
Intelligent Systems with Applications 15 (2022) 200092

Available online 12 June 2022
2667-3053/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Design of deep neural networks for transfer time prediction of spacecraft
electric orbit-raising

Ali Hassaan Mughal 1,a, Pardhasai Chadalavada 2,b, Arslan Munir 3,*,a, Atri Dutta 4,b,
Mahmood Azhar Qureshi 5,a

a Kansas State University, Manhattan, Kansas, USA
b Wichita State University, Wichita, Kansas, USA

A R T I C L E I N F O

Keywords:
Deep neural networks
Spacecraft orbit-Raising
Solar-Electric propulsion
Deep reinforcement learning
Orbit transfer

A B S T R A C T

Recently, there has been a surge in use of electric propulsion to transfer satellites to the geostationary Earth orbit
(GEO). Traditionally, the transfer times to reach GEO using all-electric propulsion are obtained by solving
challenging trajectory optimization problems that naturally do not lend themselves to incorporation within deep
reinforcement learning (DRL) framework to solve trajectory planning problems in near real-time. The operation
of DRL, as typically used in trajectory planning, relies on a Q-value. In the electric orbit-raising problem under
consideration in this paper, this Q-Value requires computation of transfer time in near real-time to have practical
DRL training times. This work proposes to design and evaluate a machine learning (ML) framework, focusing on
deep neural networks (DNNs), to predict the transfer time to assist in Q-value determination instead of solving
traditional orbit-raising optimization problems. To this end, we investigate different architectures for DNNs to
determine a suitable DNN configuration that can predict the transfer time for each of the mission scenarios with
high accuracy. Experimental results indicate that our designed DNNs can predict the transfer time for different
scenarios with an accuracy of over 99.97%. To verify the efficacy of our designed DNNs for predicting transfer
time that is required for Q-value estimation, we also compare the results from our designed DNNs with the
contemporary ML algorithms, such as support vector machines, random forests, and decision trees for regression.
Experimental results indicate that our best-performing DNNs can provide an improvement in the mean error of
transfer time prediction by up to 14.05× for non-planar transfers and up to 254× for planar transfers as
compared to contemporary ML algorithms.

1. Introduction

In the past decade, telecommunication satellite operators with assets
stationed in the geosynchronous equatorial orbit (GEO) have demon-
strated an increased interest in deploying their satellites into orbit using
solar-electric propulsion. Such satellites are initially launched into a
geosynchronous transfer orbit (GTO) or similar orbits (such as Sub-GTO
or Super-GTO) before the satellite uses its onboard electric propulsion to
reach the GEO, which is a circular equatorial orbit of altitude 35,786
km. The resulting transfer from GTO, Sub-GTO or Super-GTO to GEO is

referred to as an orbit-raising maneuver, which if done using electric
thrusters, takes a significantly long time to accomplish, often being in
the order of several months owing to the low-thrust generation capa-
bility of electric thrusters. However, the enhanced transfer time is more
than compensated by the tremendous propellant savings and the
resulting design of smaller and lighter satellites. The mass and volume
reduction lead to stacking of multiple satellites in the launch vehicle,
facilitating sharing of launch costs, which mean significant cost savings
for the telecommunication operators. Compared to traditional chemical
orbit-raising maneuver, the electric orbit-raising maneuver is fairly

* Corresponding author.
E-mail address: amunir@ksu.edu (A. Munir).

1 MSc Student at Kansas State University.
2 PhD Student at Wichita State University.
3 Associate Professor at Kansas State University.
4 Associate Professor at Wichita State University.
5 Mahmood is currently working as a Senior IP Design Engineer at Intel Corporation

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2022.200092
Received 21 February 2022; Received in revised form 13 May 2022; Accepted 2 June 2022

mailto:amunir@ksu.edu
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2022.200092
https://doi.org/10.1016/j.iswa.2022.200092
https://doi.org/10.1016/j.iswa.2022.200092
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200092&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligent Systems with Applications 15 (2022) 200092

2

complex because the maneuver requires the thruster operation over
prolonged periods, disrupted intermittently when the spacecraft is in the
shadow of the Earth (note that the electric thrusters derive power from
the satellite solar panels). Additionally, the passage through the Van
Allen radiation belts, particularly the inner one, damages the solar
panels and leads to degradation of power availability for the remaining
transfer (and the remainder of the mission as well). As more spacecraft
adopt solar-electric propulsion for conducting orbit-raising maneuver,
the future mission operations will likely benefit from an enhanced au-
tonomy in mission planning.

A key step in mission planning for the orbit-raising maneuver is the
determination of low-thrust multi-revolution trajectory, which requires
the solution of a long time scale, multi-phase, nonlinear, non-convex
optimal control problem that is challenging to solve. The trajectory to
be computed is over a long time scale because of the low magnitude of
the propulsion system thrust, resulting in a slow spiraling transfer
around the Earth. The problem is multi-phase because the spacecraft
passes through multiple eclipses during its transfer, and the dynamics
are different in Sun-lit parts of the trajectory and in the shadow of the
Earth. The absence of the Sun during eclipses prohibit the spacecraft
from thrusting because electric propulsion systems derive power from
the solar arrays. The problem is nonlinear owing to the dynamics being
primarily governed by the inverse-square gravitational force. Finally,
the problem is non-convex because of the nature of underlying space-
craft dynamics and the objective functions (transfer time or fuel
expenditure) that are of interest to mission designers. Nevertheless, this
challenging problem has been studied in the astrodynamics literature for
many decades, and a number of methods have been developed. These
methods can be largely classified into direct and indirect optimization
techniques, depending on whether calculus of variations is used to
determine the necessary conditions of optimality (direct methods bypass
this step). Numerical schemes based on these approaches need good
quality initial guesses for demonstrating good convergence, and deter-
mining the good initial guesses depend on a human expert as well.

A number of other approaches have also been considered, such as
shape-based methods or guidance-like schemes, in order to address the
challenges of underlying trajectory optimization. In this paper, we
leverage a recently developed optimization scheme that can yield fast
and robust computations of the low-thrust orbit-raising trajectory
without the need for user-provided initial guesses. This optimization
scheme relies on two innovations: the use of a set of regularized ele-
ments suitable for the application, and an optimization scheme that
poses the long time-scale problem as a sequence of unconstrained
optimization sub-problems that are easier to solve. We refer to this
optimization scheme as sequential low-thrust orbit-raising (SLTOR)
optimization problem. Note here that the advantages of fast, robust and
automated trajectory computation come at the cost of a sub-optimality
of the resulting solution.

Deep reinforcement learning (DRL), which combines reinforcement
learning (RL) and deep learning (DL), has emerged as a promising
approach for optimization of guidance-based systems in recent years (He
et al., 2021; Kolosa, 2019; Sutton and Barto, 2018; Willis et al., 2016).
DRL has shown significant improvements in ever-challenging domains
despite several uncertainties in the environment. Markov decision pro-
cesses (MDPs) are one of the most common underlying mathematical
frameworks leveraged by DRL. MDPs comprise an agent, an environ-
ment, and a given set of goals. Continuous-state MDPs are required for
solving many problems, but present various challenges, in particular,
state space explosion. A framework for faster computation of
continuous-state MDPs by discretizing the space has been presented by)
Marecki (Koenig). In MDPs, the agent in a given state takes an action in
the environment to reach a new state. The agent starts at an initial point
and is given a set of heuristics to reach the end goal (Sutton and Barto,
2018). The heuristic, which is the adaptation of the policy for a partic-
ular environment or performance of an agent, improves with time. In
MDP, the reward is provided to the agent based on action(s) taken either

at the final state or intermediate states, depending on the environment
design. A satellite takes a series of actions to reach the GEO, and these
actions need to be optimized in order to minimize a certain objective
function, such as minimizing the transfer time and/or minimize the fuel
consumption, en route to GEO. DRL is typically seen as an enhanced
version of the more traditional RL. While the RL is more dynamic and
uses trial and error to maximize the outcome, a DRL agent can use the
existing knowledge and apply it to a new problem.

While the recent innovations in trajectory determination (such as in
Sreesawet and Dutta, 2018) result in fast and robust computation of
electric orbit-raising trajectory (at the cost of sub-optimality of the
computed trajectories), these cannot be readily integrated within a DRL
scheme. The operation of DRL, as typically used in trajectory planning,
relies on a Q-value. In the electric orbit-raising problem, this Q-Value
requires computation of a metric of interest (such as transfer time or fuel
expenditure) in near real-time to have practical DRL training times. We
define the prediction of metric of interest (e.g., transfer time) is in
real-time if the time taken to predict the metric of interest is negligible (i.
e., orders of magnitude less) as compared to the time for each discretized
segment within a planning horizon. For instance, the SLTOR optimiza-
tion problem uses 72 segments over a revolution, whose time period
ranges from a few hours to sidereal day. Assuming a revolution takes two
hours, then for each segment, the decision for spacecraft thrust and di-
rection needs to be taken in 120/72 = 1.67 minutes. Thus, for a pre-
diction of transfer time to be considered as real-time, the prediction
should be obtained in a fraction of a second. The expeditious prediction
of transfer time can enable the mission designer to make further
fine-grained designs regarding thrust and direction of spacecraft (say
360 decisions in a revolution), thus giving the designer more control
authority on spacecraft path planning. If the prediction decisions can be
taken close to real-time, as defined earlier, but not as fast to be consid-
ered real-time, then these decisions can be said to be taken in near
real-time. We also define that trajectory planning problems can be solved
in near real-time if the metric of interest (e.g., transfer time) that needs to
be assessed at each decision-making instant (such as at each segment
within a revolution) can be predicted in real-time.

