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A B S T R A C T   

Recently, there has been a surge in use of electric propulsion to transfer satellites to the geostationary Earth orbit 
(GEO). Traditionally, the transfer times to reach GEO using all-electric propulsion are obtained by solving 
challenging trajectory optimization problems that naturally do not lend themselves to incorporation within deep 
reinforcement learning (DRL) framework to solve trajectory planning problems in near real-time. The operation 
of DRL, as typically used in trajectory planning, relies on a Q-value. In the electric orbit-raising problem under 
consideration in this paper, this Q-Value requires computation of transfer time in near real-time to have practical 
DRL training times. This work proposes to design and evaluate a machine learning (ML) framework, focusing on 
deep neural networks (DNNs), to predict the transfer time to assist in Q-value determination instead of solving 
traditional orbit-raising optimization problems. To this end, we investigate different architectures for DNNs to 
determine a suitable DNN configuration that can predict the transfer time for each of the mission scenarios with 
high accuracy. Experimental results indicate that our designed DNNs can predict the transfer time for different 
scenarios with an accuracy of over 99.97%. To verify the efficacy of our designed DNNs for predicting transfer 
time that is required for Q-value estimation, we also compare the results from our designed DNNs with the 
contemporary ML algorithms, such as support vector machines, random forests, and decision trees for regression. 
Experimental results indicate that our best-performing DNNs can provide an improvement in the mean error of 
transfer time prediction by up to 14.05× for non-planar transfers and up to 254× for planar transfers as 
compared to contemporary ML algorithms.   

1. Introduction 

In the past decade, telecommunication satellite operators with assets 
stationed in the geosynchronous equatorial orbit (GEO) have demon-
strated an increased interest in deploying their satellites into orbit using 
solar-electric propulsion. Such satellites are initially launched into a 
geosynchronous transfer orbit (GTO) or similar orbits (such as Sub-GTO 
or Super-GTO) before the satellite uses its onboard electric propulsion to 
reach the GEO, which is a circular equatorial orbit of altitude 35,786 
km. The resulting transfer from GTO, Sub-GTO or Super-GTO to GEO is 

referred to as an orbit-raising maneuver, which if done using electric 
thrusters, takes a significantly long time to accomplish, often being in 
the order of several months owing to the low-thrust generation capa-
bility of electric thrusters. However, the enhanced transfer time is more 
than compensated by the tremendous propellant savings and the 
resulting design of smaller and lighter satellites. The mass and volume 
reduction lead to stacking of multiple satellites in the launch vehicle, 
facilitating sharing of launch costs, which mean significant cost savings 
for the telecommunication operators. Compared to traditional chemical 
orbit-raising maneuver, the electric orbit-raising maneuver is fairly 
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complex because the maneuver requires the thruster operation over 
prolonged periods, disrupted intermittently when the spacecraft is in the 
shadow of the Earth (note that the electric thrusters derive power from 
the satellite solar panels). Additionally, the passage through the Van 
Allen radiation belts, particularly the inner one, damages the solar 
panels and leads to degradation of power availability for the remaining 
transfer (and the remainder of the mission as well). As more spacecraft 
adopt solar-electric propulsion for conducting orbit-raising maneuver, 
the future mission operations will likely benefit from an enhanced au-
tonomy in mission planning. 

A key step in mission planning for the orbit-raising maneuver is the 
determination of low-thrust multi-revolution trajectory, which requires 
the solution of a long time scale, multi-phase, nonlinear, non-convex 
optimal control problem that is challenging to solve. The trajectory to 
be computed is over a long time scale because of the low magnitude of 
the propulsion system thrust, resulting in a slow spiraling transfer 
around the Earth. The problem is multi-phase because the spacecraft 
passes through multiple eclipses during its transfer, and the dynamics 
are different in Sun-lit parts of the trajectory and in the shadow of the 
Earth. The absence of the Sun during eclipses prohibit the spacecraft 
from thrusting because electric propulsion systems derive power from 
the solar arrays. The problem is nonlinear owing to the dynamics being 
primarily governed by the inverse-square gravitational force. Finally, 
the problem is non-convex because of the nature of underlying space-
craft dynamics and the objective functions (transfer time or fuel 
expenditure) that are of interest to mission designers. Nevertheless, this 
challenging problem has been studied in the astrodynamics literature for 
many decades, and a number of methods have been developed. These 
methods can be largely classified into direct and indirect optimization 
techniques, depending on whether calculus of variations is used to 
determine the necessary conditions of optimality (direct methods bypass 
this step). Numerical schemes based on these approaches need good 
quality initial guesses for demonstrating good convergence, and deter-
mining the good initial guesses depend on a human expert as well. 

A number of other approaches have also been considered, such as 
shape-based methods or guidance-like schemes, in order to address the 
challenges of underlying trajectory optimization. In this paper, we 
leverage a recently developed optimization scheme that can yield fast 
and robust computations of the low-thrust orbit-raising trajectory 
without the need for user-provided initial guesses. This optimization 
scheme relies on two innovations: the use of a set of regularized ele-
ments suitable for the application, and an optimization scheme that 
poses the long time-scale problem as a sequence of unconstrained 
optimization sub-problems that are easier to solve. We refer to this 
optimization scheme as sequential low-thrust orbit-raising (SLTOR) 
optimization problem. Note here that the advantages of fast, robust and 
automated trajectory computation come at the cost of a sub-optimality 
of the resulting solution. 

Deep reinforcement learning (DRL), which combines reinforcement 
learning (RL) and deep learning (DL), has emerged as a promising 
approach for optimization of guidance-based systems in recent years (He 
et al., 2021; Kolosa, 2019; Sutton and Barto, 2018; Willis et al., 2016). 
DRL has shown significant improvements in ever-challenging domains 
despite several uncertainties in the environment. Markov decision pro-
cesses (MDPs) are one of the most common underlying mathematical 
frameworks leveraged by DRL. MDPs comprise an agent, an environ-
ment, and a given set of goals. Continuous-state MDPs are required for 
solving many problems, but present various challenges, in particular, 
state space explosion. A framework for faster computation of 
continuous-state MDPs by discretizing the space has been presented by ) 
Marecki (Koenig). In MDPs, the agent in a given state takes an action in 
the environment to reach a new state. The agent starts at an initial point 
and is given a set of heuristics to reach the end goal (Sutton and Barto, 
2018). The heuristic, which is the adaptation of the policy for a partic-
ular environment or performance of an agent, improves with time. In 
MDP, the reward is provided to the agent based on action(s) taken either 

at the final state or intermediate states, depending on the environment 
design. A satellite takes a series of actions to reach the GEO, and these 
actions need to be optimized in order to minimize a certain objective 
function, such as minimizing the transfer time and/or minimize the fuel 
consumption, en route to GEO. DRL is typically seen as an enhanced 
version of the more traditional RL. While the RL is more dynamic and 
uses trial and error to maximize the outcome, a DRL agent can use the 
existing knowledge and apply it to a new problem. 

While the recent innovations in trajectory determination (such as in 
Sreesawet and Dutta, 2018) result in fast and robust computation of 
electric orbit-raising trajectory (at the cost of sub-optimality of the 
computed trajectories), these cannot be readily integrated within a DRL 
scheme. The operation of DRL, as typically used in trajectory planning, 
relies on a Q-value. In the electric orbit-raising problem, this Q-Value 
requires computation of a metric of interest (such as transfer time or fuel 
expenditure) in near real-time to have practical DRL training times. We 
define the prediction of metric of interest (e.g., transfer time) is in 
real-time if the time taken to predict the metric of interest is negligible (i. 
e., orders of magnitude less) as compared to the time for each discretized 
segment within a planning horizon. For instance, the SLTOR optimiza-
tion problem uses 72 segments over a revolution, whose time period 
ranges from a few hours to sidereal day. Assuming a revolution takes two 
hours, then for each segment, the decision for spacecraft thrust and di-
rection needs to be taken in 120/72 = 1.67 minutes. Thus, for a pre-
diction of transfer time to be considered as real-time, the prediction 
should be obtained in a fraction of a second. The expeditious prediction 
of transfer time can enable the mission designer to make further 
fine-grained designs regarding thrust and direction of spacecraft (say 
360 decisions in a revolution), thus giving the designer more control 
authority on spacecraft path planning. If the prediction decisions can be 
taken close to real-time, as defined earlier, but not as fast to be consid-
ered real-time, then these decisions can be said to be taken in near 
real-time. We also define that trajectory planning problems can be solved 
in near real-time if the metric of interest (e.g., transfer time) that needs to 
be assessed at each decision-making instant (such as at each segment 
within a revolution) can be predicted in real-time. 

