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Abstract—Artificial intelligence (AI), owing to recent break-
throughs in deep learning, has revolutionized applications and
services in almost all technology domains including aerospace.
AI and deep learning rely on huge amounts of training data that
is mostly generated at the network edge by Internet of things
(IoT) devices and sensors. Bringing the sensed data from the
edge of a distributed network to a centralized cloud is often
infeasible because of the massive data volume, limited network
bandwidth, and real-time application constraints. Consequently,
there is a desire to push Al frontiers to the network edge towards
utilizing the enormous amount of data generated by IoT devices
near the data source. The merger of edge computing and Al
has engendered a new discipline, that is, Al at the edge or
edge intelligence. To help AI make sense of gigantic data at the
network edge, data fusion is of paramount significance and goes
hand in hand with Al This article focuses on data fusion and
Al at the edge. In this article, we propose a framework for
data fusion and AI processing at the edge. We then provide a
comparative discussion of different data fusion and AI models
and architectures. We discuss multiple levels of fusion and
different types of Al, and how different types of AI align with
different levels of fusion. We then highlight the benefits of
combining data fusion with AI at the edge. The methods of Al
and data fusion at the edge detailed in this article are applicable
to many application domains including aerospace systems. We
evaluate the effectiveness of combined data fusion and AI at
the edge using convolutional neural network (CNN) models
and multiple hardware platforms suitable for edge computing.
Experimental results reveal that combining AI with data fusion
can impart a speedup of 9.8 x while reducing energy consumption
up to 88.5% over Al without data fusion. Furthermore, results
demonstrate that data fusion either maintains or improves the
accuracy of Al in most cases. For our experiments, data fusion
imparts a maximum improvement of 15.8% in accuracy to AL

Index Terms—Edge computing, artificial intelligence, machine
learning, data fusion, swarm intelligence, deep neural networks

I. INTRODUCTION AND MOTIVATION

Advancements and miniaturization of electronic devices that
are not only able to sense and process data but can also
communicate with other devices have engendered an era of
Internet of things (IoT). These IoT devices are often equipped
with a multitude of sensors and generate zillions bytes of data
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at the network edge. Many of the applications that need to
utilize this data have embraced artificial intelligence (Al) and
machine learning (ML). However, transferring this gigantic
data to the cloud is often infeasible due to limited network
bandwidth and real-time constraints of many applications
including aerospace systems. Thus, there is a desire to push Al
frontiers to the network edge to utilize the enormous amount
of data generated by IoT devices nearer to the data source.
This desire has led to the merger of edge computing (a novel
trend in computing that pushes computing power away from
the centralized nodes to the logical extreme edges of a network
[1]) and Al resulting in a new discipline — AI at the edge or
edge intelligence. In the edge Al model, Al computations take
place either on the user device or somewhere in the network
stack beneath the cloud, perhaps on an edge server. According
to Steve Roddy, the vice president (VP) of Special Projects
in Arm’s Machine Learning Group [2]: “The edge is the next
stage of the evolution of Al technology because of the physical
constraints, the cost constraints, and the practical constraints
of running all Al applications in the cloud. It simply doesn’t
make sense to send all the bits for things like video and audio
streaming to the cloud and back down for every situation,
every endpoint.”

In the age of Al, what is important is not the data alone
but what we can do with this data and how to make sense
of this data. As more and more data is being collected at
the network edge due to the proliferation of IoT and sensing
devices, the capability gap to make sense of this gigantic
data, whether at the edge or the cloud, in a timely manner is
also increasing. For instance, in surveillance applications, the
number of traditional sensors (e.g., ground radar, cameras),
non-traditional sensors (e.g., IoT), and non-organic airborne
platforms (e.g., unmanned aerial systems) has increased the
opportunity to detect, track, and identify targets, as well as to
counter threats; however, there is a lack of processing capabil-
ity to do so efficiently and effectively [3]. It is noted that for
many applications, much of the collected data is time-sensitive
and become useless if not utilized timely. Hence, solutions
such as data fusion are of paramount significance to enhance
the effectiveness and usage of sensed data in a timely manner.
Data fusion is defined as the process of combining data from
multiple sources to produce more accurate, consistent, and
concise information than that provided by any individual data
source.