The main challenge here is that the computation of a metric of in-
terest (such as transfer time or fuel expenditure) at any point using
SLTOR optimization requires the solution of all optimal control sub-
problems corresponding to all future revolutions. While this process is
not a challenge for the computation of a single orbit-raising trajectory,
this is not an efficient mechanism to evaluate the Q-value, which
essentially signifies the maximum expected reward an agent can reach
by taking a given action a from the state s, and rewards, which depend
on the metrics of interest (such as transfer time or fuel expenditure),
associated with all state-action pairs within a DRL scheme. This paper
addresses this challenge by designing and evaluating a machine learning
(ML) framework, focusing on deep neural networks (DNNs), that facil-
itate the straight-forward prediction of the metric of interest without
having to solve numerous optimization problems corresponding to
forthcoming revolutions as in SLTOR optimization. While there have
been some works in the literature on training artificial neural networks
(ANNs) for the electric orbit-raising problem (Arora and Dutta, 2020;
Kwon et al., 2021), there has been a lack of a comprehensive assessment
of neural network architectures, and our present paper fills in this void.
Our main contributions in this paper are as follows:

• Designing and evaluating an ML framework, focusing on DNNs, for
accurate prediction of metric of interest (transfer time in this work)
to assist in Q-value determination instead of solving traditional orbit-
raising optimization problems for six different planar and non-planar
mission scenarios for transfer to GEO.

• Exploring the design space of DNNs to determine a suitable setting of
hyperparameters of DNNs for each orbit-raising mission scenario
that provides the transfer time prediction with at least 99.97%
accuracy,

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

3

• Evaluating and comparing the transfer time prediction results from
our optimized DNNs with the contemporary ML algorithms, such as
support vector machines (SVMs), random forests (RFs), and decision
trees (DTs).

To the best of knowledge of authors, there does not exist a compre-
hensive study that designs and evaluates different ML frameworks for
prediction of the metric of interest in missing planning for the orbit-
raising scenarios. To this end, we design and evaluate different ML
frameworks, focusing on DNNs, for prediction of the metric of interest in
mission planning for the following orbit-raising mission scenarios:

• Planar and non-planar Super-GTO to GEO
• Planar and non-planar GTO to GEO
• Planar and non-planar Sub-GTO to GEO

In this paper, we refer to our designed DNNs with a suitable setting of
hyperparameters that can provide the transfer time prediction with at
least 99.97% accuracy as optimized DNNs. While this paper has been
primarily motivated by a future application of these artificial neural
networks to DRL orbit-raising framework (which is not the focus of this
paper), these networks also have potential applications for an adaptive
weight modification strategy as studied by Arora (2020), and the
six-state targetted orbit-raising maneuver as studied by Chadalavada
et al. (2022).

The remainder of this paper is organized as follows. Section 2 dis-
cusses prior works in literature related to spacecraft orbit-raising. Sec-
tion 3 presents the problem formulation for DRL-based orbit-raising, and
clarifies where our current work fits in DRL-based orbit-raising. Section
4 details the dataset generation for orbit-raising scenarios. Section 5
elaborates the approach for design of optimized DNNs for transfer time
prediction. Experimental results showing the accuracy of the designed
DNNs for transfer time prediction for different orbit-raising scenarios
with respect to SLTOR optimization are presented in Section 6. Section 7
presents the comparison of our designed DNNs with the contemporary
ML algorithms in terms of accuracy of transfer time prediction. Finally,
Section 8 concludes this work.

2. Related work

In recent years, researchers have been studying optimal trajectories
associated with electric low-thrust orbit raising maneuvers to reach
GEO (Betts, 1998; Kluever and Oleson, 1998; Sackett et al., 1975). The
low thrust as mentioned previously is the primary concern for using a
spacecraft that is all-electric, and that causes a long transfer time taken
for the spacecraft to reach the GTO. In addition, the spacecraft en-
counters multiple eclipses in the route, this further prolongs the transfer
time unless the spacecraft has the capability of storing electric energy for
use during the eclipses (Marasch and Hall, 2000). This creates a reason
to investigate closely the variety of crucial factors affecting the electric
orbit-raising problem. These factors include the initial orbit of the
spacecraft, dry mass i.e. the mass that is delivered, the mass of propel-
lant, the capacity solar panel arrays have to generate thrust during
transfer and the type of thrusters to be used in the spacecraft (Hall,
Magneto Plasma Dynamic (MPD) or Ion Thrusters). Hence, mission de-
signers have to investigate in detail various scenarios to obtain the least
time taking trajectory.

In order to overcome the above stated issue, direct optimization
methods are used. The state and control variables can be discretized
with respect to time and apply quadrature rules across the discretized
segments in order to set up a parameter optimization problem that will
be a nonlinear programming problem (Betts, 2000; Herman and Con-
way, 1996), that are solved by softwares like Sparse Nonlinear OPTi-
mizer (SNOPT), Interior Point OPTimizer (IPOPT) (Dutta and Arora,
2019; Graham and Rao, 2016; Wang and Grant, 2017; 2018). The rate of
convergence for low-thrust optimization using direct methods are better

than indirect methods. However, direct methods need initial guesses
which are unknown prior. This lack of knowledge about initial guesses
has led to a number of studies such as shape based methods (De Pascale
and Vasile, 2006; Novak and Vasile, 2011; Petropoulos and Longuski,
2004; Taheri and Abdelkhalik, 2012; Vasile and Casotto, 2007; Wall and
Conway, 2009) and a number of guidance-based schemes (Kluever,
1998a; 1998b; Petropoulos, 2004) to approximately solve low-thrust
optimization problems. The electric orbit-raising problem has been
studied using a variety of dynamic models, to specifically, study the
influence on the convergence of low-thrust trajectory through numerical
optimization schemes (Caruana and Niculescu-Mizil, 2006; Junkins and
Taheri, 2018). Also, among all the regularized elements, five remain
constant for time and change slowly under the perturbations in case of
Keplerian motion. Hence, these are suitable for use in trajectory opti-
mization schemes that have long-time-scale transfers.

Many prior works have explored the use of artificial intelligence (AI),
in particular, RL and DRL, for trajectory optimization and planning of
spacecraft. Shirobokov et al. (2021) have presented a survey of ML
techniques in spacecraft control detailing the work on formulation
control and design of control laws in spacecraft flight and landing. An
actor critic-based RL model consisting of two neural networks has been
explored in Kolosa (2019) by Kolosa. Kolosa has also analyzed the effect
of gravity in maneuvering near small bodies. Kolosa has used an RL
model to solve low-thrust trajectory optimization problems using two
neural networks, an actor network and a critic network. Willis et al.
(2016) have studied the spacecraft near a small celestial body with
unknown gravity using RL. Shaoming et al. (He et al., 2021) have used a
heuristic way to shape a proper reward function for the RL agent where
the heuristic is shaped into a command for the missile guidance. For the
heuristic function, they have taken into account the energy consumption
and guidance accuracy, and their trade-off. They have examined two
types of learning agents, learning from scratch and learning with prior
knowledge (with a guidance command provided at each step). They
have validated the effectiveness of the proposed approach using exten-
sive numerical simulations. LaFarge (2020) has explored a controller,
trained via RL considering multibody perturbations. Xiao et al. (Wang
et al., 2020) have developed a framework to find suitable parameters for
numerical optimization of such RL models. Xiao et al. (Wang et al.,
2020) have used an actor-critic algorithm where each satellite cluster is
assigned to three sensing zones. To tune the flight parameters, they have
used an actor-critic network and have shown to successfully tune flight
parameters with lower deviation in trajectory for a cluster of flights.

A guidance strategy for spacecraft proximity operations using DRL
has been explored by Hovell and Ulrich (2021). Hovell and Ulrich have
utilized a control theory approach alongside DRL to aid the transfer of
the learned behavior from simulation to reality. They have demon-
strated their approach via a proof-of-concept spacecraft pose tracking
and docking scenario. Broida and Linares (2019) have presented a
Rendezvous guidance technique for spacecraft in a cluttered environ-
ment using RL. They have implemented and evaluated a proximal policy
optimization (PPO) to develop a control policy. This policy has been
used to move a satellite relative to an orbit reference frame into a
docking position with another. Li et al. (2021) have used a deep deter-
ministic policy gradient (DDPG) framework to target and avoid obsta-
cles for unmanned aerial vehicles (UAVs). Oestreich et al. (2021) have
looked into the problem of six degrees of freedom docking via RL. The
policy implemented by Oestreich et al. (2021) allows the docking ma-
neuvers as a feedback control law under uncertain environments. A safe
landing site selection considering divert maneuvers using DRL has been
proposed by Iiyama et al. (2021).

Some prior works have explored other ML techniques in conjunction
with DRL for space and other domains. Haj-Ali et al. (2020) have used
RF in DRL to assist in high-level synthesis (HLS) phase orderings. The
state space that compilers use is huge, and the authors have used RF to
reduce the state space. The authors have implemented an RF based RL
algorithm called AutoPhase, that can generate an efficient program for

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

4

compilers. Gaudet et al. (2022) have utilized a meta-RL technique (a
technique to train an agent that generalizes across multiple tasks via
summarizing experience over those tasks (Zhao et al., 2021)) to optimize
an adaptive guidance system for the approach phase of a gliding hy-
personic vehicle. Their guidance technique learns to induce target tra-
jectories to reach a target location while satisfying constraints such as
terminal speed, heating rate, load, and dynamic pressure. Cheng et al.
(2021) have presented and trained a DNN based re-entry guidance al-

gorithm. The DNN takes the current state as input and predicts the
longitudinal downrange and the lateral crossrange of a flight. Yuexuan
et al. (2018) have implemented an SVM in conjunction with advantage
actor-critic (A2C) RL algorithm. The actor takes the actions and gets
feedback from the environment. Then the critic network evaluates the
results of actions in the environment and optimizes an SVM network
according to the evaluation result. Then the critic uses this optimized
result to instruct the actor network to improve its behavioral policy, and
hence complete a step in an iteration of the A2C network training.
Hyeokjoon et al. (Kwon et al., 2021) have presented a soft actor-critic
(SAC) algorithm for trajectory-raising optimization. The authors have
considered SAC for only low Earth orbit (LEO) to GEO, and GTO to GEO
mission scenarios.