The main challenge here is that the computation of a metric of in-
terest (such as transfer time or fuel expenditure) at any point using 
SLTOR optimization requires the solution of all optimal control sub- 
problems corresponding to all future revolutions. While this process is 
not a challenge for the computation of a single orbit-raising trajectory, 
this is not an efficient mechanism to evaluate the Q-value, which 
essentially signifies the maximum expected reward an agent can reach 
by taking a given action a from the state s, and rewards, which depend 
on the metrics of interest (such as transfer time or fuel expenditure), 
associated with all state-action pairs within a DRL scheme. This paper 
addresses this challenge by designing and evaluating a machine learning 
(ML) framework, focusing on deep neural networks (DNNs), that facil-
itate the straight-forward prediction of the metric of interest without 
having to solve numerous optimization problems corresponding to 
forthcoming revolutions as in SLTOR optimization. While there have 
been some works in the literature on training artificial neural networks 
(ANNs) for the electric orbit-raising problem (Arora and Dutta, 2020; 
Kwon et al., 2021), there has been a lack of a comprehensive assessment 
of neural network architectures, and our present paper fills in this void. 
Our main contributions in this paper are as follows:  

• Designing and evaluating an ML framework, focusing on DNNs, for 
accurate prediction of metric of interest (transfer time in this work) 
to assist in Q-value determination instead of solving traditional orbit- 
raising optimization problems for six different planar and non-planar 
mission scenarios for transfer to GEO.  

• Exploring the design space of DNNs to determine a suitable setting of 
hyperparameters of DNNs for each orbit-raising mission scenario 
that provides the transfer time prediction with at least 99.97% 
accuracy, 
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• Evaluating and comparing the transfer time prediction results from 
our optimized DNNs with the contemporary ML algorithms, such as 
support vector machines (SVMs), random forests (RFs), and decision 
trees (DTs). 

To the best of knowledge of authors, there does not exist a compre-
hensive study that designs and evaluates different ML frameworks for 
prediction of the metric of interest in missing planning for the orbit- 
raising scenarios. To this end, we design and evaluate different ML 
frameworks, focusing on DNNs, for prediction of the metric of interest in 
mission planning for the following orbit-raising mission scenarios:  

• Planar and non-planar Super-GTO to GEO  
• Planar and non-planar GTO to GEO  
• Planar and non-planar Sub-GTO to GEO 

In this paper, we refer to our designed DNNs with a suitable setting of 
hyperparameters that can provide the transfer time prediction with at 
least 99.97% accuracy as optimized DNNs. While this paper has been 
primarily motivated by a future application of these artificial neural 
networks to DRL orbit-raising framework (which is not the focus of this 
paper), these networks also have potential applications for an adaptive 
weight modification strategy as studied by Arora (2020), and the 
six-state targetted orbit-raising maneuver as studied by Chadalavada 
et al. (2022). 

The remainder of this paper is organized as follows. Section 2 dis-
cusses prior works in literature related to spacecraft orbit-raising. Sec-
tion 3 presents the problem formulation for DRL-based orbit-raising, and 
clarifies where our current work fits in DRL-based orbit-raising. Section 
4 details the dataset generation for orbit-raising scenarios. Section 5 
elaborates the approach for design of optimized DNNs for transfer time 
prediction. Experimental results showing the accuracy of the designed 
DNNs for transfer time prediction for different orbit-raising scenarios 
with respect to SLTOR optimization are presented in Section 6. Section 7 
presents the comparison of our designed DNNs with the contemporary 
ML algorithms in terms of accuracy of transfer time prediction. Finally, 
Section 8 concludes this work. 

2. Related work 

In recent years, researchers have been studying optimal trajectories 
associated with electric low-thrust orbit raising maneuvers to reach 
GEO (Betts, 1998; Kluever and Oleson, 1998; Sackett et al., 1975). The 
low thrust as mentioned previously is the primary concern for using a 
spacecraft that is all-electric, and that causes a long transfer time taken 
for the spacecraft to reach the GTO. In addition, the spacecraft en-
counters multiple eclipses in the route, this further prolongs the transfer 
time unless the spacecraft has the capability of storing electric energy for 
use during the eclipses (Marasch and Hall, 2000). This creates a reason 
to investigate closely the variety of crucial factors affecting the electric 
orbit-raising problem. These factors include the initial orbit of the 
spacecraft, dry mass i.e. the mass that is delivered, the mass of propel-
lant, the capacity solar panel arrays have to generate thrust during 
transfer and the type of thrusters to be used in the spacecraft (Hall, 
Magneto Plasma Dynamic (MPD) or Ion Thrusters). Hence, mission de-
signers have to investigate in detail various scenarios to obtain the least 
time taking trajectory. 

In order to overcome the above stated issue, direct optimization 
methods are used. The state and control variables can be discretized 
with respect to time and apply quadrature rules across the discretized 
segments in order to set up a parameter optimization problem that will 
be a nonlinear programming problem (Betts, 2000; Herman and Con-
way, 1996), that are solved by softwares like Sparse Nonlinear OPTi-
mizer (SNOPT), Interior Point OPTimizer (IPOPT) (Dutta and Arora, 
2019; Graham and Rao, 2016; Wang and Grant, 2017; 2018). The rate of 
convergence for low-thrust optimization using direct methods are better 

than indirect methods. However, direct methods need initial guesses 
which are unknown prior. This lack of knowledge about initial guesses 
has led to a number of studies such as shape based methods (De Pascale 
and Vasile, 2006; Novak and Vasile, 2011; Petropoulos and Longuski, 
2004; Taheri and Abdelkhalik, 2012; Vasile and Casotto, 2007; Wall and 
Conway, 2009) and a number of guidance-based schemes (Kluever, 
1998a; 1998b; Petropoulos, 2004) to approximately solve low-thrust 
optimization problems. The electric orbit-raising problem has been 
studied using a variety of dynamic models, to specifically, study the 
influence on the convergence of low-thrust trajectory through numerical 
optimization schemes (Caruana and Niculescu-Mizil, 2006; Junkins and 
Taheri, 2018). Also, among all the regularized elements, five remain 
constant for time and change slowly under the perturbations in case of 
Keplerian motion. Hence, these are suitable for use in trajectory opti-
mization schemes that have long-time-scale transfers. 

Many prior works have explored the use of artificial intelligence (AI), 
in particular, RL and DRL, for trajectory optimization and planning of 
spacecraft. Shirobokov et al. (2021) have presented a survey of ML 
techniques in spacecraft control detailing the work on formulation 
control and design of control laws in spacecraft flight and landing. An 
actor critic-based RL model consisting of two neural networks has been 
explored in Kolosa (2019) by Kolosa. Kolosa has also analyzed the effect 
of gravity in maneuvering near small bodies. Kolosa has used an RL 
model to solve low-thrust trajectory optimization problems using two 
neural networks, an actor network and a critic network. Willis et al. 
(2016) have studied the spacecraft near a small celestial body with 
unknown gravity using RL. Shaoming et al. (He et al., 2021) have used a 
heuristic way to shape a proper reward function for the RL agent where 
the heuristic is shaped into a command for the missile guidance. For the 
heuristic function, they have taken into account the energy consumption 
and guidance accuracy, and their trade-off. They have examined two 
types of learning agents, learning from scratch and learning with prior 
knowledge (with a guidance command provided at each step). They 
have validated the effectiveness of the proposed approach using exten-
sive numerical simulations. LaFarge (2020) has explored a controller, 
trained via RL considering multibody perturbations. Xiao et al. (Wang 
et al., 2020) have developed a framework to find suitable parameters for 
numerical optimization of such RL models. Xiao et al. (Wang et al., 
2020) have used an actor-critic algorithm where each satellite cluster is 
assigned to three sensing zones. To tune the flight parameters, they have 
used an actor-critic network and have shown to successfully tune flight 
parameters with lower deviation in trajectory for a cluster of flights. 

A guidance strategy for spacecraft proximity operations using DRL 
has been explored by Hovell and Ulrich (2021). Hovell and Ulrich have 
utilized a control theory approach alongside DRL to aid the transfer of 
the learned behavior from simulation to reality. They have demon-
strated their approach via a proof-of-concept spacecraft pose tracking 
and docking scenario.  Broida and Linares (2019) have presented a 
Rendezvous guidance technique for spacecraft in a cluttered environ-
ment using RL. They have implemented and evaluated a proximal policy 
optimization (PPO) to develop a control policy. This policy has been 
used to move a satellite relative to an orbit reference frame into a 
docking position with another. Li et al. (2021) have used a deep deter-
ministic policy gradient (DDPG) framework to target and avoid obsta-
cles for unmanned aerial vehicles (UAVs).  Oestreich et al. (2021) have 
looked into the problem of six degrees of freedom docking via RL. The 
policy implemented by Oestreich et al. (2021) allows the docking ma-
neuvers as a feedback control law under uncertain environments. A safe 
landing site selection considering divert maneuvers using DRL has been 
proposed by Iiyama et al. (2021). 