The concept of both data fusion and AI has biological
origins. Data fusion is inspired from the capability of advanced
biological organisms to assimilate information from multiple
senses (e.g., sight, touch, smell, taste) to make better sense
of environment and increase their chances of survival. Al



is also inspired from the cognition displayed by advanced
biological organisms (e.g., humans). Both data fusion and Al
are complementary to enable machines to accomplish various
intelligent tasks and missions. Whether the Al computations
are performed at the cloud or at the network edge, data fusion
is needed to provide more concise and consistent data to the Al
both at the training and inference phases. This article focuses
on Al at the edge and illustrates the benefits of integrating
data fusion with Al at the edge.

Our main contributions in this article are as follows:

o We propose a framework for Al and data fusion at the
edge.

o« We provide a comparative discussion of different data
fusion and AI architectures.

o We discuss multiple levels of fusion and different types
of AI, and how different types of Al relate to and align
with different levels of fusion.

o We highlight and elaborate the advantages of Al and data
fusion at the edge including latency, energy efficiency,
precision, security, privacy, cost, scalability, and sustain-
ability.

o We present experimental results for latency, energy ef-
ficiency, and accuracy for Al and data fusion and Al
without data fusion to demonstrate the advantages of Al
and data fusion at the edge.

The remainder of this article is organized as follows.
Section II presents a framework for data fusion and Al at
the edge. Section III provides a comparative discussion of
contemporary data fusion and Al architectures. Section IV
delineates multiple levels of fusion and different types of Al,
and also provides a mapping of different AI and ML types to
different fusion levels. Advantages of data fusion and Al at
the edge are discussed in Section V. Experimental results are
presented in Section VI. Finally, Section VII concludes this
article.

II. FRAMEWORK FOR DATA FUSION AND Al AT THE EDGE

In this section, a high-level framework for data fusion and
AI/ML processing at the edge is developed. To explain the
proposed framework, we provide a brief overview of Al and
ML and elaborate on how data fusion enhances Al. Contempo-
rary Al is dominated by ML. Multitude of ML methods, which
can be categorized under supervised learning, semi-supervised
learning, unsupervised learning, and reinforcement learning,
help provide edge intelligence. Deploying an ML model re-
quires first training the model and then using the trained model
to perform inference. Since training is more resource-intensive
and time consuming process; in the edge Al model, training is
typically done on the cloud and inference is performed at the
edge. Although Al training can be performed at edge [4], given
the limited resources of many edge devices, Al training will
likely continue on powerful cloud-based computers whereas
inference will be performed at edge devices. Among the
existing ML methods, deep learning provides magnificent per-
formance on various tasks. For example, convolutional neural
networks (CNN) have been utilized for image classification,
object detection, and recognition. Recurrent neural networks
(RNNs) find applications in natural language processing and

multi-target tracking. Deep reinforcement learning (DRL) can
be leveraged for determining optimal policy/strategy for ac-
complishing various tasks, such as trajectory optimization
of autonomous vehicles. Regardless of any specific AI/ML
methods, edge computing provides a means for performance-
and energy-efficient execution of AI/ML algorithms.

Fig. 1 depicts our proposed framework for data fusion and
Al at the edge. In the proposed framework, data fusion, AI/ML
processing, analysis, and decision-making are done at three
levels: (i) edge-of-network sensor/IoT nodes, (ii) edge servers
or fog nodes, and (iii) cloud servers. Al at both the edge-of-
network sensor/IoT devices and edge servers (fog nodes) is
referred to as edge Al. Edge Al enables computations near the
edge of the network and helps in reducing the communication
burden on the core network. We distinguish the edge Al done
at senor/IoT node level and edge server (fog node) level to
highlight the difference in compute capability of the two. In the
proposed framework, Al is first performed at the lowest tier of
the network edge comprising of senor nodes and IoT devices.
These edge-of-network sensor/IoT devices can be sensor nodes
sensing particular features (e.g., temperature, humidity, pres-
sure), smart phones, smart vehicles, video and imaging devices
(e.g., cameras including night vision imaging cameras, thermal
imaging cameras, etc.), and even airborne vehicles, such as
unmanned aerial vehicles (UAVs), equipped with different
sensors. These edge-of-network IoT devices typically possess
limited computation and communication capabilities. Given
the increasing proliferation of Al-driven applications, modern
IoT devices can be outfitted with various ML accelerators to
speed up the execution of ML algorithms in an energy-efficient
manner as depicted in Fig. 1. For example, IoT nodes equipped
with cameras can execute hardware-accelerated lightweight
CNN algorithms, such as MobileNet [5], to perform object
classification.

