.

The results also provide insights into the convergence rates

and reveal that even though the design space cardinality

increases by 43x (from 729 to 31,104), the greedy and SA

algorithms still explore only a small percentage of the design

space and result in high-quality solutions. The results indicate

that the SA algorithm converges to the optimal (or near

optimal) solution slowly, however, the SA algorithm can result

in a desired solution quality by controlling the allowable

number of states explored. The results reveal that for tightly

constrained runtimes, the greedy algorithm can provide better

results than the SA algorithm (e.g., when exploration of only

6 states (0.82% of S) or less is allowed), however, the SA

algorithm requires longer runtimes to achieve a near optimal

solutions (e.g., the greedy algorithm obtained a solution within

8.3% of the optimal solution on average after exploring

1.37% of design space whereas the SA algorithm obtained

a solution within 0.237% of the optimal solution on average

after exploring 54.87% of design space for |S| = 729).
To verify that our algorithms are lightweight, we analyzed

the execution time, energy consumption, and data memory

requirements. We measured the execution time (averaged over

10,000 runs to smooth any discrepancies due to operating

system overheads) for both algorithms on an Intel Xeon

CPU running at 2.66 GHz [22] using the Linux/Unix time

command [23]. We scaled these runtimes to the Atmel

ATmega1281 microcontroller [18] running at 8 MHz. Whereas

this scaling does not provide exact absolute runtimes for the

Atmel processor, the comparison of these values provides

valuable insights. For each SA run, we initialized the

pseudo-random number generator with a different seed using

srand() [24]. We observe that the greedy algorithm explores

1 (0.14% of the design space S), 4 (0.55% of S), and 10

(1.37% of S) states in 0.366, 0.732, and 0.964 ms, respectively

(the greedy algorithm converged after 10 iterations). The SA

algorithm explores 1, 4, 10, 100 (13.72% of S), 421 (57.75%
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Fig. 6. Data memory requirements for exhaustive search, greedy, and
simulated annealing algorithms for design space cardinalities of 8, 81, 729,
and 46656.

of S), and 729 (100% of S) states in 1.097, 1.197, 1.297, 3.39,

11.34, and 18.19 ms, respectively, for |S| = 729. On average,
the execution time linearly increases by 0.039 and 0.023

ms per state for the greedy and SA algorithms, respectively.

The greedy algorithm requires 34.54% less execution time on

average as compared to SA (after exploring 10 states). We

measured the greedy and SA algorithms’ execution time for

|S| = 31, 104 and observed similar results as for |S| = 729
because both the algorithms’ execution time depends upon

the number of states explored and not on the design space

cardinality. The exhaustive search requires 29.526 ms and

2.765 seconds for |S| = 729 and |S| = 31, 104, respectively.
Compared with an exhaustive search, the greedy and SA

algorithms (after exploring 10 states) requires 30.63x and

22.76x less execution time, respectively, for |S| = 729,
and requires 2868.26x and 2131.84x less execution time,

respectively, for |S| = 31, 104. We verified our execution

time analysis using clock() [24] and observed similar

trends. These execution time results indicate that our online

algorithms’ efficacy increases as the design space cardinality

increases.

We calculated the energy consumption of our algorithms

Ealgo for an Atmel ATmega1281 microcontroller [18]

operating at Vp = 2.7 V and Fp = 8 MHz as Ealgo =
Vp · I

a
p · Texe where Iap and Texe denote the processor’s

active current and the algorithm’s execution time at (Vp, Fp),

respectively (we observed similar trends for other processor

voltage and frequency settings). Our calculations indicate that

the greedy algorithm requires 5.237, 10.475, and 13.795 µJ

to explore 1, 4, and 10 states, respectively whereas the SA

algorithm requires 15.698, 17.129, 18.56, 48.51, 162.28, and

260.3 µJ for exploring 1, 4, 10, 100, 421, and 729 states,

respectively, both for |S| = 729 and |S| = 31, 104. The
exhaustive search requires 0.422 and 39.567 mJ for |S| = 729
and |S| = 31, 104, respectively. The SA algorithm requires

34.54% more energy as compared to the greedy algorithm for

exploring 10 states whereas both the algorithms are highly

energy-efficient as compared to exhaustive search.

Fig. 6 depicts low data memory requirements for both

algorithms for design space cardinalities of 8, 81, 729,

and 46,656. We observe that the greedy algorithm requires



452, 520, 562, and 874 bytes, whereas the SA algorithm

requires 508, 574, 612, and 924 bytes of storage for design

space cardinalities of 8, 81, 729, and 46,656, respectively.

The data memory analysis shows that the SA algorithm

has comparatively larger memory requirements (9.35% on

average for analyzed design space cardinalities) than the

greedy algorithm. The data memory requirements for both

the algorithms increase linearly as the number of tunable

parameters and tunable values (and thus the design space)

increases. We point out that the data memory requirements for

the exhaustive search is comparable to the greedy algorithm

because the exhaustive search simply evaluates the objective

function value for each state in the design space. However,

the exhaustive search yields a high penalty in execution

time because of complete design space evaluation. The figure

reveals that our algorithms scale well with increased design

space cardinality, and thus our proposed algorithms are

appropriate for sensor nodes with a large number of tunable

parameters and parameter values.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamic optimization

methodology using greedy and simulated annealing online

optimization algorithms for wireless sensor networks.

Compared to previous work, our methodology considers an

extensive sensor node design space, which allows sensor

nodes to more closely meet application requirements. Results

revealed that our online algorithms are lightweight, requiring

little computational, memory, and energy resources and

thus are amenable for implementation on sensor nodes

with tight resource and energy constraints. Furthermore, our

online algorithms can perform in situ parameter tuning to

adapt to changing environmental stimuli to meet application

requirements.

Future work includes further results verification using larger

state spaces containing more sensor node tunable parameters

and tunable values. In addition, we will implement our

dynamic optimization methodology on a hardware sensor node

platform to gather and incorporate profiling statistics into our

lightweight optimization algorithms.
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