Some prior works have explored other ML techniques in conjunction 
with DRL for space and other domains. Haj-Ali et al. (2020) have used 
RF in DRL to assist in high-level synthesis (HLS) phase orderings. The 
state space that compilers use is huge, and the authors have used RF to 
reduce the state space. The authors have implemented an RF based RL 
algorithm called AutoPhase, that can generate an efficient program for 
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compilers. Gaudet et al. (2022) have utilized a meta-RL technique (a 
technique to train an agent that generalizes across multiple tasks via 
summarizing experience over those tasks (Zhao et al., 2021)) to optimize 
an adaptive guidance system for the approach phase of a gliding hy-
personic vehicle. Their guidance technique learns to induce target tra-
jectories to reach a target location while satisfying constraints such as 
terminal speed, heating rate, load, and dynamic pressure. Cheng et al. 
(2021) have presented and trained a DNN based re-entry guidance al-

gorithm. The DNN takes the current state as input and predicts the 
longitudinal downrange and the lateral crossrange of a flight. Yuexuan 
et al. (2018) have implemented an SVM in conjunction with advantage 
actor-critic (A2C) RL algorithm. The actor takes the actions and gets 
feedback from the environment. Then the critic network evaluates the 
results of actions in the environment and optimizes an SVM network 
according to the evaluation result. Then the critic uses this optimized 
result to instruct the actor network to improve its behavioral policy, and 
hence complete a step in an iteration of the A2C network training. 
Hyeokjoon et al. (Kwon et al., 2021) have presented a soft actor-critic 
(SAC) algorithm for trajectory-raising optimization. The authors have 
considered SAC for only low Earth orbit (LEO) to GEO, and GTO to GEO 
mission scenarios. 

Although AI has been applied to spacecraft trajectory optimization, 
prior works in the area did not design and/or evaluate a machine 
learning framework for transfer time prediction for different orbit- 
raising scenarios. Prior works on AI-based trajectory optimization are 
complementary to this work. The proposed framework can be utilized in 
other AI-based trajectory optimization techniques, in particular DRL- 
based trajectory optimization, as it predicts the transfer time given a 
state with very high accuracy instead of using SLTOR optimization 
equations, and is thus suitable for automating trajectory optimization 
solutions. 

3. Problem formulation and relevance to DRL 

This work proposes to design and evaluate an ML framework, 
focusing on DNNs, that can be integrated with other AI-based trajectory 
optimization techniques to predict the metric of interest (transfer time in 
this work) from a given state in trajectory planning of spacecraft in an 
orbit-raising scenario. This metric of interest is traditionally computed 
by solving challenging SLTOR trajectory optimization problems, whose 
solution rely on compute-intensive numerical schemes that lack auto-
mated implementation capabilities. In context of DRL, this prediction of 
transfer time metric can assist in Q-value determination instead of 
solving SLTOR optimization problems. 

This section succinctly summarizes RL and illustrates where our 
proposed optimized DNNs fit in a DRL-based trajectory optimization 
framework. In the same manner, our proposed optimized DNNs can be 
integrated with other AI-based trajectory optimization techniques. We 
clarify that DRL-based trajectory planning is not focus of this work, and 
this section only illustrates DRL-based trajectory planning to show that 
how our proposed DNNs fit in a DRL-based framework. 

RL is one of the three basic machine learning paradigms, with the 
other two being supervised and unsupervised learning. In RL-based 
approaches, agents, in an environment, take actions to maximize the 

cumulative reward. Unlike dynamic programming, RL does not assume 
knowledge of the mathematical model and generally targets large MDPs 
where the exact mathematical solution becomes infeasible. While 
greedy approaches follow a fixed set of paths for finding the optimal 
path, RL allows an agent to take actions for exploration and not follow a 
fixed set of paths, but a continuous one. The agent in an RL model is 
typically trained using Q-Learning (Sutton and Barto, 2018), as shown in 
the following equation.  

In Eq. 1 Q′ is the updated Q value for a state s for an action a, that is, take 
action a in state s and update the Q value using the old Q value for the 
state and action. R is the reward an agent receives when it reaches a new 
state s’ after taking an action a in state s. γ is a discount factor that de-
termines how much future rewards are worth and α is the learning rate 
at which we update the Q value and get Q′ . The reward has to be 
maximized over a set of possible actions a ∈ A for a state s and can be 
formulated as: 

R = max
a∈A

F(s, a), (2)  

where R is a reward function, F is a function that depends on the pre-
dicted transfer time for each state s given an action a from a set of 
possible actions in that state s. We note that the state s is referred to as x 
in the dataset generation section (Section 4). Each a in A will generate a 
different possible next state. In orbit-raising, the action a at each 
segment in the revolution is a set of thrust force (T ), and two control 
angles χ (in-plane angle) and β (out-of-plane angle). 

As can be seen from Eq. 1, this Q value determination needs calcu-
lation of a reward function for every single action given a state. This 
reward function calculation depends on the estimation of a metric of 
interest (e.g., transfer time or fuel expenditure). The computation of this 
metric (transfer time) at any point using SLTOR optimization requires 
the solution of all optimal control sub-problems corresponding to all 
future revolutions. Thus, using SLTOR optimization becomes highly 
computationally expensive for assisting in Q-value determination for 
every state-action pair. This is where our proposed optimized DNNs 
come handy, which can predict the transfer time in real-time for any 
given state, and thus can be used in estimation of Q-value for all state- 
action pairs. 

For trajectory optimization, the trained DRL model computes the 
total transfer time required for each orbit-raising scenario to reach the 
GEO. Thus, there can be different transfer times corresponding to 
different actions taken in the environment. For trajectory optimization, 
the trained DRL model prescribes a policy that can minimize the transfer 
time required for each orbit-raising scenario to reach the GEO. At each 
state, the DRL model selects an action which can minimize the transfer 
time. A set of all such actions given each state form a policy that is 
prescribed by a DRL model. Fig. 1 depicts DRL model for spacecraft 
orbit-raising. In Fig. 1, deep Q-network (DQN) is used to estimate Q- 
value Q(s, a) for each action a that can be taken in state s to reach a new 
state s′ . The DRL model relies on DQN, which serves as the predictor 
function of the Q-value. The model passes a state to the DQN, which then 
provides a set of (action, Q-value) pairs corresponding to the possible 
actions in the state and the respective Q-value for taking the action in 

Q(s, a)
′

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
New Q-Value

= Q(s, a)
⏞̅̅̅⏟⏟̅̅̅ ⏞

Old Q-Value

+ α
|

Learning Rate

⎡

⎢
⎢
⎢
⎢
⎣

R(s)
⏟⏞⏞⏟

Reward

+ γ
|

Discount rate

maxQ′

(s
′

, a′

)

⏞̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅ ⏞

Maximum predicted reward, given

new state and all possible actions

− Q(s, a)

⎤

⎥
⎥
⎥
⎥
⎦

(1)   
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that state. The pair with the highest Q-value is selected by the model. 
Our proposed optimized DNNs can assist DQN in estimating Q-value by 
predicting the transfer time from each state, which is used in reward 
function estimation, which in turn is used for Q-value calculation (Eq. 
1). 

Our optimized DNN model’s predicted time values can be used to in 
the DRL framework to take an action, that can serve as a directional 
input for the DRL agent and give the raising trajectory to GEO with the 
least time. This set of actions serves as the policy that provides minimal 
time transfer for a specific orbit-raising. To train our optimized DNNs, 
we need to generate data for each of the mission scenarios mentioned in 
Section 1. The dataset generation for orbit-raising scenarios is discussed 
in the following section. 