Although AI has been applied to spacecraft trajectory optimization,
prior works in the area did not design and/or evaluate a machine
learning framework for transfer time prediction for different orbit-
raising scenarios. Prior works on AI-based trajectory optimization are
complementary to this work. The proposed framework can be utilized in
other AI-based trajectory optimization techniques, in particular DRL-
based trajectory optimization, as it predicts the transfer time given a
state with very high accuracy instead of using SLTOR optimization
equations, and is thus suitable for automating trajectory optimization
solutions.

3. Problem formulation and relevance to DRL

This work proposes to design and evaluate an ML framework,
focusing on DNNs, that can be integrated with other AI-based trajectory
optimization techniques to predict the metric of interest (transfer time in
this work) from a given state in trajectory planning of spacecraft in an
orbit-raising scenario. This metric of interest is traditionally computed
by solving challenging SLTOR trajectory optimization problems, whose
solution rely on compute-intensive numerical schemes that lack auto-
mated implementation capabilities. In context of DRL, this prediction of
transfer time metric can assist in Q-value determination instead of
solving SLTOR optimization problems.

This section succinctly summarizes RL and illustrates where our
proposed optimized DNNs fit in a DRL-based trajectory optimization
framework. In the same manner, our proposed optimized DNNs can be
integrated with other AI-based trajectory optimization techniques. We
clarify that DRL-based trajectory planning is not focus of this work, and
this section only illustrates DRL-based trajectory planning to show that
how our proposed DNNs fit in a DRL-based framework.

RL is one of the three basic machine learning paradigms, with the
other two being supervised and unsupervised learning. In RL-based
approaches, agents, in an environment, take actions to maximize the

cumulative reward. Unlike dynamic programming, RL does not assume
knowledge of the mathematical model and generally targets large MDPs
where the exact mathematical solution becomes infeasible. While
greedy approaches follow a fixed set of paths for finding the optimal
path, RL allows an agent to take actions for exploration and not follow a
fixed set of paths, but a continuous one. The agent in an RL model is
typically trained using Q-Learning (Sutton and Barto, 2018), as shown in
the following equation.

In Eq. 1 Q′ is the updated Q value for a state s for an action a, that is, take
action a in state s and update the Q value using the old Q value for the
state and action. R is the reward an agent receives when it reaches a new
state s’ after taking an action a in state s. γ is a discount factor that de-
termines how much future rewards are worth and α is the learning rate
at which we update the Q value and get Q′ . The reward has to be
maximized over a set of possible actions a ∈ A for a state s and can be
formulated as:

R = max
a∈A

F(s, a), (2)

where R is a reward function, F is a function that depends on the pre-
dicted transfer time for each state s given an action a from a set of
possible actions in that state s. We note that the state s is referred to as x
in the dataset generation section (Section 4). Each a in A will generate a
different possible next state. In orbit-raising, the action a at each
segment in the revolution is a set of thrust force (T), and two control
angles χ (in-plane angle) and β (out-of-plane angle).

As can be seen from Eq. 1, this Q value determination needs calcu-
lation of a reward function for every single action given a state. This
reward function calculation depends on the estimation of a metric of
interest (e.g., transfer time or fuel expenditure). The computation of this
metric (transfer time) at any point using SLTOR optimization requires
the solution of all optimal control sub-problems corresponding to all
future revolutions. Thus, using SLTOR optimization becomes highly
computationally expensive for assisting in Q-value determination for
every state-action pair. This is where our proposed optimized DNNs
come handy, which can predict the transfer time in real-time for any
given state, and thus can be used in estimation of Q-value for all state-
action pairs.

For trajectory optimization, the trained DRL model computes the
total transfer time required for each orbit-raising scenario to reach the
GEO. Thus, there can be different transfer times corresponding to
different actions taken in the environment. For trajectory optimization,
the trained DRL model prescribes a policy that can minimize the transfer
time required for each orbit-raising scenario to reach the GEO. At each
state, the DRL model selects an action which can minimize the transfer
time. A set of all such actions given each state form a policy that is
prescribed by a DRL model. Fig. 1 depicts DRL model for spacecraft
orbit-raising. In Fig. 1, deep Q-network (DQN) is used to estimate Q-
value Q(s, a) for each action a that can be taken in state s to reach a new
state s′ . The DRL model relies on DQN, which serves as the predictor
function of the Q-value. The model passes a state to the DQN, which then
provides a set of (action, Q-value) pairs corresponding to the possible
actions in the state and the respective Q-value for taking the action in

Q(s, a)
′

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
New Q-Value

= Q(s, a)
⏞̅̅̅⏟⏟̅̅̅ ⏞

Old Q-Value

+ α
|

Learning Rate

⎡

⎢
⎢
⎢
⎢
⎣

R(s)
⏟⏞⏞⏟

Reward

+ γ
|

Discount rate

maxQ′

(s
′

, a′

)

⏞̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅ ⏞

Maximum predicted reward, given

new state and all possible actions

− Q(s, a)

⎤

⎥
⎥
⎥
⎥
⎦

(1)

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

5

that state. The pair with the highest Q-value is selected by the model.
Our proposed optimized DNNs can assist DQN in estimating Q-value by
predicting the transfer time from each state, which is used in reward
function estimation, which in turn is used for Q-value calculation (Eq.
1).

Our optimized DNN model’s predicted time values can be used to in
the DRL framework to take an action, that can serve as a directional
input for the DRL agent and give the raising trajectory to GEO with the
least time. This set of actions serves as the policy that provides minimal
time transfer for a specific orbit-raising. To train our optimized DNNs,
we need to generate data for each of the mission scenarios mentioned in
Section 1. The dataset generation for orbit-raising scenarios is discussed
in the following section.

4. Generating dataset for orbit-raising scenarios

In this section, we discuss the procedure that we have followed to
generate the data to train the neural networks. To this end, we compute
the transfer times required from a given orbit of the spacecraft to the
final GEO by solving a sequence of optimization sub-problems, each over
one revolution of the satellite around the Earth. As already mentioned,
in this work, we describe the states of the spacecraft using a set of
regularized elements introduced by Sreesawet and Dutta (2018). The
states are described by the following: the magnitude of the specific
angular momentum vector h, the components of specific angular mo-
mentum vector hX and hY in the X-Y plane of Earth-centered inertial
reference frame, the components ex and ey of the eccentricity vector in
the x-y plane of the reference frame obtained after 2-1 rotation of the
inertial frame, and an angle ϕ that locates the spacecraft in orbit. The
first five coordinates used in this model are slow varying for an electric
orbit-raising problem. Each optimization sub-problem aims to bring the
spacecraft in close proximity of GEO by minimizing the following
objective function:

J = wh(h − hGEO)
2 + whxy

(
h2

X + hY
)2 + we

(
e2

x + e2
y

)
2, (3)

where hGEO is the specific angular momentum of the spacecraft in the
GEO, wh, whxy, and we are weights (positive scalars) associated with the
three components of the objective function satisfying the constraint wh
+ whxy + we = 1. Clearly, the scalar weights play a crucial role in
determining the transfer time to the GEO. To this end, we generate data
using different weight combinations.

To solve the optimization problem, we discretize each revolution of
the spacecraft into N segments. Additionally, we determine the variation

of five slow varying states (collectively represented as x) of the space-
craft with respect to the angle ϕ. The differential state equations
depicting the variation of the slow variables x with respect to the fast
variable ϕ are detailed in Sreesawet and Dutta (2018). Using these dif-
ferential equations, we can determine the state transition over each
segment in the revolution using the equation below:

x̃i→i+1 =
Δϕ
2

(
dxi

dϕ
+

dxi+1

dϕ

)

, (4)

where x is [h hX hY ex ey]
T and index i represents a node on the tra-

jectory, that is, i belongs to the set {0,1,....,N-1}. To set up the objective
function for the optimization sub-problem corresponding to the k + 1th
revolution, we sum these change of states over each segment and add
them to the end states of the previous revolution (kth revolution) and
determine the states of the spacecraft at the end of the (k+1)th revolu-
tion as shown below:

xk+1 = xk +
∑N− 1

i=0
x̃i→i+1. (5)

The optimization problem’s decision variables are the α (in-plane)
and β (out-of-plane) angles in which the spacecraft thrust. As we have N
nodes over each revolution, each optimization problem has 2N vari-
ables: N for the in-plane thrust angle α and N for the out-of-plane thrust
angle β. Additionally, we have normalized the states of the spacecraft
that helps with the fast computation of the optimization problems. For
normalization, we consider the distance unit (DU) as the radius of the
GEO orbit. We choose the time unit (TU) such that the Earth’s gravita-
tional constant is 1 DU3/TU2. We consider the mass unit (MU) as the
initial mass of the spacecraft. Each optimization problem determines the
normalized states at the end of the revolution by choosing these 2N
variables such that the objective function is minimized. It is important to
note that the coordinates used in this work can easily be converted to
other coordinates such as Cartesian and Keplerian orbital elements;
please see Ref. Marquardt (1963) for details. The optimization process is
continued until stopping conditions determining the proximity of the
spacecraft to GEO is detected. To this end, the terminal conditions for
the sequence of the optimization problems are described in the Kepler-
ian elements that are semi-major axis, inclination, and eccentricity. The
terminal orbit corresponds to a semi-major axis of 1 DU, zero eccen-
tricity and zero inclination. We enforce these terminal constraints as
inequality constraints, with upper and lower bounds being determined,
with the tolerance on the semi-major axis being ± 0.00001 DU and the
tolerance on the eccentricity being 0.00001. The tolerance on the

Fig. 1. Deep reinforcement learning model for spacecraft orbit-raising.