Although modern and futuristic IoT devices can be equipped
with Al accelerators [6] as depicted in Fig. 1, many of
the contemporary edge-of-network sensors/IoT devices have
limited computational capabilities that are not adequate to
carry out complex Al tasks. In order to boost the computational
and Al capabilities at the network edge, edge servers are
installed at the base stations in the edge computing paradigm.
Edge servers possess much more resources and computa-
tional capability than the edge-of-network sensors/IoT devices.
Since edge servers receive data from many edge-of-network
devices with diverse application requirements, performance
requirements from edge server are also diverse. When AI/ML
processing with stringent latency requirements (e.g., for hard
real-time systems) is required from edge servers, edge servers
are designed with high-performance stationary computing
servers with stable power source and high bandwidth network
connections. For mobile edge processing, edge servers can
be power-/energy-constrained. For example, UAVs, which are
typically powered by batteries, can be used as mobile edge
servers or devices. These mobile edge devices often employ Al
accelerators for fast and energy-efficient AI/ML processing [7]
[8]. Moreover, edge servers or fog nodes are more amenable
for integration of ML accelerators, such as CNN, RNN, and
MLP accelerators as depicted in Fig. 1.
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Fig. 1: Framework for data fusion and Al at edge.

Each edge server manages a cluster of edge-of-network
sensors/IoT devices in its vicinity. Edge servers provide ap-
plications, content, context, services, and storage to edge-of-
network IoT devices. For example, edge servers can assist
with complex image processing and storage tasks for imaging
data acquired from camera sensors at IoT devices. Since
edge servers are in close proximity to edge-of-network IoT
devices, the edge servers can perform the offloaded tasks
from IoT devices with much lower latency and much lower
communication overhead as compared to the cloud.

The edge servers in our framework are connected to the top-
tier centralized cloud server layer through the core network.
The core network consigns locally processed data and infor-
mation from the edge to the cloud for various purposes such as
analytics, archival, and decision-making at a broader scale. At
the cloud, high-performance servers are typically used because
the cloud needs to service many requests from the edge-of
network devices and edge servers. Cloud servers are typically
equipped with many high-end central processing units (CPUs)
(e.g., Intel Xeon processor [9]) and graphic processing units
(GPUs) for database processing and AI/ML processing. For
efficient execution of Al tasks, the cloud is often outfitted
with a variety of Al accelerators and neural processing units
(NPUs) as depicted in Fig. 1. As an example, Google is
currently deploying a proprietary Al accelerator called tensor
processing unit (TPU) [10] to accelerate the AI/ML workloads
in their data centers. The TPU is designed and implemented as
an application-specific integrated circuit (ASIC), which is not

reconfigurable after the chip fabrication. As another example,
Microsoft uses field-programmable gate arrays (FPGAs) for
accelerating AI/ML workloads in their cloud servers [11].
Since FPGAs are reconfigurable, the accelerator logic can be
flexibly changed depending on users’ or service providers’
requirements.

In the proposed framework, data fusion plays an important
role along with Al as depicted by the data fusion blocks at
each hierarchical tier in Fig. 1. Here, we provide a high-level
discussion of data fusion at different tiers of the proposed
framework whereas the detailed discussion of data fusion that
occurs within data fusion blocks in Fig. 1 is provided in
Section III. At the lowest tier, data fusion is performed at
the IoT node-level to minimize the redundancy in the raw
data acquired from sensors. The IoT devices then perform
Al on this fused data to help improve accuracy, performance,
and energy efficiency in carrying out the Al tasks. The IoT
nodes transmit only the sanitized and fused data, and the
analytics results on this fused data to the edge servers instead
of sending the raw sensor data, which enormously reduces
the load on communication network and also conserves the
communication/transmission energy at IoT devices. The edge
servers then fuse the data received from multiple IoT devices.
The edge servers also resolve the topological relationships
between sensors and utilize the topological, contextual, and
environmental information in data fusion. The edge servers
perform AI on this fused data and then report the sanitized
and fused data as well as analytics on this fused data to the



cloud. The cloud performs the data fusion on the data received
from the network edge and then performs Al on this fused data
to obtain global analytics and insights.