4. Generating dataset for orbit-raising scenarios 

In this section, we discuss the procedure that we have followed to 
generate the data to train the neural networks. To this end, we compute 
the transfer times required from a given orbit of the spacecraft to the 
final GEO by solving a sequence of optimization sub-problems, each over 
one revolution of the satellite around the Earth. As already mentioned, 
in this work, we describe the states of the spacecraft using a set of 
regularized elements introduced by Sreesawet and Dutta (2018). The 
states are described by the following: the magnitude of the specific 
angular momentum vector h, the components of specific angular mo-
mentum vector hX and hY in the X-Y plane of Earth-centered inertial 
reference frame, the components ex and ey of the eccentricity vector in 
the x-y plane of the reference frame obtained after 2-1 rotation of the 
inertial frame, and an angle ϕ that locates the spacecraft in orbit. The 
first five coordinates used in this model are slow varying for an electric 
orbit-raising problem. Each optimization sub-problem aims to bring the 
spacecraft in close proximity of GEO by minimizing the following 
objective function: 

J = wh(h − hGEO)
2 + whxy

(
h2

X + hY
)2 + we

(
e2

x + e2
y

)
2, (3)  

where hGEO is the specific angular momentum of the spacecraft in the 
GEO, wh, whxy, and we are weights (positive scalars) associated with the 
three components of the objective function satisfying the constraint wh 
+ whxy + we = 1. Clearly, the scalar weights play a crucial role in 
determining the transfer time to the GEO. To this end, we generate data 
using different weight combinations. 

To solve the optimization problem, we discretize each revolution of 
the spacecraft into N segments. Additionally, we determine the variation 

of five slow varying states (collectively represented as x) of the space-
craft with respect to the angle ϕ. The differential state equations 
depicting the variation of the slow variables x with respect to the fast 
variable ϕ are detailed in Sreesawet and Dutta (2018). Using these dif-
ferential equations, we can determine the state transition over each 
segment in the revolution using the equation below: 

x̃i→i+1 =
Δϕ
2

(
dxi

dϕ
+

dxi+1

dϕ

)

, (4)  

where x is [h hX hY ex ey]
T and index i represents a node on the tra-

jectory, that is, i belongs to the set {0,1,....,N-1}. To set up the objective 
function for the optimization sub-problem corresponding to the k + 1th 
revolution, we sum these change of states over each segment and add 
them to the end states of the previous revolution (kth revolution) and 
determine the states of the spacecraft at the end of the (k+1)th revolu-
tion as shown below: 

xk+1 = xk +
∑N− 1

i=0
x̃i→i+1. (5) 

The optimization problem’s decision variables are the α (in-plane) 
and β (out-of-plane) angles in which the spacecraft thrust. As we have N 
nodes over each revolution, each optimization problem has 2N vari-
ables: N for the in-plane thrust angle α and N for the out-of-plane thrust 
angle β. Additionally, we have normalized the states of the spacecraft 
that helps with the fast computation of the optimization problems. For 
normalization, we consider the distance unit (DU) as the radius of the 
GEO orbit. We choose the time unit (TU) such that the Earth’s gravita-
tional constant is 1 DU3/TU2. We consider the mass unit (MU) as the 
initial mass of the spacecraft. Each optimization problem determines the 
normalized states at the end of the revolution by choosing these 2N 
variables such that the objective function is minimized. It is important to 
note that the coordinates used in this work can easily be converted to 
other coordinates such as Cartesian and Keplerian orbital elements; 
please see Ref. Marquardt (1963) for details. The optimization process is 
continued until stopping conditions determining the proximity of the 
spacecraft to GEO is detected. To this end, the terminal conditions for 
the sequence of the optimization problems are described in the Kepler-
ian elements that are semi-major axis, inclination, and eccentricity. The 
terminal orbit corresponds to a semi-major axis of 1 DU, zero eccen-
tricity and zero inclination. We enforce these terminal constraints as 
inequality constraints, with upper and lower bounds being determined, 
with the tolerance on the semi-major axis being ± 0.00001 DU and the 
tolerance on the eccentricity being 0.00001. The tolerance on the 

Fig. 1. Deep reinforcement learning model for spacecraft orbit-raising.  
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inclination is 0.01 deg. 
As shown in Fig. 2, we start with a set of given initial conditions that 

includes the six states of the spacecraft and the three weights for the 
objective function of the optimization problem. During the transfer of 
the spacecraft from the initial orbit to the GEO, it may encounter an 
eclipse each time it passes through the Earth’s shadow. In the absence of 
power from solar array during eclipses, we consider zero thrust avail-
ability. To this end, we determine the nodes that are under the shadow of 
the Earth using a non-rotating cylindrical shadow model. Once the 
eclipse part of the trajectory during a revolution is selected, we deter-
mine the optimal thrust angles that brings the spacecraft closest to GEO 
at the end of the revolution. After each revolution, we check the terminal 
or stopping conditions to determine the need for solving additional 
optimization sub-problems. The optimization problems are solved in 
Matlab using the “Fminunc” solver. We also provide gradients of the 
objective function with respect to the thrust angles to the solver, which 
makes it more robust and computationally efficient. The implementa-
tion details of the dynamic model used to propagate the states of the 
spacecraft, the Earth’s shadow model, and the optimization problem 
setup is discussed in detail in the works of Sreesawet and Dutta (2018), 
and Chadalavada et al. (2020). 

We generate data from trajectories starting from six different initial 
orbits and all the possible weight combinations. The six initial orbits 
consist of three planar and three non-planar GTO, Sub-GTO, and Super- 
GTO cases. The generated data set has 18.6k points in planar GTO data, 
483.4k points in non-planar GTO data, 23.3k points in planar Sub-GTO 
data, 567.9k points in non-planar Sub-GTO data, 14.3k points in planar 
Super-GTO data and 388.3k points in non-planar Super-GTO, totalling 
to a 1495.8k training points (1 for each revolution). Each training pair 
has seven inputs and one output. The seven inputs are the semi-major 
axis, eccentricity, inclination, the spacecraft’s mass, and the three sca-
lar weights of the optimization function’s objective function. The output 
in the training pairs is the transfer time corresponding to the inputs in 
the respective training pairs. We consider the spacecraft’s mass as one of 
the input to account for the electric propulsion characteristics of the 

spacecraft as the change of mass of the spacecraft is directly proportional 
to the thrust of the spacecraft and inversely proportional to the specific 
impulse (Isp). 

The computational time to generate data set for each transfer is: 
56.64 sec for planar GTO data, 2.03 hr for non-planar GTO data, 
61.53 sec for planar Sub-GTO data, 2.20 hr for non-planar Sub-GTO 
data, 63.09 sec for planar Super-GTO data and 1.40 hr for non-planar 
Super-GTO, totalling to a 5.69 hr data generation computational time. 
The data generation algorithm is run on Matlab installed on a machine 
using an Apple M1 chip with 8 Cores and 16 GB RAM. In this work, we 
compute the trajectories for the planar cases using the same formulation 
as in the non-planar instances in contrast to the results of  Sreesawet and 
Dutta (2018). Using the planar case formulation presented in Reference 
Sreesawet and Dutta (2018) will generate the same trajectory in a fast 
manner and thus reduce the data generation times for the planar 
trajectories. 

Fig. 3 shows the optimal all-electric orbit raising trajectory to the 
GEO from the GTO launched by the Ariane-5 launch vehicle. This tra-
jectory is the solution obtained for the objective function weights wh as 
0.5, whxy as 0.4, and we as 0.1. The satellite is considered to have an 
initial mass of 5000 kg and has a thrust of 1.17 N and Isp of 1700 s. 

For a given trajectory, the data set contains each revolution’s end 
states, the spacecraft’s mass, and the time required to reach GEO from 
the current states as one data point and solve trajectories for different 
weight combinations to get the entire data set. It is important to note 
that the data generation steps detailed in this section must be repeated if 
the propulsion system characteristics vary drastically from the mission 
scenario considered for the data generation. However, one can envision 
a neural network with additional inputs for the propulsion system 
characteristics, such as thrust magnitude or the specific impulse that can 
be used to train DNNs that can be utilized for mission scenarios that 
consider different propulsion systems. 

5. Designing the optimized neural networks for transfer time 
prediction 

In this section, the proposed problem-solving methodology is dis-
cussed. It starts with an overview and continues to detail the tuning of 
neural networks trained for orbit-raising mission. 

5.1. Overview 

The dataset has trajectory data for the six mission scenarios referred 
in Section 1 and discussed in detail in Section 4. Our goal is to be able to 
predict, accurately, the time from a current state represented using the 7 
variables (a, e, i, wh, whxy, we, m) to a final state in GEO. These variables 
are detailed in Section 4. The predicted time is a continuous value and 
hence a linear regression model is used (Cass, 1983; Marriott, 1985). 

Fig. 2. Data generation flowchart.  

Fig. 3. Optimal trajectory to GEO from GTO.  
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Figs. 4 and 5 depict DNN-3 with 30 neurons and DNN-5 with 40 neurons 
respectively. 