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

6

inclination is 0.01 deg.
As shown in Fig. 2, we start with a set of given initial conditions that

includes the six states of the spacecraft and the three weights for the
objective function of the optimization problem. During the transfer of
the spacecraft from the initial orbit to the GEO, it may encounter an
eclipse each time it passes through the Earth’s shadow. In the absence of
power from solar array during eclipses, we consider zero thrust avail-
ability. To this end, we determine the nodes that are under the shadow of
the Earth using a non-rotating cylindrical shadow model. Once the
eclipse part of the trajectory during a revolution is selected, we deter-
mine the optimal thrust angles that brings the spacecraft closest to GEO
at the end of the revolution. After each revolution, we check the terminal
or stopping conditions to determine the need for solving additional
optimization sub-problems. The optimization problems are solved in
Matlab using the “Fminunc” solver. We also provide gradients of the
objective function with respect to the thrust angles to the solver, which
makes it more robust and computationally efficient. The implementa-
tion details of the dynamic model used to propagate the states of the
spacecraft, the Earth’s shadow model, and the optimization problem
setup is discussed in detail in the works of Sreesawet and Dutta (2018),
and Chadalavada et al. (2020).

We generate data from trajectories starting from six different initial
orbits and all the possible weight combinations. The six initial orbits
consist of three planar and three non-planar GTO, Sub-GTO, and Super-
GTO cases. The generated data set has 18.6k points in planar GTO data,
483.4k points in non-planar GTO data, 23.3k points in planar Sub-GTO
data, 567.9k points in non-planar Sub-GTO data, 14.3k points in planar
Super-GTO data and 388.3k points in non-planar Super-GTO, totalling
to a 1495.8k training points (1 for each revolution). Each training pair
has seven inputs and one output. The seven inputs are the semi-major
axis, eccentricity, inclination, the spacecraft’s mass, and the three sca-
lar weights of the optimization function’s objective function. The output
in the training pairs is the transfer time corresponding to the inputs in
the respective training pairs. We consider the spacecraft’s mass as one of
the input to account for the electric propulsion characteristics of the

spacecraft as the change of mass of the spacecraft is directly proportional
to the thrust of the spacecraft and inversely proportional to the specific
impulse (Isp).

The computational time to generate data set for each transfer is:
56.64 sec for planar GTO data, 2.03 hr for non-planar GTO data,
61.53 sec for planar Sub-GTO data, 2.20 hr for non-planar Sub-GTO
data, 63.09 sec for planar Super-GTO data and 1.40 hr for non-planar
Super-GTO, totalling to a 5.69 hr data generation computational time.
The data generation algorithm is run on Matlab installed on a machine
using an Apple M1 chip with 8 Cores and 16 GB RAM. In this work, we
compute the trajectories for the planar cases using the same formulation
as in the non-planar instances in contrast to the results of Sreesawet and
Dutta (2018). Using the planar case formulation presented in Reference
Sreesawet and Dutta (2018) will generate the same trajectory in a fast
manner and thus reduce the data generation times for the planar
trajectories.

Fig. 3 shows the optimal all-electric orbit raising trajectory to the
GEO from the GTO launched by the Ariane-5 launch vehicle. This tra-
jectory is the solution obtained for the objective function weights wh as
0.5, whxy as 0.4, and we as 0.1. The satellite is considered to have an
initial mass of 5000 kg and has a thrust of 1.17 N and Isp of 1700 s.

For a given trajectory, the data set contains each revolution’s end
states, the spacecraft’s mass, and the time required to reach GEO from
the current states as one data point and solve trajectories for different
weight combinations to get the entire data set. It is important to note
that the data generation steps detailed in this section must be repeated if
the propulsion system characteristics vary drastically from the mission
scenario considered for the data generation. However, one can envision
a neural network with additional inputs for the propulsion system
characteristics, such as thrust magnitude or the specific impulse that can
be used to train DNNs that can be utilized for mission scenarios that
consider different propulsion systems.

5. Designing the optimized neural networks for transfer time
prediction

In this section, the proposed problem-solving methodology is dis-
cussed. It starts with an overview and continues to detail the tuning of
neural networks trained for orbit-raising mission.

5.1. Overview

The dataset has trajectory data for the six mission scenarios referred
in Section 1 and discussed in detail in Section 4. Our goal is to be able to
predict, accurately, the time from a current state represented using the 7
variables (a, e, i, wh, whxy, we, m) to a final state in GEO. These variables
are detailed in Section 4. The predicted time is a continuous value and
hence a linear regression model is used (Cass, 1983; Marriott, 1985).

Fig. 2. Data generation flowchart.

Fig. 3. Optimal trajectory to GEO from GTO.

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

7

Figs. 4 and 5 depict DNN-3 with 30 neurons and DNN-5 with 40 neurons
respectively.

For our experiments, we have explored a total of 40 configurations
with two varying hyperparameters: number of layers and number of
neurons. We have explored the total neurons in DNN ranging from 10 to
110 with eight (8) values being 10, 20, 30, 40, 50, 70, 90, and 110. We
have explored varying number of DNN layers ranging from one layer to

five layers. Thus, in total, we have 8 x 5 = 40 configurations to explore
for each orbit-raising scenario. A total of 5 × 8 = 40 combinations for
each orbit raising problem were considered. The naming convention for
the sake of this paper goes as follows. DNN-X with N neurons means a
DNN with X number of layers, with each layer having N/X neurons. For
example, DNN-5 with N = 50 neurons implies a DNN that has a total of 5
layers, with each layer having N/X = 50/5 = 10 neurons. For N and X,

Fig. 4. Example of DNN-3 with 30 neurons (a 10-10-10 configuration).

Fig. 5. Example of DNN-5 with 40 neurons (an 8-8-8-8-8 configuration).

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

8

where N is not divisible by X, the floor value of N/X is taken, and the
excess neurons are distributed equally among the initial layers. For
example, when N and X are 10 and 4, respectively would be calculated
as:

⌊10/4⌋. = 2

Each layer is assigned 2 neurons initially, then the remaining 2
neurons are distributed to layer 1 and layer 2, thus, the layers configu-
ration becomes 3-3-2-2, where the first two layers have three neurons
each and the last two layers have two neurons each.

5.2. Approach

We initially used Adam optimizer Kingma and Ba (2015) by Kingma
and Ba. Our results for transfer time prediction and mean squared error
(MSE) obtained through the Adam optimizer. The results obtained
through the Adam optimizer resulted in an unacceptably high MSE.
Furthermore, the time of prediction is of essence in evaluation of
spacecraft orbit-raising scenarios, and hence, keeping a notch on the
number of neurons in the DNN design is crucial. One such technique that
is relatively faster is the Levenberg Marquardt (LM) algorithm (Gavin,
2020) by Gavin. We, therefore, have used the LM algorithm for training
the DNN to achieve a faster and more accurate solution when compared
against the Adam optimizer solution. The LM algorithm finds the
optimal solution, but its effectiveness comes with a drawback of high
training time/compute power and memory usage. It uses a Hessian
matrix that is a matrix of second derivative. This matrix makes it
guaranteed to find the minima of the loss function. But computing a
Hessian matrix becomes an in-efficient solution in terms of memory and
computations for large datasets and DNNs with a large number of neu-
rons. The training for the LM algorithm was first done using a Python
implementation, but that was inefficient in terms of memory usage. The
MATLAB implementation had more options to limit the amount of data
it processes in each chunk of iteration of the algorithm. Therefore,
MATLAB implementation was faster and had better attributes for the
network to analyze and test. The results in Section 6. are generated using
MATLAB implementation of the LM algorithm.

Initially, the Sub-GTO to GEO transfer dataset was used. Then, we
tested different numbers of neurons and various configurations on this
dataset to achieve a good fit for the problem. Through these experiments
on Sub-GTO to GEO transfer dataset, we analyzed and found the range
for maximum neurons to be 110 and a total of 5 layers to be enough to fit
the dataset. We then performed a design space exploration to explore
various DNN configurations with varying layer sizes and total number of
neurons.

6. Experimental results for optimized DNNs vs SLTOR
optimization

The section discusses results from 40 different DNN configurations
for each of the 6 orbit raising mission scenarios. The results are pre-
sented as a set of both figures and tables, from figures we can analyze the
pattern of DNN performance. The tables come into play for specific value
comparisons. We have discussed the best neural networks overall first,
then explore the best DNN configuration corresponding to the number of
neurons and the number of layers the neurons are distributed into.

6.1. Non-planar Super-GTO to GEO transfer

In our first set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for non-planar transfer from
Super-GTO to GEO. Fig. 6 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations. Table 1 pre-
sents the mean error in days for 40 different DNN configurations with
varying number of layers and the number of neurons for non-planar
Super-GTO to GEO transfer.

The results show that the DNN-3 configuration with 110 neurons
achieves the lowest mean error of 0.0256 days (37.44 minutes). DNN-2
and DNN-4 configurations with 110 neurons exhibit mean errors of
0.0294 days (41.76 minutes) and 0.0400 days (57.60 minutes),
respectively. This represents a 11.5% and a 53.8% increase in the mean
error over the DNN-3 configuration with 110 neurons. DNN-2 configu-
ration with 90 neurons has a mean error of 0.0891 days (128.30
minutes).

One key observation from Fig. 6 is that by dividing a limited number
of neurons into multiple layers, the error becomes higher. However, to
achieve a good regression fit, more layers need to be added. Therefore,
having more layers and a greater number of neurons results in a

Fig. 6. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar Super-GTO to GEO transfer.

Table 1
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for non-planar Super-GTO to GEO
transfer.