In the proposed framework, an IoT edge device can com-
putationally offload its data fusion and Al tasks to other edge
devices or an edge server. Similarly, edge servers or fog nodes
can offload their tasks to cloud. Since many of the Al inference
tasks are time-sensitive, computation offloading from an IoT
device to another edge-of-network device dg is advantageous
if

Tp]oT + TquT > TpdE + quE 4 TtIoT dp (1)

where Tlf °T and TqI °T represent the average processing latency
and average queuing delay, respectively, at the IoT device;
Tge and Tg® denote the average processing latency and
average queuing latency, respectively, at dg; and TtI oT-dp
denotes the transmission latency from an IoT device to another
edge-of-network device dg for sending the data for offloaded
computation and receiving the results back from dg. Similarly,
the computation offloading from an IoT device to an edge
server Sg is expedient if

T + 7T > T2 + T + T/T%%, )

where T1§E and TqSE denote the average processing latency
and average queuing latency, respectively, at Sg; and TtI oT-Sg
denotes the transmission latency from an IoT device to an edge
server Sg for sending the data for offloaded computation and
receiving the results back from Sg. The auspiciousness of
offloading from an edge server to the cloud can be expressed
similar to Eq. (1) and Eq. (2) and is omitted for brevity.

III. MODELS AND ARCHITECTURES FOR DATA FUSION
AND Al

There exist many models and architectures for data fusion
to address plethora of issues surrounding human factors, Al,
and IoT [19]. Table I presents seven major data fusion models
and/or architectures and compares them across different met-
rics, viz., ability to perform (static) data fusion, (dynamic)
real-time sensing, capability of operating with human-in-
the-loop, applicability to IoT and/or cyber-physical systems
(CPS), handling of Al (including big data), and centralized or
distributed processing. While Table I highlights traditional data
fusion models and architectures with their current capabilities,
it is to be noted that with new advances, these architectures
can be redefined and enhanced towards recent methods, for ex-
ample, static to dynamic processing, centralized to distributed
processing, human machine teaming, and small data (1/0s) to
large data (streaming video).

Typically, the aerospace community focuses on two main
data fusion models or architectures. The first one leverages
multiple filters in a centralized approach that has been widely
extended to distributed methods and applied to object as-
sessment for target tracking and distributed target recognition
[20]. A good example of this type of data fusion architecture
is the distributed information graph (DIG). The second one
brings together big data to a user-defined operating picture
(UDOP) in the Joint Directors of Laboratories (JDL)/Data
Fusion Information Group (DFIG) model [17]. We note that
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Fig. 2: DFIG model for information fusion.

the UDOP concept extends the common operating picture
(COP) to help enable the human operator to supervise the
processing, exploitation, and dissemination of information for
situation awareness. The UDOP enables rendering and visu-
alization of data analytics services customized to the human
operator’s needs for efficient command decision-making for
a given mission. While the DFIG model supports multiple
sensors and distributed users, it still relies on a common
location for command and control. Other communities have
been looking at fusion architectures that emphasize fusion-
focused data analysis such as the data-feature-decision (DFD)
[12] model, wireless sensor networks [14], and the more
recent efforts from the Al community with the early and late
fusion (ELF) methods [15] and generative adversarial net-
works (GANs). Since 2000, the DFD and the JDL/DFIG have
remained similar, while the WSN community has continually
utilized the distributed approaches that extend to IoT and CPS.
While each of these methods are important for the fusion
community, there is a desire for a data fusion architecture that
is able to perform distributed command and control amongst a
variety of human teams and distributed sensors. Hence, in this
section, we elaborate cyber-physical command guided (CPCG)
architecture that is able to perform distributed command and
control amongst various human teams and distributed sensors
and IoT devices. We further briefly discuss DFIG model as it
help provide an understanding of fusion levels.

A. Data Fusion Information Group Model

Fig. 2 depicts JDL/DFIG model. The JDL/DFIG model
defines multiple levels of fusion where each level exploits
Al developments to support assessment (level 0, 1, 2 and
3) and refinement (level 4, 5, and 6). System management
(level 6) incorporates contextual constraints based on mission,
objectives, and goals. The DFIG model describes different
levels of fusion as:
Level 0 — Data Assessment: Provides estimation and predic-
tion of signal/object observable states based on pixel/signal
level data association.