For our experiments, we have explored a total of 40 configurations 
with two varying hyperparameters: number of layers and number of 
neurons. We have explored the total neurons in DNN ranging from 10 to 
110 with eight (8) values being 10, 20, 30, 40, 50, 70, 90, and 110. We 
have explored varying number of DNN layers ranging from one layer to 

five layers. Thus, in total, we have 8 x 5 = 40 configurations to explore 
for each orbit-raising scenario. A total of 5 × 8 = 40 combinations for 
each orbit raising problem were considered. The naming convention for 
the sake of this paper goes as follows. DNN-X with N neurons means a 
DNN with X number of layers, with each layer having N/X neurons. For 
example, DNN-5 with N = 50 neurons implies a DNN that has a total of 5 
layers, with each layer having N/X = 50/5 = 10 neurons. For N and X, 

Fig. 4. Example of DNN-3 with 30 neurons (a 10-10-10 configuration).  

Fig. 5. Example of DNN-5 with 40 neurons (an 8-8-8-8-8 configuration).  
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where N is not divisible by X, the floor value of N/X is taken, and the 
excess neurons are distributed equally among the initial layers. For 
example, when N and X are 10 and 4, respectively would be calculated 
as: 

⌊10/4⌋. = 2 

Each layer is assigned 2 neurons initially, then the remaining 2 
neurons are distributed to layer 1 and layer 2, thus, the layers configu-
ration becomes 3-3-2-2, where the first two layers have three neurons 
each and the last two layers have two neurons each. 

5.2. Approach 

We initially used Adam optimizer Kingma and Ba (2015) by Kingma 
and Ba. Our results for transfer time prediction and mean squared error 
(MSE) obtained through the Adam optimizer. The results obtained 
through the Adam optimizer resulted in an unacceptably high MSE. 
Furthermore, the time of prediction is of essence in evaluation of 
spacecraft orbit-raising scenarios, and hence, keeping a notch on the 
number of neurons in the DNN design is crucial. One such technique that 
is relatively faster is the Levenberg Marquardt (LM) algorithm (Gavin, 
2020) by Gavin. We, therefore, have used the LM algorithm for training 
the DNN to achieve a faster and more accurate solution when compared 
against the Adam optimizer solution. The LM algorithm finds the 
optimal solution, but its effectiveness comes with a drawback of high 
training time/compute power and memory usage. It uses a Hessian 
matrix that is a matrix of second derivative. This matrix makes it 
guaranteed to find the minima of the loss function. But computing a 
Hessian matrix becomes an in-efficient solution in terms of memory and 
computations for large datasets and DNNs with a large number of neu-
rons. The training for the LM algorithm was first done using a Python 
implementation, but that was inefficient in terms of memory usage. The 
MATLAB implementation had more options to limit the amount of data 
it processes in each chunk of iteration of the algorithm. Therefore, 
MATLAB implementation was faster and had better attributes for the 
network to analyze and test. The results in Section 6. are generated using 
MATLAB implementation of the LM algorithm. 

Initially, the Sub-GTO to GEO transfer dataset was used. Then, we 
tested different numbers of neurons and various configurations on this 
dataset to achieve a good fit for the problem. Through these experiments 
on Sub-GTO to GEO transfer dataset, we analyzed and found the range 
for maximum neurons to be 110 and a total of 5 layers to be enough to fit 
the dataset. We then performed a design space exploration to explore 
various DNN configurations with varying layer sizes and total number of 
neurons. 

6. Experimental results for optimized DNNs vs SLTOR 
optimization 

The section discusses results from 40 different DNN configurations 
for each of the 6 orbit raising mission scenarios. The results are pre-
sented as a set of both figures and tables, from figures we can analyze the 
pattern of DNN performance. The tables come into play for specific value 
comparisons. We have discussed the best neural networks overall first, 
then explore the best DNN configuration corresponding to the number of 
neurons and the number of layers the neurons are distributed into. 

6.1. Non-planar Super-GTO to GEO transfer 

In our first set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for non-planar transfer from 
Super-GTO to GEO. Fig. 6 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. Table 1 pre-
sents the mean error in days for 40 different DNN configurations with 
varying number of layers and the number of neurons for non-planar 
Super-GTO to GEO transfer. 

The results show that the DNN-3 configuration with 110 neurons 
achieves the lowest mean error of 0.0256 days (37.44 minutes). DNN-2 
and DNN-4 configurations with 110 neurons exhibit mean errors of 
0.0294 days (41.76 minutes) and 0.0400 days (57.60 minutes), 
respectively. This represents a 11.5% and a 53.8% increase in the mean 
error over the DNN-3 configuration with 110 neurons. DNN-2 configu-
ration with 90 neurons has a mean error of 0.0891 days (128.30 
minutes). 

One key observation from Fig. 6 is that by dividing a limited number 
of neurons into multiple layers, the error becomes higher. However, to 
achieve a good regression fit, more layers need to be added. Therefore, 
having more layers and a greater number of neurons results in a 

Fig. 6. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar Super-GTO to GEO transfer.  

Table 1 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for non-planar Super-GTO to GEO 
transfer.  

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 0.6660 0.6259 2.2304 2.1148 3.5103 
20 0.5943 0.5849 0.5868 0.5891 0.6234 
30 0.5764 0.5082 0.5308 0.6680 0.5652 
40 0.5750 0.4504 0.4867 0.5196 0.5379 
50 0.5578 0.3528 0.3800 0.5772 0.4905 
70 0.5381 0.2106 0.2329 0.2964 0.3198 
90 0.5200 0.0891 0.1091 0.1998 0.2370 
110 0.5309 0.0294 0.0256 0.0400 0.1105  
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significant decrease in mean error. DNN-2 and DNN-3 with 30 neurons 
result in a mean error of 0.5082 days (731.81 minutes) and 0.5308 days 
(764.35 minutes), respectively. With 40 neurons, the DNN-2 has a mean 
error of 0.4504 days. DNN-2 with 90 neurons and DNN-3 with 110 
neurons exhibit mean errors of 0.0891 and 0.0256 days (128.30 and 
36.86 minutes), respectively. 

6.2. Non-planar GTO to GEO transfer 

In our second set of experiments, we aim to design a DNN that 
accurately predicts the spacecraft’s transfer time for non-planar transfer 
from GTO to GEO. Fig. 7 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. 

The results show that the DNN-4 configuration with 110 neurons 
achieves the lowest mean error of 0.0435 days (62.49 minutes). DNN-2 
and DNN-3 configurations with 110 neurons exhibit mean error of 
0.0586 days (84.24 minutes) and 0.0670 days (96.48 minutes), 
respectively. This represents a 34.79% and a 54.38% increase in the 
mean error over the DNN-4 configuration with 110 neurons. DNN-2 and 
DNN-3 configurations with 90 neurons have a mean error of 0.1227 days 
(176.69 minutes) and 0.1230 days (177.12 minutes), respectively. 
Table 2 details mean error in days of the spacecraft’s transfer time 
predicted by different DNN configurations. 

For the DNN containing 10 neurons, the most optimal performance is 
exhibited by DNN-2 with a mean error of 1.1831 days (1703.664 mi-
nutes). For 20 and 30 neurons, DNN-2 has mean errors of 0.7780 days 
(1120.32 minutes) and 0.4999 days (719.86 minutes), respectively. 
DNN-3 with 90 neurons and DNN-4 with 110 neurons exhibit mean 
errors of 0.1227 days (176.69 minutes) and 0.0435 days (62.64 mi-
nutes), respectively. 

6.3. Non-planar Sub-GTO to GEO transfer 

In our third set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for non-planar transfer from 
Sub-GTO to GEO. Fig. 8 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. 

The results in Fig. 8 that the DNN-3 with 110 neurons achieves the 
best mean error of 0.0294 days (42.19 minutes). DNN-2 and DNN-4 
configurations with 110 neurons exhibit mean errors of 0.0326 days 
(46.80 minutes) and 0.0423 days (60.77 minutes), respectively. This 
represents a 10.92% and 44.03% increase in the mean error over the 
best DNN-3 configuration with 110 neurons. DNN-2 with 90 neurons has 
a mean error of 0.0728 days (104.83 minutes), which is nearest to the 
mean errors of DNN-3 with 90 neurons and DNN-5 with 110 neurons 
0.0802 days (115.488 minutes) and 0.0945 days (136.08 minutes), 

respectively. This represents an increase of 10.31% and 29.85% mean 
error over DNN-2 with 90 neurons. Table 3 details mean error in days of 
the spacecraft’s transfer time predicted by different DNN configurations. 

For a network containing 10 neurons, the most optimal performance 
was exhibited by DNN-2 with a mean error of 0.6099 days (878.26 
minutes). For 20 and 30 neurons, DNN-2 has mean error of 0.5555 days 
(799.92 minutes) and 0.5083 days (731.95 minutes), respectively. DNN- 
2 with 90 neurons and DNN-3 with 110 neurons exhibit mean errors of 
0.0728 days (104.83 minutes) and 0.0294 days (42.34 minutes), 
respectively. 