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 0.6660 0.6259 2.2304 2.1148 3.5103
20 0.5943 0.5849 0.5868 0.5891 0.6234
30 0.5764 0.5082 0.5308 0.6680 0.5652
40 0.5750 0.4504 0.4867 0.5196 0.5379
50 0.5578 0.3528 0.3800 0.5772 0.4905
70 0.5381 0.2106 0.2329 0.2964 0.3198
90 0.5200 0.0891 0.1091 0.1998 0.2370
110 0.5309 0.0294 0.0256 0.0400 0.1105

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

9

significant decrease in mean error. DNN-2 and DNN-3 with 30 neurons
result in a mean error of 0.5082 days (731.81 minutes) and 0.5308 days
(764.35 minutes), respectively. With 40 neurons, the DNN-2 has a mean
error of 0.4504 days. DNN-2 with 90 neurons and DNN-3 with 110
neurons exhibit mean errors of 0.0891 and 0.0256 days (128.30 and
36.86 minutes), respectively.

6.2. Non-planar GTO to GEO transfer

In our second set of experiments, we aim to design a DNN that
accurately predicts the spacecraft’s transfer time for non-planar transfer
from GTO to GEO. Fig. 7 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations.

The results show that the DNN-4 configuration with 110 neurons
achieves the lowest mean error of 0.0435 days (62.49 minutes). DNN-2
and DNN-3 configurations with 110 neurons exhibit mean error of
0.0586 days (84.24 minutes) and 0.0670 days (96.48 minutes),
respectively. This represents a 34.79% and a 54.38% increase in the
mean error over the DNN-4 configuration with 110 neurons. DNN-2 and
DNN-3 configurations with 90 neurons have a mean error of 0.1227 days
(176.69 minutes) and 0.1230 days (177.12 minutes), respectively.
Table 2 details mean error in days of the spacecraft’s transfer time
predicted by different DNN configurations.

For the DNN containing 10 neurons, the most optimal performance is
exhibited by DNN-2 with a mean error of 1.1831 days (1703.664 mi-
nutes). For 20 and 30 neurons, DNN-2 has mean errors of 0.7780 days
(1120.32 minutes) and 0.4999 days (719.86 minutes), respectively.
DNN-3 with 90 neurons and DNN-4 with 110 neurons exhibit mean
errors of 0.1227 days (176.69 minutes) and 0.0435 days (62.64 mi-
nutes), respectively.

6.3. Non-planar Sub-GTO to GEO transfer

In our third set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for non-planar transfer from
Sub-GTO to GEO. Fig. 8 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations.

The results in Fig. 8 that the DNN-3 with 110 neurons achieves the
best mean error of 0.0294 days (42.19 minutes). DNN-2 and DNN-4
configurations with 110 neurons exhibit mean errors of 0.0326 days
(46.80 minutes) and 0.0423 days (60.77 minutes), respectively. This
represents a 10.92% and 44.03% increase in the mean error over the
best DNN-3 configuration with 110 neurons. DNN-2 with 90 neurons has
a mean error of 0.0728 days (104.83 minutes), which is nearest to the
mean errors of DNN-3 with 90 neurons and DNN-5 with 110 neurons
0.0802 days (115.488 minutes) and 0.0945 days (136.08 minutes),

respectively. This represents an increase of 10.31% and 29.85% mean
error over DNN-2 with 90 neurons. Table 3 details mean error in days of
the spacecraft’s transfer time predicted by different DNN configurations.

For a network containing 10 neurons, the most optimal performance
was exhibited by DNN-2 with a mean error of 0.6099 days (878.26
minutes). For 20 and 30 neurons, DNN-2 has mean error of 0.5555 days
(799.92 minutes) and 0.5083 days (731.95 minutes), respectively. DNN-
2 with 90 neurons and DNN-3 with 110 neurons exhibit mean errors of
0.0728 days (104.83 minutes) and 0.0294 days (42.34 minutes),
respectively.

6.4. Planar Super-GTO to GEO transfer

In our fourth set of experiments, we aim to design a DNN that
accurately predicts the spacecraft’s transfer time for planar transfer from
Super-GTO to GEO. Fig. 9 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations.

The results show that the DNN-3 with 70 neurons achieves the best
mean error of 0.0028 days (4.03 minutes). DNN-4 with 70 neurons and
DNN-3 with 110 neurons configurations exhibit mean errors of 0.0034
days (4.90 minutes) and 0.0036 days (5.18 minutes), respectively. This
represents a 21.4% and 28.6% increase, respectively, in the mean errors
over the best DNN-3 configuration with 70 neurons. Table 4 details
mean error in days of the spacecraft’s transfer time predicted by
different DNN configurations.

DNN-2 with 50 neurons has a mean error of 0.0042 days (6.05 mi-
nutes) which is nearest to the mean error of DNN-5 with 70 neurons of
0.0053 days (7.63 minutes). Hence, DNN-2 with 50 neurons represents
an increase of 23.8% mean error over DNN-2 configuration with 90
neurons.

For a network containing 10 neurons, the most optimal performance
is exhibited by DNN-2 with a mean error of 0.4059 days (584.50 mi-
nutes). For 20 and 30 neurons, DNN-2 and DNN-5 have mean errors of
0.2385 days (343.44 minutes) and 0.2686 days (386.78 minutes),

Fig. 7. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar GTO to GEO transfer.

Table 2
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for non-planar GTO to GEO transfer.

No. Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 1.2230 1.1831 1.3164 1.3979 2.3424
20 1.1077 0.8336 0.7787 0.8202 1.2013
30 1.0355 0.4999 0.5080 1.1626 0.5381
40 0.6237 0.4677 0.4608 0.4499 0.4789
50 1.0026 0.3470 0.3970 0.4176 0.4509
70 0.5188 0.2349 0.2443 0.3692 0.3692
90 0.7230 0.1227 0.1230 0.1501 0.2159
110 0.4961 0.0586 0.0670 0.0435 0.1854

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

10

respectively. DNN-3 with 90 neurons and 110 neurons exhibit mean
errors of 0.0196 days (28.22 minutes) and 0.0036 days (5.18 minutes),
respectively.

6.5. Planar GTO to GEO transfer

In our fifth set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for planar transfer from
GTO to GEO. Fig. 10 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations.

The results show that the DNN-3 with 90 neurons achieves the best
mean error of 0.0030 days (4.32 minutes). DNN-3 with 110 neurons
exhibits mean error of 0.0032 days (4.61 minutes). This represents a

3.33% increase in mean error over the mean error of DNN-3 with 90
neurons. DNN-5 with 70 neurons has a mean error of 0.0050 days (7.20
minutes) that is closest to the mean error of DNN-2 with 50 neurons of
0.0063 days (9.07 minutes) that is 26.0% greater than the mean error of
DNN-5 with 70 neurons. Table 5 details mean error in days of the
spacecraft’s transfer time predicted by different DNN configurations.

For a network containing 10 neurons, the most optimal performance
is exhibited by DNN-2 with a mean error of 0.4062 days (584.93 mi-
nutes). For 20 and 30 neurons, DNN-2 and DNN-3 have mean errors of
0.3495 days (503.28 minutes) and 0.1162 days (167.33 minutes),
respectively. DNN-3 with 90 neurons and 110 neurons exhibit mean
errors of 0.0030 days (4.32 minutes) and 0.0032 days (4.61 minutes),
respectively.

Fig. 8. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar Sub-GTO to GEO transfer.

Table 3
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for non-planar Sub-GTO to GEO
transfer.

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 0.6849 0.6099 1.5446 1.5298 1.8147
20 0.5865 0.5554 0.5913 0.5724 0.5888
30 0.5685 0.5137 0.5083 0.6087 0.5366
40 0.5625 0.4568 0.5053 0.4744 0.4818
50 0.5399 0.3715 0.3746 0.3943 0.4509
70 0.5182 0.2111 0.2472 0.2379 0.3206
90 0.4999 0.0728 0.0802 0.1273 0.2166
110 0.4826 0.0326 0.0294 0.0423 0.0945

Fig. 9. Mean error in days (square root of MSE) for 5 different neural network configurations for planar Super-GTO to GEO transfer.

Table 4
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for planar Super-GTO to GEO transfer.

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 0.4245 0.4059 0.4249 0.4213 2.7789
20 0.3914 0.2385 0.4208 0.3537 0.3985
30 0.4062 0.3984 0.4145 0.4183 0.2686
40 0.4105 0.3777 0.0097 0.4069 0.2789
50 0.4051 0.0042 0.3117 0.0096 0.0114
70 0.4084 0.4008 0.0028 0.0036 0.0053
90 0.3488 0.0212 0.0196 0.1259 0.2629
110 0.1731 0.1564 0.0036 0.1457 0.0785

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

11

6.6. Planar Sub-GTO to GEO transfer

In our sixth set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for planar transfer from
Sub-GTO to GEO. Fig. 11 depicts mean error in days of the spacecraft’s
transfer time predicted by different DNN configurations.

The results show that the DNN-4 with 90 neurons achieves the best
mean error of 0.0030 days (4.32 minutes). Other DNN configurations
that achieve relatively low mean error are DNN-2 with 70 neurons,
DNN-5 with 70 neurons, and DNN-2 with 50 neurons. DNN-2 with 70
neurons configuration exhibits mean error of 0.0039 days (5.47 mi-
nutes). This represents a 26.66% increase in mean error over DNN-3
with 90 neurons. DNN-5 with 70 neurons has a mean error of 0.0080

days (11.52 minutes) that is closest to the mean errors of DNN-2 with 50
neurons 0.0081 days (11.66 minutes) and DNN-3 with 40 neurons with a
mean error of 0.0093 days (13.39 minutes); that are 1.25% and 16.25%
greater than the mean error of DNN-5 with 70 neurons. Table 6 details
mean error in days of the spacecraft’s transfer time predicted by
different DNN configurations.

For a network containing 10 neurons, the most optimal performance
is exhibited by DNN-1 with a mean error of 0.4740 days (682.56 mi-
nutes). For 20 and 30 neurons, DNN-1 and DNN-2 have mean errors of
0.3869 days (557.14 minutes) and 0.1924 days (277.06 minutes),
respectively. DNN-4 with 90 neurons and DNN-2 with 110 neurons
exhibit mean errors of 0.0030 days (4.32 minutes) and 0.1088 days
(156.67 minutes), respectively.