Level 1 — Object Assessment: Provides estimation and pre-
diction of entities/objects based on data association and (both
continuous and discrete) state estimation.

Level 2 — Situation Assessment: Provides estimation and pre-
diction of relations between entities/objects.




TABLE I: Comparison of data fusion and Al architectures.

Symbols: v'— yes; % — being used; B — been adapted; [ — could be adapted; X — not used.

(“yes” indicates that (yes) research supports the directions/usage while “used” implies that it has been implemented in real systems.)

Model and/or | Data Fusion Real-Time Human ToT/ Al Connected Reference

Architecture (Static) (Sensing) Centered CPS (Big Data) (Distributed)
DFD v * O X | | O Dasarathy [12]
DIG * v | * O v Hall et al. [13]
WSN * v X | 0 v Chair and Varshney [14]
ELF * O X X v * Snoek et al. [15]
GAN * X X X v X Goodfellow et al. [16]

JDL/DFIG v * v | * * Blasch et al. [17]

CPCG v v v v v v Cruise et al. [18]

Level 3 — Impact Assessment: Provides estimation and pre-
diction of impact on planned or estimated actions by the
participants.

Level 4 — Process Refinement: An element of resource man-
agement and provides adaptive data acquisition and processing
to furnish estimation of sensing objectives and prediction of
impact on planned or estimated actions by the participants.

Level 5 — User Refinement: An element of knowledge man-
agement and provides adaptive determination of access control
and display of information to support decision-making via
human-machine interface.

Level 6 — Mission Management: An element of systems man-
agement and enables spatial-temporal control of assets (e.g.,
airspace operations), route planning, and goal determination to
support decision-making while considering social, economic,
and political constraints.

B. Cyber-Physical Command-Guided Architecture

As the name implies, the CPCG architecture combines the
elements of the static (DFD) and dynamic (DIG) methods
from the late 1990s with the user-focused updates from the
JDI/DFIG in the 2000s for “Command Guided” systems,
such as swarm of unmanned domain systems (UxS) (where
X can be space, air, ground, surface, or undersea). The CPCG
architecture seeks to not only utilize the distributed data fusion
but also the distributed diffusion of command to cyber-physical
elements. Hence, the CPCG architecture leverages the cloud
and edge processing to be able to collect data for information
fusion (IF), afford consumption and analytics by operator
infusion (OI), and then direct needs for control diffusion
(CD). The CPCG architecture takes advantage of centralized
command with distributed execution by expressing goals and
having the contextual agents develop the sensing and action
strategy.

The AI agents in CPCG architecture mine data, process and
fuse information, and store the results in a distributed space.
The AI agents of CPCG architecture are assisted with three
different types of data fusion, viz., (i) information fusion, (ii)
operator infusion, and (iii) control diffusion. Organization of
these three data fusion agents induces different Al architec-
tures as depicted in Fig. 3. These fusion techniques can be
characterized based on the data they provide and/or operate
on:

(i) Information Fusion (IF): The IF agent mines and pro-
cesses physical data/information that originates in the external
environment. The IF can be assisted with different AI/ML
approaches, such as symbolic, probabilistic, connectionist,
analogistic, evolutionary, and possibilistic (please refer to
Section IV for types of Al and ML).

(ii) Operator Infusion (OI): The OI agent assimilates human-
in-the-loop within CPCG architecture for interpreting and
assessing processed information/data, specifying mission ob-
jectives, interacting with CPCG agents for ML and fu-
sion/diffusion augmentation and refinement with social knowl-
edge, and decision-making. The UDOP enables the human
operator to direct his/her decision-making at the highest level
of establishing or updating mission objective, or to expand
his/her decision-making to involve details of instantaneous
coordination among engagement groups within CPCG archi-
tecture, or even to decision-making at the level of individual
sensors, weapons, actuators, and platform management. This
rich human operator access and interaction with CPCG archi-
tecture at different levels suggest that the human operator is
infused into the CPCG architecture.