6.4. Planar Super-GTO to GEO transfer 

In our fourth set of experiments, we aim to design a DNN that 
accurately predicts the spacecraft’s transfer time for planar transfer from 
Super-GTO to GEO. Fig. 9 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. 

The results show that the DNN-3 with 70 neurons achieves the best 
mean error of 0.0028 days (4.03 minutes). DNN-4 with 70 neurons and 
DNN-3 with 110 neurons configurations exhibit mean errors of 0.0034 
days (4.90 minutes) and 0.0036 days (5.18 minutes), respectively. This 
represents a 21.4% and 28.6% increase, respectively, in the mean errors 
over the best DNN-3 configuration with 70 neurons. Table 4 details 
mean error in days of the spacecraft’s transfer time predicted by 
different DNN configurations. 

DNN-2 with 50 neurons has a mean error of 0.0042 days (6.05 mi-
nutes) which is nearest to the mean error of DNN-5 with 70 neurons of 
0.0053 days (7.63 minutes). Hence, DNN-2 with 50 neurons represents 
an increase of 23.8% mean error over DNN-2 configuration with 90 
neurons. 

For a network containing 10 neurons, the most optimal performance 
is exhibited by DNN-2 with a mean error of 0.4059 days (584.50 mi-
nutes). For 20 and 30 neurons, DNN-2 and DNN-5 have mean errors of 
0.2385 days (343.44 minutes) and 0.2686 days (386.78 minutes), 

Fig. 7. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar GTO to GEO transfer.  

Table 2 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for non-planar GTO to GEO transfer.  

No. Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 1.2230 1.1831 1.3164 1.3979 2.3424 
20 1.1077 0.8336 0.7787 0.8202 1.2013 
30 1.0355 0.4999 0.5080 1.1626 0.5381 
40 0.6237 0.4677 0.4608 0.4499 0.4789 
50 1.0026 0.3470 0.3970 0.4176 0.4509 
70 0.5188 0.2349 0.2443 0.3692 0.3692 
90 0.7230 0.1227 0.1230 0.1501 0.2159 
110 0.4961 0.0586 0.0670 0.0435 0.1854  
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respectively. DNN-3 with 90 neurons and 110 neurons exhibit mean 
errors of 0.0196 days (28.22 minutes) and 0.0036 days (5.18 minutes), 
respectively. 

6.5. Planar GTO to GEO transfer 

In our fifth set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for planar transfer from 
GTO to GEO. Fig. 10 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. 

The results show that the DNN-3 with 90 neurons achieves the best 
mean error of 0.0030 days (4.32 minutes). DNN-3 with 110 neurons 
exhibits mean error of 0.0032 days (4.61 minutes). This represents a 

3.33% increase in mean error over the mean error of DNN-3 with 90 
neurons. DNN-5 with 70 neurons has a mean error of 0.0050 days (7.20 
minutes) that is closest to the mean error of DNN-2 with 50 neurons of 
0.0063 days (9.07 minutes) that is 26.0% greater than the mean error of 
DNN-5 with 70 neurons. Table 5 details mean error in days of the 
spacecraft’s transfer time predicted by different DNN configurations. 

For a network containing 10 neurons, the most optimal performance 
is exhibited by DNN-2 with a mean error of 0.4062 days (584.93 mi-
nutes). For 20 and 30 neurons, DNN-2 and DNN-3 have mean errors of 
0.3495 days (503.28 minutes) and 0.1162 days (167.33 minutes), 
respectively. DNN-3 with 90 neurons and 110 neurons exhibit mean 
errors of 0.0030 days (4.32 minutes) and 0.0032 days (4.61 minutes), 
respectively. 

Fig. 8. Mean error in days (square root of MSE) for 5 different neural network configurations for non-planar Sub-GTO to GEO transfer.  

Table 3 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for non-planar Sub-GTO to GEO 
transfer.  

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 0.6849 0.6099 1.5446 1.5298 1.8147 
20 0.5865 0.5554 0.5913 0.5724 0.5888 
30 0.5685 0.5137 0.5083 0.6087 0.5366 
40 0.5625 0.4568 0.5053 0.4744 0.4818 
50 0.5399 0.3715 0.3746 0.3943 0.4509 
70 0.5182 0.2111 0.2472 0.2379 0.3206 
90 0.4999 0.0728 0.0802 0.1273 0.2166 
110 0.4826 0.0326 0.0294 0.0423 0.0945  

Fig. 9. Mean error in days (square root of MSE) for 5 different neural network configurations for planar Super-GTO to GEO transfer.  

Table 4 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for planar Super-GTO to GEO transfer.  

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 0.4245 0.4059 0.4249 0.4213 2.7789 
20 0.3914 0.2385 0.4208 0.3537 0.3985 
30 0.4062 0.3984 0.4145 0.4183 0.2686 
40 0.4105 0.3777 0.0097 0.4069 0.2789 
50 0.4051 0.0042 0.3117 0.0096 0.0114 
70 0.4084 0.4008 0.0028 0.0036 0.0053 
90 0.3488 0.0212 0.0196 0.1259 0.2629 
110 0.1731 0.1564 0.0036 0.1457 0.0785  
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6.6. Planar Sub-GTO to GEO transfer 

In our sixth set of experiments, we aim to design a DNN that accu-
rately predicts the spacecraft’s transfer time for planar transfer from 
Sub-GTO to GEO. Fig. 11 depicts mean error in days of the spacecraft’s 
transfer time predicted by different DNN configurations. 

The results show that the DNN-4 with 90 neurons achieves the best 
mean error of 0.0030 days (4.32 minutes). Other DNN configurations 
that achieve relatively low mean error are DNN-2 with 70 neurons, 
DNN-5 with 70 neurons, and DNN-2 with 50 neurons. DNN-2 with 70 
neurons configuration exhibits mean error of 0.0039 days (5.47 mi-
nutes). This represents a 26.66% increase in mean error over DNN-3 
with 90 neurons. DNN-5 with 70 neurons has a mean error of 0.0080 

days (11.52 minutes) that is closest to the mean errors of DNN-2 with 50 
neurons 0.0081 days (11.66 minutes) and DNN-3 with 40 neurons with a 
mean error of 0.0093 days (13.39 minutes); that are 1.25% and 16.25% 
greater than the mean error of DNN-5 with 70 neurons. Table 6 details 
mean error in days of the spacecraft’s transfer time predicted by 
different DNN configurations. 

For a network containing 10 neurons, the most optimal performance 
is exhibited by DNN-1 with a mean error of 0.4740 days (682.56 mi-
nutes). For 20 and 30 neurons, DNN-1 and DNN-2 have mean errors of 
0.3869 days (557.14 minutes) and 0.1924 days (277.06 minutes), 
respectively. DNN-4 with 90 neurons and DNN-2 with 110 neurons 
exhibit mean errors of 0.0030 days (4.32 minutes) and 0.1088 days 
(156.67 minutes), respectively. 

Fig. 10. Mean error in days (square root of MSE) for 5 different neural network configurations for planar GTO to GEO transfer.  

Table 5 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for planar GTO to GEO transfer.  

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 0.4098 0.4063 4.8613 0.4163 0.6590 
20 0.3625 0.3495 0.3915 0.3811 0.4061 
30 0.4030 0.1162 0.3441 0.7234 0.5067 
40 0.3619 0.2027 0.0133 0.2655 0.3535 
50 0.3607 0.0063 0.3702 0.2411 0.5537 
70 0.1373 0.2901 0.1523 0.7932 0.0050 
90 0.0900 0.0623 0.0030 0.0928 0.0770 
110 0.3030 0.3829 0.0032 0.4858 0.2406  

Fig. 11. Mean error in days (square root of MSE) for 5 different neural network configurations for planar Sub-GTO to GEO transfer.  

Table 6 
Mean error in days (square root of MSE rounded to 4 decimal points) for 5 
different neural network configurations for planar Sub-GTO to GEO transfer.  

No. of Neurons DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 

10 0.4740 0.4806 0.4976 0.4866 1.6699 
20 0.3869 0.5051 0.4739 0.4299 1.4739 
30 0.4556 0.1924 0.4264 0.4606 0.4917 
40 0.6603 0.4737 0.0093 0.4382 0.5111 
50 0.3379 0.0081 0.4331 0.4427 0.0585 
70 0.8507 0.0039 0.4107 0.4177 0.0080 
90 0.3788 0.7039 0.5346 0.0030 0.6164 
110 0.1668 0.1088 1.812 0.5709 0.4390  
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An important point to note while examining the mean error values is 
that the mean error values for the best-performing DNN configurations 
are not as huge as they seem to be. The complete trajectory is over 
several months, ranging to over 240 days. The DNN’s have an accuracy 
of over 99% for the best networks for each of the trajectories shown 
above. Secondly, over-fitting these neural networks would not be a good 
idea. These networks are expected to give a direction to the reinforce-
ment learning framework in exploring an unexplored part of space. 