Fig. 10. Mean error in days (square root of MSE) for 5 different neural network configurations for planar GTO to GEO transfer.

Table 5
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for planar GTO to GEO transfer.

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 0.4098 0.4063 4.8613 0.4163 0.6590
20 0.3625 0.3495 0.3915 0.3811 0.4061
30 0.4030 0.1162 0.3441 0.7234 0.5067
40 0.3619 0.2027 0.0133 0.2655 0.3535
50 0.3607 0.0063 0.3702 0.2411 0.5537
70 0.1373 0.2901 0.1523 0.7932 0.0050
90 0.0900 0.0623 0.0030 0.0928 0.0770
110 0.3030 0.3829 0.0032 0.4858 0.2406

Fig. 11. Mean error in days (square root of MSE) for 5 different neural network configurations for planar Sub-GTO to GEO transfer.

Table 6
Mean error in days (square root of MSE rounded to 4 decimal points) for 5
different neural network configurations for planar Sub-GTO to GEO transfer.

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5

10 0.4740 0.4806 0.4976 0.4866 1.6699
20 0.3869 0.5051 0.4739 0.4299 1.4739
30 0.4556 0.1924 0.4264 0.4606 0.4917
40 0.6603 0.4737 0.0093 0.4382 0.5111
50 0.3379 0.0081 0.4331 0.4427 0.0585
70 0.8507 0.0039 0.4107 0.4177 0.0080
90 0.3788 0.7039 0.5346 0.0030 0.6164
110 0.1668 0.1088 1.812 0.5709 0.4390

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

12

An important point to note while examining the mean error values is
that the mean error values for the best-performing DNN configurations
are not as huge as they seem to be. The complete trajectory is over
several months, ranging to over 240 days. The DNN’s have an accuracy
of over 99% for the best networks for each of the trajectories shown
above. Secondly, over-fitting these neural networks would not be a good
idea. These networks are expected to give a direction to the reinforce-
ment learning framework in exploring an unexplored part of space.

6.7. SLTOR optimization vs optimized DNN-Predicted trajectories

Figs. 12–14 provide a comparison of actual versus the predicted time
for Super-GTO to GEO DNN-3 with 110 neurons, GTO to GEO DNN-4
with 110 neurons and Sub-GTO to GEO DNN-3 with 110 neurons
respectively, in non-planar orbits. Results show that the predicted time
follows closely to the optimal time obtained through solutions of opti-
mization equations.

6.8. Computational time of SLTOR optimization vs optimized DNNs

In Table 7, we compare the computational times for our designed
DNNs and the optimization approach to determine the transfer times
from a given orbit to GEO. Both the SLTOR optimization approach and
our designed optimized DNNs are executed on a machine running
Windows 11 operating system and equipped with Intel Core i7-11370H
processor operating at 3.30 GHz 4 core CPU with 16 GBs of random
access memory (RAM). Results indicate that our designed DNNs can
predict the transfer time to reach GEO from a given orbit in a fraction of
second whereas the optimization approach takes tens of seconds to
compute the transfer time. Results indicate that on average our designed
DNNs provide an improvement of 1600× in computation time as
compared to the tradition optimization approach. These results verify
the effectiveness of our DNNs providing the inference of metric of in-
terest (i.e., transfer time here) in real-time, and thus the suitability of our
DNNs for Q-value estimation and usage in DRL frameworks in an
automated manner.

7. Comparison of optimized DNNs vs contemporary ML
algorithms

This section compares the results from our designed DNNs using the
Levenberg Marquardt (LM) algorithm with the contemporary Machine
Learning (ML) algorithms. The algorithms we provide a comparison
with are: Support Vector Machine (SVM), Random Forest (RF), and
Decision Tree (DT) for regression. We only provide comparison results of
non-planar SuperGTO to GEO transfers to demonstrate the effectiveness

of our designed DNN versus contemporary ML algorithms as other
mission transfers will follow similar comparison trends.

7.1. Non-planar Super-GTO

In this subsection, first we obtain the results of mean error for
transfer time prediction for non-planar Super-GTO to GEO transfers
using SVM, RF, and DT. After that, we provide a comparison of our
designed DNNs using the LM algorithm with SVM, RF, and DT.

7.1.1. Support vector machine
Table 8 contains the results (mean error in days) for SVM algorithm

with values of C and ϵ varying from 0.1 - 0.9 with an increment of 0.2 in
each subsequent SVM trained. In total we have 25 configurations of
SVMs that we have reported in this paper.

As it can be seen in bold text in the Table 8, the best performance for
the mission scenario is coming from the SVM with C = 0.9 and Epsilon =
0.1 with a mean error of 0.6032 days. The second best performer is SVM
with C = 0.9 and Epsilon = 0.3 with mean error of 0.6039 days that is
0.12% higher than the SVM with C = 0.9 and Epsilon = 0.1. The third
best in performance is SVM with C = 0.9 and Epsilon = 0.5 with a mean
error of 0.6100 days that is 1.01% higher than the second best per-
forming SVM with C = 0.9 and Epsilon = 0.3.

7.1.2. Random forest
Table 9 contains the results (mean error in days) for Random Forest

algorithm with a varying number of estimators from 10 to 110. The first
row in the table (header) displays the total number of estimators (#Est)
we have used in Random Forest. The second row is the results presented
as mean error (ME) in days.

As it can be seen in bold text in the Table 9, the best performance for
planar SuperGTO to GEO mission scenario is achieved with the RF al-
gorithm with 30 estimators. The mean error of RF algorithm with 30
estimators is 0.4041 days. The second best performer, is the RF algo-
rithm with 50 estimators with a mean error of 0.4050 days which is
0.22% higher than the mean error of RF algorithm with 30 estimators.
The third best performance is achieved with 90 estimators with a mean
error of 0.4060 days that is 0.25% higher than the mean error of RF
algorithm with 80 estimators.

7.1.3. Decision tree
Table 10 contains the results (error in days) for Decision Tree (DT)

algorithm with a varying random state from 0 to 9. The first row in the
table (header) displays the random state value (RSV) used to train DT
algorithm. The second row is the results presented as mean error (ME) in
days.

Fig. 12. Comparison of original and predicted transfer time for non-planer Super-GTO to GEO transfer using DNN-3 with 110 neurons.

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

13

Fig. 13. Comparison of original and predicted transfer time for non-planer GTO to GEO transfer using DNN-4 with 110 neurons.

Fig. 14. Comparison of original and predicted transfer time for non-planer Sub-GTO to GEO transfer using DNN-3 with 110 neurons.

Table 7
Comparison of computational times for DNNs and optimization approach to
determine the transfer times from given orbit to GEO.

Current
Orbit

Optimization
approach

DNNs Otimal DNN
configuration

Improvement
Afforded by
DNNs

Non-
planar
GTO

26.03 sec 0.016 sec DNN-4 with
110 neurons

1626.88×

Planar-
GTO

15.48 sec 0.009 sec DNN-3 wih 90
neurons

1720.00×

Non-
Planar
Sub-
GTO

35.51 sec 0.016 sec DNN-3 with
110 neurons

2219.38×

Planar
Sub-
GTO

18.08 sec 0.010 sec DNN-4 with 90
neurons

1808.00×

Non-
planar
Super-
GTO

20.50 sec 0.014 sec DNN-2 with
110 neurons

1464.28×

Planar
Super-
GTO

11.43 sec 0.015 sec DNN-3 with
110 neurons

762.00×

Average 21.17 sec 0.013 sec – – 1600.1×

Table 8
Mean error in days (square root of MSE rounded to 4 decimal points) for each
subsequent configuration for planar Super-GTO to GEO transfer.

ϵ 0.1 0.3 0.5 0.7 0.9

C
0.1 0.9338 0.9284 0.9531 0.9909 1.0166
0.3 0.7065 0.7157 0.7319 0.7577 0.7937
0.5 0.6417 0.6494 0.6668 0.6905 0.7152
0.7 0.6179 0.6274 0.6410 0.6592 0.6849
0.9 0.6032 0.6039 0.6100 0.6345 0.6713

Table 9
Mean error in days (square root of MSE rounded to 4 decimal points) for 11
different configurations of support vector machine (SVM) from 10 to 110 esti-
mators (#Est) with an increment of 10 estimators in each subsequent configu-
ration for non-planar Super-GTO to GEO transfer.

#Est 10 20 30 40 50 60

ME 0.4078 0.4082 0.4041 0.4070 0.4050 0.4072
#Est 70 80 90 100 110
ME 0.4065 0.4065 0.4060 0.4066 0.4093

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

14

As it can be seen in bold text in the Table 10, the best performance for
non-planar SuperGTO to GEO mission scenario is achieved with the DT
algorithm with random state = 0. The mean error of DT algorithm with
random state = 1 is 0.6133 days. The second best performer, is the DT
algorithm with random state = 0 with a mean error of 0.6139 days
which is 0.10% higher than the mean error of DT algorithm with random
state = 1. The third best performance is achieved with random state = 7
with a mean error of 0.6141 days that is 0.03% higher than the mean
error of RF algorithm with random state = 0.

7.1.4. Comparison of optimized DNNs versus SVM, RF, and DT
Table 11 compares the mean error for our best-performing DNNs

trained using LM optimizer versus SVM, RF and DT algorithms. DNN-4
with 110 neurons is the best performing algorithm with a ME of
0.0435. RF with 30 estimators is the second best performer with a ME of
0.4041 that is 9.29× better than the ME of DNN. SVM with C = 0.9 and
Epsilon = 0.1 has a ME of 0.6032 that is 13.87× higher than the ME of
the best performing DNN. DT with random state = 1 has a ME of 0.6113
that is 14.05× higher than the ME of the best performing DNN.

7.2. Planar Super-GTO

In this subsection, first we obtain the results of mean error for
transfer time prediction for planar SuperGTO to GEO transfers using
SVM, RF, and DT. After that, we provide a comparison of our designed
DNNs using the LM algorithm with SVM, RF, and DT is provided.