6.7. SLTOR optimization vs optimized DNN-Predicted trajectories 

Figs. 12–14 provide a comparison of actual versus the predicted time 
for Super-GTO to GEO DNN-3 with 110 neurons, GTO to GEO DNN-4 
with 110 neurons and Sub-GTO to GEO DNN-3 with 110 neurons 
respectively, in non-planar orbits. Results show that the predicted time 
follows closely to the optimal time obtained through solutions of opti-
mization equations. 

6.8. Computational time of SLTOR optimization vs optimized DNNs 

In Table 7, we compare the computational times for our designed 
DNNs and the optimization approach to determine the transfer times 
from a given orbit to GEO. Both the SLTOR optimization approach and 
our designed optimized DNNs are executed on a machine running 
Windows 11 operating system and equipped with Intel Core i7-11370H 
processor operating at 3.30 GHz 4 core CPU with 16 GBs of random 
access memory (RAM). Results indicate that our designed DNNs can 
predict the transfer time to reach GEO from a given orbit in a fraction of 
second whereas the optimization approach takes tens of seconds to 
compute the transfer time. Results indicate that on average our designed 
DNNs provide an improvement of 1600× in computation time as 
compared to the tradition optimization approach. These results verify 
the effectiveness of our DNNs providing the inference of metric of in-
terest (i.e., transfer time here) in real-time, and thus the suitability of our 
DNNs for Q-value estimation and usage in DRL frameworks in an 
automated manner. 

7. Comparison of optimized DNNs vs contemporary ML 
algorithms 

This section compares the results from our designed DNNs using the 
Levenberg Marquardt (LM) algorithm with the contemporary Machine 
Learning (ML) algorithms. The algorithms we provide a comparison 
with are: Support Vector Machine (SVM), Random Forest (RF), and 
Decision Tree (DT) for regression. We only provide comparison results of 
non-planar SuperGTO to GEO transfers to demonstrate the effectiveness 

of our designed DNN versus contemporary ML algorithms as other 
mission transfers will follow similar comparison trends. 

7.1. Non-planar Super-GTO 

In this subsection, first we obtain the results of mean error for 
transfer time prediction for non-planar Super-GTO to GEO transfers 
using SVM, RF, and DT. After that, we provide a comparison of our 
designed DNNs using the LM algorithm with SVM, RF, and DT. 

7.1.1. Support vector machine 
Table 8 contains the results (mean error in days) for SVM algorithm 

with values of C and ϵ varying from 0.1 - 0.9 with an increment of 0.2 in 
each subsequent SVM trained. In total we have 25 configurations of 
SVMs that we have reported in this paper. 

As it can be seen in bold text in the Table 8, the best performance for 
the mission scenario is coming from the SVM with C = 0.9 and Epsilon =
0.1 with a mean error of 0.6032 days. The second best performer is SVM 
with C = 0.9 and Epsilon = 0.3 with mean error of 0.6039 days that is 
0.12% higher than the SVM with C = 0.9 and Epsilon = 0.1. The third 
best in performance is SVM with C = 0.9 and Epsilon = 0.5 with a mean 
error of 0.6100 days that is 1.01% higher than the second best per-
forming SVM with C = 0.9 and Epsilon = 0.3. 

7.1.2. Random forest 
Table 9 contains the results (mean error in days) for Random Forest 

algorithm with a varying number of estimators from 10 to 110. The first 
row in the table (header) displays the total number of estimators (#Est) 
we have used in Random Forest. The second row is the results presented 
as mean error (ME) in days. 

As it can be seen in bold text in the Table 9, the best performance for 
planar SuperGTO to GEO mission scenario is achieved with the RF al-
gorithm with 30 estimators. The mean error of RF algorithm with 30 
estimators is 0.4041 days. The second best performer, is the RF algo-
rithm with 50 estimators with a mean error of 0.4050 days which is 
0.22% higher than the mean error of RF algorithm with 30 estimators. 
The third best performance is achieved with 90 estimators with a mean 
error of 0.4060 days that is 0.25% higher than the mean error of RF 
algorithm with 80 estimators. 

7.1.3. Decision tree 
Table 10 contains the results (error in days) for Decision Tree (DT) 

algorithm with a varying random state from 0 to 9. The first row in the 
table (header) displays the random state value (RSV) used to train DT 
algorithm. The second row is the results presented as mean error (ME) in 
days. 

Fig. 12. Comparison of original and predicted transfer time for non-planer Super-GTO to GEO transfer using DNN-3 with 110 neurons.  
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Fig. 13. Comparison of original and predicted transfer time for non-planer GTO to GEO transfer using DNN-4 with 110 neurons.  

Fig. 14. Comparison of original and predicted transfer time for non-planer Sub-GTO to GEO transfer using DNN-3 with 110 neurons.  

Table 7 
Comparison of computational times for DNNs and optimization approach to 
determine the transfer times from given orbit to GEO.  

Current 
Orbit 

Optimization 
approach 

DNNs Otimal DNN 
configuration 

Improvement 
Afforded by 
DNNs 

Non- 
planar 
GTO 

26.03 sec 0.016 sec DNN-4 with 
110 neurons 

1626.88×

Planar- 
GTO 

15.48 sec 0.009 sec DNN-3 wih 90 
neurons 

1720.00×

Non- 
Planar 
Sub- 
GTO 

35.51 sec 0.016 sec DNN-3 with 
110 neurons 

2219.38×

Planar 
Sub- 
GTO 

18.08 sec 0.010 sec DNN-4 with 90 
neurons 

1808.00×

Non- 
planar 
Super- 
GTO 

20.50 sec 0.014 sec DNN-2 with 
110 neurons 

1464.28×

Planar 
Super- 
GTO 

11.43 sec 0.015 sec DNN-3 with 
110 neurons 

762.00×

Average 21.17 sec 0.013 sec – – 1600.1×

Table 8 
Mean error in days (square root of MSE rounded to 4 decimal points) for each 
subsequent configuration for planar Super-GTO to GEO transfer.  

ϵ 0.1 0.3 0.5 0.7 0.9  

C       
0.1 0.9338 0.9284 0.9531 0.9909 1.0166  
0.3 0.7065 0.7157 0.7319 0.7577 0.7937  
0.5 0.6417 0.6494 0.6668 0.6905 0.7152  
0.7 0.6179 0.6274 0.6410 0.6592 0.6849  
0.9 0.6032 0.6039 0.6100 0.6345 0.6713   

Table 9 
Mean error in days (square root of MSE rounded to 4 decimal points) for 11 
different configurations of support vector machine (SVM) from 10 to 110 esti-
mators (#Est) with an increment of 10 estimators in each subsequent configu-
ration for non-planar Super-GTO to GEO transfer.  

#Est 10 20 30 40 50 60 

ME 0.4078 0.4082 0.4041 0.4070 0.4050 0.4072 
#Est 70 80 90 100 110  
ME 0.4065 0.4065 0.4060 0.4066 0.4093   
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As it can be seen in bold text in the Table 10, the best performance for 
non-planar SuperGTO to GEO mission scenario is achieved with the DT 
algorithm with random state = 0. The mean error of DT algorithm with 
random state = 1 is 0.6133 days. The second best performer, is the DT 
algorithm with random state = 0 with a mean error of 0.6139 days 
which is 0.10% higher than the mean error of DT algorithm with random 
state = 1. The third best performance is achieved with random state = 7 
with a mean error of 0.6141 days that is 0.03% higher than the mean 
error of RF algorithm with random state = 0. 

7.1.4. Comparison of optimized DNNs versus SVM, RF, and DT 
Table 11 compares the mean error for our best-performing DNNs 

trained using LM optimizer versus SVM, RF and DT algorithms. DNN-4 
with 110 neurons is the best performing algorithm with a ME of 
0.0435. RF with 30 estimators is the second best performer with a ME of 
0.4041 that is 9.29× better than the ME of DNN. SVM with C = 0.9 and 
Epsilon = 0.1 has a ME of 0.6032 that is 13.87× higher than the ME of 
the best performing DNN. DT with random state = 1 has a ME of 0.6113 
that is 14.05× higher than the ME of the best performing DNN. 

7.2. Planar Super-GTO 

In this subsection, first we obtain the results of mean error for 
transfer time prediction for planar SuperGTO to GEO transfers using 
SVM, RF, and DT. After that, we provide a comparison of our designed 
DNNs using the LM algorithm with SVM, RF, and DT is provided. 

7.2.1. Support vector machine 
Table 12 contains the results (mean error in days) for SVM algorithm 

with values of C and ϵ varying from 0.1 - 0.9 with an increment of 0.2 in 
each subsequent SVM trained. In total we have 25 configurations of 
SVMs that we have reported in this paper. 

As it can be seen in bold text in the Table 12, the best performance for 
the mission scenario is coming from the SVM with C = 0.9 and Epsilon =
0.1 with a mean error of 0.7115 days. The second best performer is SVM 
with C = 0.9 and Epsilon = 0.5 with mean error of 0.7183 days that is 
0.96% higher than the SVM with C = 0.9 and Epsilon = 0.1. The third 
best in performance is SVM with C = 0.9 and Epsilon = 0.3 with a mean 
error of 0.7305 days that is 1.70% higher than the second best per-
forming SVM with C = 0.9 and Epsilon = 0.5. 

7.2.2. Random forest 
Table 13 contains the results (error in days) for Random Forest al-

gorithm with a varying number of estimators from 10 to 110. The first 
row in the table (header) displays the total number of estimators (#Est) 
we have used in Random Forest. The second row is the results presented 

as mean error (ME) in days. 
As it can be seen in bold text in the Table 13, the best performance for 

planar SuperGTO to GEO mission scenario is achieved with the RF al-
gorithm with 70 estimators. The mean error of RF algorithm with 70 
estimators is 0.5022 days. The second best performer, is the RF algo-
rithm with 80 estimators with a mean error of 0.5035 days which is 
0.25% higher than the mean error of RF algorithm with 70 estimators. 
The third best performance is achieved with 40 estimators with a mean 
error of 0.5065 days that is 0.59% higher than the mean error of RF 
algorithm with 80 estimators. 

7.2.3. Decision tree 
Table 14 contains the results (error in days) for Decision Tree (DT) 

algorithm with a varying random state from 0 to 9. The first row in the 
table (header) displays the random state value (RSV) used to train DT 
algorithm. The second row is the results presented as mean error (ME) in 
days. 

As it can be seen in bold text in the Table 14, the best performance for 
planar Super-GTO to GEO mission scenario is achieved with the DT al-
gorithm with random state = 0. The mean error of DT algorithm with 
random state = 0 is 0.6074 days. The second best performer, is the DT 
algorithm with random state = 9 with a mean error of 0.6131 days 
which is 0.94% higher than the mean error of DT algorithm with random 
state = 0. The third best performance is achieved with random state = 4 
with a mean error of 0.6134 days that is 0.05% higher than the mean 
error of RF algorithm with random state = 9. 

7.2.4. Comparison of optimized DNNs versus SVM, RF, and DT 
Table 15 compares the mean error for best DNNs trained using LM 

optimizer, SVM, RF and DT algorithms. 
DNN-3 with 70 neurons is the best performing algorithm with ME 

0.0028. RF with 70 estimators is the second best performer with a ME of 
0.5022 that is 179.39× better than ME of DNN. DT with random state =
0 has a ME of 0.6074 that is 216.92× higher than ME of the best per-

Table 10 
Mean error in days (square root of MSE rounded to 4 decimal points) for 10 
different configurations of DT algorithm from 0 to 9 RSV for non-planar Super- 
GTO to GEO transfer.  

RSV 0 1 2 3 4 

ME 0.6139 0.6133 0.6182 0.6183 0.6153 
RSV 5 6 7 8 9 
ME 0.6161 0.6177 0.6141 0.6196 0.6174  

Table 11 
Comparison of mean error (actual values and times improvement) for the best 
DNN trained using LM optimizer, SVM, RF and DT for non-planar SuperGTO to 
GEO transfer. I denotes the improvement provided by our best-performing 
DNN.  

Algorithm DNN RF SVM DT 

ME in Days 0.0435 0.4041 0.6032 0.6113 
ℐ N/A 9.29× 13.87× 14.05×

Table 12 
Mean error in days (square root of MSE rounded to 4 decimal points) for each 
subsequent configuration for planar Super-GTO to GEO transfer.  

ϵ 0.1 0.3 0.5 0.7 0.9  

C       
0.1 2.1524 2.2899 2.3458 2.2086 2.2637  
0.3 1.1975 1.1996 1.2167 1.2181 1.2990  
0.5 0.9009 0.8971 0.9450 0.9462 0.9854  
0.7 0.7912 0.7891 0.7916 0.8567 0.8979  
0.9 0.7115 0.7305 0.7183 0.7602 0.8097   

Table 13 
Mean error in days (square root of MSE rounded to 4 decimal points) for 11 
different configurations of RF algorithm from 10 to 110 estimators (#Est) with 
an increment of 10 estimators in each subsequent configuration for planar 
Super-GTO to GEO transfer.  

#Est 10 20 30 40 50 60 

ME 0.5147 0.5086 0.5205 0.5065 0.5131 0.5141 
#Est 70 80 90 100 110  
ME 0.5022 0.5035 0.5172 0.5112 0.5158   

Table 14 
Mean error in days (square root of MSE rounded to 4 decimal points) for 10 
different configurations of DT algorithm from 0 to 9 RSV for planar Super-GTO 
to GEO transfer.  

RSV 0 1 2 3 4 

ME 0.6074 0.6168 0.6260 0.6184 0.6134 
RSV 5 6 7 8 9 
ME 0.6157 0.6191 0.6249 0.6254 0.6131  
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forming DNN. SVM with C = 0.9 and Epsilon = 0.1 has a ME of 0.7112 
that is 254.11× higher than the ME of the best performing DNN. 

8. Conclusions 

In recent years, there has been a surge in use of electric propulsion to 
transfer satellites to the geostationary Earth orbit (GEO). Traditionally, 
the transfer times to reach GEO using all-electric propulsion are ob-
tained by solving challenging trajectory optimization problems, whose 
solution rely on numerical schemes that are not only computationally 
intensive, but also lack automated implementation capabilities, which is 
an impediment to their incorporation within a deep reinforcement 
learning (DRL) framework to solve trajectory planning problems in near 
real-time. This work designs and evaluates a machine learning (ML) 
framework, focusing on deep neural networks (DNNs), to predict the 
transfer time in near real-time to assist in Q-value determination instead 
of solving traditional sequential low-thrust orbit-raising (SLTOR) opti-
mization problems. This paper investigates different architectures for 
DNNs to determine a suitable setting of hyperparameters of DNNs for 
transfer time prediction for six orbit-raising trajectories involving 
transfers from planar and non-planar geostationary transfer orbit (GTO), 
Sub-GTO, and Super-GTO to geostationary Earth orbit (GEO). Since 
spacecraft orbit-raising trajectory problem is a continuous-space prob-
lem, our designed DNNs can both interpolate and extrapolate to states in 
the space not present in the training set. 

Experimental results indicate that our designed DNNs can predict the 
transfer time for different orbit-raising scenarios with an accuracy of 
over 99.97% with respect to solving an SLTOR optimization problem. 
Comparison of prediction time of our designed DNNs with the SLTOR 
optimization problem reveals that our designed DNNs provide an 
improvement in computation time of 1600× , on average, over the 
SLTOR optimization, thus verifying the suitability of our designed DNNs 
to be used in DRL frameworks in an automated manner. To verify the 
efficacy of our designed DNNs for predicting transfer time that is 
required for Q-value estimation, we have also compared the results from 
our designed DNNs using the Levenberg Marquardt (LM) algorithm with 
the contemporary ML algorithms, such as support vector machines 
(SVM), random forests (RFs), and decision trees (DTs) for regression. 
Experimental results indicate that our best-performing DNN provides an 
improvement of mean error of 9.29× , 13.87× , and 14.05× over RF, 
DT, and SVM, respectively, for non-planar Super-GTO to GEO transfers. 
Experimental results indicate that our best-performing DNN provides an 
improvement of mean error of 179.39× , 216.92× , and 254.11× over 
RF, DT, and SVM, respectively, for planar Super-GTO to GEO transfers. 

In our future work, we plan to design DNNs for predicting other 
metrics of interest (such as fuel expenditure) from a given orbit or state 
for different planar and non-planar GTO, Super-GTO, and Sub-GTO or-
bits to GEO. We further plan to use our designed DNNs in a DRL 
framework for predicting the transfer time and assisting in Q-value 
determining for determining an optimal trajectory for transfer from 
different planar and non-planar GTO, Super-GTO, and Sub-GTO orbits to 
GEO. 
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