7.2.1. Support vector machine
Table 12 contains the results (mean error in days) for SVM algorithm

with values of C and ϵ varying from 0.1 - 0.9 with an increment of 0.2 in
each subsequent SVM trained. In total we have 25 configurations of
SVMs that we have reported in this paper.

As it can be seen in bold text in the Table 12, the best performance for
the mission scenario is coming from the SVM with C = 0.9 and Epsilon =
0.1 with a mean error of 0.7115 days. The second best performer is SVM
with C = 0.9 and Epsilon = 0.5 with mean error of 0.7183 days that is
0.96% higher than the SVM with C = 0.9 and Epsilon = 0.1. The third
best in performance is SVM with C = 0.9 and Epsilon = 0.3 with a mean
error of 0.7305 days that is 1.70% higher than the second best per-
forming SVM with C = 0.9 and Epsilon = 0.5.

7.2.2. Random forest
Table 13 contains the results (error in days) for Random Forest al-

gorithm with a varying number of estimators from 10 to 110. The first
row in the table (header) displays the total number of estimators (#Est)
we have used in Random Forest. The second row is the results presented

as mean error (ME) in days.
As it can be seen in bold text in the Table 13, the best performance for

planar SuperGTO to GEO mission scenario is achieved with the RF al-
gorithm with 70 estimators. The mean error of RF algorithm with 70
estimators is 0.5022 days. The second best performer, is the RF algo-
rithm with 80 estimators with a mean error of 0.5035 days which is
0.25% higher than the mean error of RF algorithm with 70 estimators.
The third best performance is achieved with 40 estimators with a mean
error of 0.5065 days that is 0.59% higher than the mean error of RF
algorithm with 80 estimators.

7.2.3. Decision tree
Table 14 contains the results (error in days) for Decision Tree (DT)

algorithm with a varying random state from 0 to 9. The first row in the
table (header) displays the random state value (RSV) used to train DT
algorithm. The second row is the results presented as mean error (ME) in
days.

As it can be seen in bold text in the Table 14, the best performance for
planar Super-GTO to GEO mission scenario is achieved with the DT al-
gorithm with random state = 0. The mean error of DT algorithm with
random state = 0 is 0.6074 days. The second best performer, is the DT
algorithm with random state = 9 with a mean error of 0.6131 days
which is 0.94% higher than the mean error of DT algorithm with random
state = 0. The third best performance is achieved with random state = 4
with a mean error of 0.6134 days that is 0.05% higher than the mean
error of RF algorithm with random state = 9.

7.2.4. Comparison of optimized DNNs versus SVM, RF, and DT
Table 15 compares the mean error for best DNNs trained using LM

optimizer, SVM, RF and DT algorithms.
DNN-3 with 70 neurons is the best performing algorithm with ME

0.0028. RF with 70 estimators is the second best performer with a ME of
0.5022 that is 179.39× better than ME of DNN. DT with random state =
0 has a ME of 0.6074 that is 216.92× higher than ME of the best per-

Table 10
Mean error in days (square root of MSE rounded to 4 decimal points) for 10
different configurations of DT algorithm from 0 to 9 RSV for non-planar Super-
GTO to GEO transfer.

RSV 0 1 2 3 4

ME 0.6139 0.6133 0.6182 0.6183 0.6153
RSV 5 6 7 8 9
ME 0.6161 0.6177 0.6141 0.6196 0.6174

Table 11
Comparison of mean error (actual values and times improvement) for the best
DNN trained using LM optimizer, SVM, RF and DT for non-planar SuperGTO to
GEO transfer. I denotes the improvement provided by our best-performing
DNN.

Algorithm DNN RF SVM DT

ME in Days 0.0435 0.4041 0.6032 0.6113
ℐ N/A 9.29× 13.87× 14.05×

Table 12
Mean error in days (square root of MSE rounded to 4 decimal points) for each
subsequent configuration for planar Super-GTO to GEO transfer.

ϵ 0.1 0.3 0.5 0.7 0.9

C
0.1 2.1524 2.2899 2.3458 2.2086 2.2637
0.3 1.1975 1.1996 1.2167 1.2181 1.2990
0.5 0.9009 0.8971 0.9450 0.9462 0.9854
0.7 0.7912 0.7891 0.7916 0.8567 0.8979
0.9 0.7115 0.7305 0.7183 0.7602 0.8097

Table 13
Mean error in days (square root of MSE rounded to 4 decimal points) for 11
different configurations of RF algorithm from 10 to 110 estimators (#Est) with
an increment of 10 estimators in each subsequent configuration for planar
Super-GTO to GEO transfer.

#Est 10 20 30 40 50 60

ME 0.5147 0.5086 0.5205 0.5065 0.5131 0.5141
#Est 70 80 90 100 110
ME 0.5022 0.5035 0.5172 0.5112 0.5158

Table 14
Mean error in days (square root of MSE rounded to 4 decimal points) for 10
different configurations of DT algorithm from 0 to 9 RSV for planar Super-GTO
to GEO transfer.

RSV 0 1 2 3 4

ME 0.6074 0.6168 0.6260 0.6184 0.6134
RSV 5 6 7 8 9
ME 0.6157 0.6191 0.6249 0.6254 0.6131

A.H. Mughal et al.

Intelligent Systems with Applications 15 (2022) 200092

15

forming DNN. SVM with C = 0.9 and Epsilon = 0.1 has a ME of 0.7112
that is 254.11× higher than the ME of the best performing DNN.

8. Conclusions

In recent years, there has been a surge in use of electric propulsion to
transfer satellites to the geostationary Earth orbit (GEO). Traditionally,
the transfer times to reach GEO using all-electric propulsion are ob-
tained by solving challenging trajectory optimization problems, whose
solution rely on numerical schemes that are not only computationally
intensive, but also lack automated implementation capabilities, which is
an impediment to their incorporation within a deep reinforcement
learning (DRL) framework to solve trajectory planning problems in near
real-time. This work designs and evaluates a machine learning (ML)
framework, focusing on deep neural networks (DNNs), to predict the
transfer time in near real-time to assist in Q-value determination instead
of solving traditional sequential low-thrust orbit-raising (SLTOR) opti-
mization problems. This paper investigates different architectures for
DNNs to determine a suitable setting of hyperparameters of DNNs for
transfer time prediction for six orbit-raising trajectories involving
transfers from planar and non-planar geostationary transfer orbit (GTO),
Sub-GTO, and Super-GTO to geostationary Earth orbit (GEO). Since
spacecraft orbit-raising trajectory problem is a continuous-space prob-
lem, our designed DNNs can both interpolate and extrapolate to states in
the space not present in the training set.

Experimental results indicate that our designed DNNs can predict the
transfer time for different orbit-raising scenarios with an accuracy of
over 99.97% with respect to solving an SLTOR optimization problem.
Comparison of prediction time of our designed DNNs with the SLTOR
optimization problem reveals that our designed DNNs provide an
improvement in computation time of 1600× , on average, over the
SLTOR optimization, thus verifying the suitability of our designed DNNs
to be used in DRL frameworks in an automated manner. To verify the
efficacy of our designed DNNs for predicting transfer time that is
required for Q-value estimation, we have also compared the results from
our designed DNNs using the Levenberg Marquardt (LM) algorithm with
the contemporary ML algorithms, such as support vector machines
(SVM), random forests (RFs), and decision trees (DTs) for regression.
Experimental results indicate that our best-performing DNN provides an
improvement of mean error of 9.29× , 13.87× , and 14.05× over RF,
DT, and SVM, respectively, for non-planar Super-GTO to GEO transfers.
Experimental results indicate that our best-performing DNN provides an
improvement of mean error of 179.39× , 216.92× , and 254.11× over
RF, DT, and SVM, respectively, for planar Super-GTO to GEO transfers.

In our future work, we plan to design DNNs for predicting other
metrics of interest (such as fuel expenditure) from a given orbit or state
for different planar and non-planar GTO, Super-GTO, and Sub-GTO or-
bits to GEO. We further plan to use our designed DNNs in a DRL
framework for predicting the transfer time and assisting in Q-value
determining for determining an optimal trajectory for transfer from
different planar and non-planar GTO, Super-GTO, and Sub-GTO orbits to
GEO.

CRediT authorship contribution statement

Ali Hassaan Mughal: Software, Validation, Formal analysis, Writing
– original draft, Visualization. Pardhasai Chadalavada: Software,

Validation, Data curation, Writing – original draft, Writing – review &
editing. Arslan Munir: Conceptualization, Methodology, Formal anal-
ysis, Investigation, Writing – original draft, Writing – review & editing,
Visualization, Supervision, Project administration, Funding acquisition.
Atri Dutta: Conceptualization, Methodology, Investigation, Writing –
original draft, Writing – review & editing, Supervision, Funding acqui-
sition, Project administration. Mahmood Azhar Qureshi: Writing –
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported in part by the National Aeronautics and
Space Administration (NASA), through the grant NASA-20-
2020EPSCoR-0017. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NASA.

References

Arora, L. (2020). Reinforcement learning framework for spacecraft low-thrust orbit raising.
Arora, L., & Dutta, A. (2020). Reinforcement learning for sequential low-thrust orbit raising

problem (p. 2186).
Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. 21(2),

193–207.
Betts, J. T. (2000). Very low-thrust trajectory optimization using a direct sqp method.

120(1–2), 27–40.
Broida, J., & Linares, R. (2019). Spacecraft rendezvous guidance in cluttered

environments via reinforcement learning. 29th AAS/AIAA Space Flight Mechanics
Meeting, 1–15.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning
algorithms (pp. 161–168).

Cass, J. M. (1983). Journal of the Royal Statistical Society. Series C (Applied Statistics), 32
(1), 94–95.

Chadalavada, P., Dutta, A., & Ghosh, P. (2022). An efficient algorithm for the longitude-
targeted ascent of all-electric satellites. Aiaa scitech 2022 forum (p. 2473).

Chadalavada, P., Farabi, T., & Dutta, A. (2020). Sequential low-thrust orbit-raising of all-
electric satellites. Aerospace, 7(6), 74.

Cheng, L., Jiang, F., Wang, Z., & Li, J. (2021). Multiconstrained real-time entry guidance
using deep neural networks. IEEE Transactions on Aerospace and Electronic Systems, 57
(1), 325–340.

De Pascale, P., & Vasile, M. (2006). Preliminary design of low-thrust multiple gravity-
assist trajectories. 43(5), 1065–1076.

Dutta, A., & Arora, L. (2019). Objective function weight selection for sequential low-thrust
orbit-raising optimization problem (pp. 13–17).

Gaudet, B., Drozd, K., & Furfaro, R. (2022). Adaptive approach phase guidance for a
hypersonic glider via reinforcement meta learning. Aiaa scitech 2022 forum (p.
2214).San Diego

Gavin, H. P. (2020). The Levenberg-Marquardt method for nonlinear least squares curve-
fitting problems. Duke University Press.

Graham, K. F., & Rao, A. V. (2016). Minimum-time trajectory optimization of low-thrust
earth-orbit transfers with eclipsing. 53(2), 289–303.

Haj-Ali, A., Huang, Q. J., Xiang, J., Moses, W., Asanovic, K., Wawrzynek, J., & Stoica, I.
(2020). Autophase: Juggling hls phase orderings in random forests with deep
reinforcement learning. In I. Dhillon, D. Papailiopoulos, & V. Sze (Eds.), vol. 2.
Proceedings of machine learning and systems (pp. 70–81).

He, S., Shin, H.-S., & Tsourdos, A. (2021). Computational missile guidance: A deep
reinforcement learning approach. Journal of Aerospace Information Systems, 18(8),
571–582.

Herman, A. L., & Conway, B. A. (1996). Direct optimization using collocation based on
highorder gauss-lobatto quadrature rules. 19(3), 592–599.

Hovell, K., & Ulrich, S. (2021). Deep reinforcement learning for spacecraft proximity
operations guidance. Journal of Spacecraft and Rockets, 58, 254–264.

Iiyama, K., Tomita, K., Jagatia, B. A., Nakagawa, T., & Ho, K. (2021). Deep reinforcement
learning for safe landing site selection with concurrent consideration of divert
maneuvers. arXiv preprint arXiv:2102.12432.

Junkins, J. L., & Taheri, E. (2018). Exploration of alternative state vector choices for low-
thrust trajectory optimization. 42(1), 47–64.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio,
& Y. LeCun (Eds.), 3rd international conference on learning representations, ICLR.

Kluever, C. (1998a). Simple control laws for low-thrust orbit transfers (aas 98–203). (vol.99
pp. 1455–1468)). UNIVELT INC.

Table 15
Comparison of mean error (actual values and times improvement) for the best
DNN trained using LM optimizer, SVM, RF and DT for planar Super-GTO to GEO
transfer. I denotes the improvement provided by our best-performing DNN.

Algorithm DNN RF DT SVM

ME 0.0028 0.5022 0.6074 0.7115
ℐ N/A 179.39× 216.92× 254.11×

A.H. Mughal et al.

http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0001
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0004
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0004
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0006
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0006
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0007
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0007
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0008
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0008
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0011
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0011
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0012
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0012
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0014
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0014
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0015
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0015
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0023
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0023

Intelligent Systems with Applications 15 (2022) 200092

16

Kluever, C. A. (1998b). Simple guidance scheme for low-thrust orbit transfers. 21(6),
1015–1017.

Kluever, C. A., & Oleson, S. R. (1998). Direct approach for computing near-optimal
lowthrust earth-orbit transfers. Journal of Spacecraft and Rockets, 35(4), 509–515.

Kolosa, D. S. (2019). A reinforcement learning approach to spacecraft trajectory optimization
(p. 3542)). Western Michigan University Press.

Kwon, H., Oghim, S., & Bang, H. (2021). Autonomous guidance for multi-revolution low-
thrust orbit transfer via reinforcement learning. AAS 21–315.

LaFarge, N. B. (2020). Autonomous guidance for multi-body orbit transfers using
reinforcement learning. Purdue University Graduate School.

Li, B., peng Yang, Z., qing Chen, D., yang Liang, S., & Ma, H. (2021). Maneuvering target
tracking of uav based on mn-ddpg and transfer learning. Defence Technology, 17(2),
457–466.

Marasch, M. W., & Hall, C. D. (2000). Application of energy storage to solar electric
propulsion orbital transfer. 37(5), 645–652.

Marecki, J., Koenig, S., & Tambe, M. (). A fast analytical algorithm for solving markov
decision processes with real-valued resources. IJCAI, 2017,.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear
parameters. 11(2), 431–441.

Marriott, F. H. C. (1985). Biometrics, 41(2).596–596
Novak, D. M., & Vasile, M. (2011). Improved shaping approach to the preliminary design

of low-thrust trajectories. 34(1), 128–147.
Oestreich, C. E., Linares, R., & Gondhalekar, R. (2021). Autonomous six-degree-of-

freedom spacecraft docking with rotating targets via reinforcement learning. Journal
of Aerospace Information Systems, 1–12.

Petropoulos, A. (2004). Low-thrust orbit transfers using candidate Lyapunov functions with a
mechanism for coasting (p. 5089)).

Petropoulos, A. E., & Longuski, J. M. (2004). Shape-based algorithm for the automated
design of low-thrust, gravity assist trajectories. 41(5), 787–796.

Sackett, L. L., Malchow, H. L., & Delbaum, T. N. (1975). Solar electric geocentric transfer
with attitude constraints: analysis. Final technical report.

Shirobokov, M. G., Trofimov, S. P., & Ovchinnikov, M. (2021). Survey of machine
learning techniques in spacecraft control design. Acta Astronautica, 186, 87–97.

Sreesawet, S., & Dutta, A. (2018). Fast and robust computation of low-thrust orbit-raising
trajectories. Journal of Guidance, Control, and Dynamics, 41(9), 1888–1905.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd). The
MIT Press.

Taheri, E., & Abdelkhalik, O. (2012). Shape based approximation of constrained low-
thrust space trajectories using fourier series. 49(3), 535–546.

Vasile, D. P. P. M., & Casotto, S. (2007). On the optimality of a shape-based approach
based on pseudo-equinoctial elements. 61(1–6), 286–297.

Wall, B. J., & Conway, B. A. (2009). Shape-based approach to low-thrust rendezvous
trajectory design. 32(5), 95–101.

Wang, X., Shi, P., Wen, C., & Zhao, Y. (2020). An algorithm of reinforcement learning for
maneuvering parameter self-tuning applying in satellite cluster (vol. 2020). Hindawi.

Wang, Z., & Grant, M. J. (2017). Constrained trajectory optimization for planetary entry
via sequential convex programming. Journal of Guidance, Control, and Dynamics, 40
(10), 2603–2615.

Wang, Z., & Grant, M. J. (2018). Optimization of minimum-time low-thrust transfers
using convex programming. Journal of Spacecraft and Rockets, 55(3), 586–598.

Willis, S., Izzo, D., & Hennes, D. (2016). Reinforcement learning for spacecraft
maneuvering near small bodies. AAS/AIAA Space Flight Mechanics Meeting, 14–18.

Yuexuan, A., Shifei, D., Shi, S., & Li, J. (2018). Discrete space reinforcement learning
algorithm based on support vector machine classification. Pattern Recognition Letters,
111, 30–35.

Zhao, Z., Sun, M., & Ma, X. (2021). Meta-Reinforcement Learning for Mastering Multiple
Skills and Generalizing across Environments in Text-based Games. Meta learning for
nlp workshop at annual meeting of the association for computational linguistics (acl).
Bangkok, Thailand

A.H. Mughal et al.

http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0024
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0024
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0025
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0025
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0026
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0026
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0027
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0027
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0028
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0028
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0029
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0029
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0029
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0030
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0030
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0032
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0032
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0033
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0034
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0034
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0035
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0035
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0035
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0036
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0036
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0037
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0037
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0038
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0038
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0039
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0039
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0040
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0040
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0041
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0041
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0042
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0042
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0043
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0043
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0044
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0044
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0045
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0045
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0046
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0046
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0046
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0047
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0047
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0048
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0048
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0049
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0049
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0049
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0050
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0050
http://refhub.elsevier.com/S2667-3053(22)00032-1/sbref0050

	Design of deep neural networks for transfer time prediction of spacecraft electric orbit-raising
	1 Introduction
	2 Related work
	3 Problem formulation and relevance to DRL
	4 Generating dataset for orbit-raising scenarios
	5 Designing the optimized neural networks for transfer time prediction
	5.1 Overview
	5.2 Approach

	6 Experimental results for optimized DNNs vs SLTOR optimization
	6.1 Non-planar Super-GTO to GEO transfer
	6.2 Non-planar GTO to GEO transfer
	6.3 Non-planar Sub-GTO to GEO transfer
	6.4 Planar Super-GTO to GEO transfer
	6.5 Planar GTO to GEO transfer
	6.6 Planar Sub-GTO to GEO transfer
	6.7 SLTOR optimization vs optimized DNN-Predicted trajectories
	6.8 Computational time of SLTOR optimization vs optimized DNNs

	7 Comparison of optimized DNNs vs contemporary ML algorithms
	7.1 Non-planar Super-GTO
	7.1.1 Support vector machine
	7.1.2 Random forest
	7.1.3 Decision tree
	7.1.4 Comparison of optimized DNNs versus SVM, RF, and DT

	7.2 Planar Super-GTO
	7.2.1 Support vector machine
	7.2.2 Random forest
	7.2.3 Decision tree
	7.2.4 Comparison of optimized DNNs versus SVM, RF, and DT

	8 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