(iii) Control Diffusion (CD): The CD agent relates to the
planning side of Al. The CD dissects or decomposes high-level
mission objectives that originate from the human operator into
specialized tasks or actions for different engagement capabili-
ties of CPCG architecture. The planning is an AI’s effort that
generates a sequence of actions based on observations. The
planning agent explores the space of all possible actions to
select the optimal sequence of actions that meets the mission
goals. Thus the planning process diffuses or fans out the
high-level mission objectives to the CPCG constituent systems
terminating in the lowest-level control signals for individual
sensors, actuators, and platforms. The control theory’s duality
between observation and control is manifested in CPCG archi-
tecture as the duality between information fusion and control
diffusion. The CD can be assisted with Al techniques such as
statistical relational learning and Markov logic networks [3].

The CPCG architecture utilizes the principle of centralized
command with decentralized control. The CPCG architecture
has four processing types which are described below with
reference to Fig. 3.

Top (Planner) — Al-based: The top “operator node” sub-
sumes the three intelligent agents (IF, OI, and CD). The



:; Information Fusion

Operator Node

A Operator Infusion

Data
V Control Diffusion

Collection

PIanningT l Updating

Sensor
Coordination

[} . .. [}
-§ Reporting Visualizing control -§
= Loo o
o — Delegator, » P >
-] Directing Querying |

Context
Association

\‘\(\Zommandingl TOrganizi ng/’/

S

Network
Communication

Fig. 3: Cyber-physical command-guided (CPCG) architecture.

commander interacts with these intelligent agents to simul-
taneously conduct operations and synchronize plans. Since
this processing type is most demanding, the IF, OI, and CD
leverage a cloud-based approach (Fig. 1) with a UDOP to
determine the needs in real-time. For example, if a system
is deployed and the scenario has some common patterns and
results, the information can be utilized to develop/train semi-
supervised Al from labeled (20% from the OI) and unlabeled
(80% from the IF) data.

Right (Query-Based) — DFD-based: The commander pro-
vides goals to the machine-human agents (IF/OI) from which
decisions determine the sensor control loop of what data to
collect (CD). The commander queries results from the IF
agent that is getting updates from a variety of OI analysis
and reports. The OI provides an interface to the human that
controls multiple edge units such as IoT devices. If the IoT
devices are collecting data from different sources, then the
results would be semi-real time as the commander can query
the information needed to make decisions, while the IF agent
is processing data from multiple updates.

Bottom (Human-Centered) — JDL/DFIG-based: The com-
mander coordinates with other field units and manages other
human agents (OI), who then interact with edge node machine
agents (IF, CD) sending organized results. In the human-
centered approach, there is a direct communication between
the users. The OI works with a set of assets (e.g., UAVs)
that have on-board processing for IF- and CD-based data
collection, which essentially are “edge nodes” as the assets can
be either edge devices (e.g., IoT) or edge servers. The results
from the machine-based IF-CD are sent to the human via OI
interface, which then conveys the salient information to the
commander. Since this type is the most distributed approach,

it typically takes the longest to execute as the bottleneck is the
limited attention of the user-in-the-loop that has to manage the
assets as well as provide updates.

Left (Direction-based) — DIG-based: The commander directs
human-machine agents (OI/CD) that collect data (IF) to form
decisions through a data refinement loop. The commander can
provide directions to the OI, which then communicates those
to the CD agent. Unlike the query-based (right), here the OI
sends commands or directives to the CD agent, which then
decides how and when to collect data from edge devices,
such as IoT and sensor systems (e.g., cameras) so that the
most important information is collected when needed. This
type can be represented as a directed graph as the high-level
OI directives are imparted as objectives and the CD uses the
operating constraints to determine the sensing and actuation
needs based on the graph. Since this type is graph-based, it is
also machine robust for processing and analysis.

We demonstrate CPCG architecture further through a prac-
tical case study in the following.

CASE STUDY: COMMAND-GUIDED SWARM: A practical
example of CPCG architecture is command-guided swarm
(CGS). A CGS is a multisensor, multi-device (devices can
be weapons), multiplatform, single-human-operator system-
of-systems (SoS) [18]. The CGS comprises of multiple UxS,
where x can be space, air, ground, surface, or undersea, under
the mission-oriented tactical coordination of a single human
operator. The CGS utilizes advanced Al and human partnering
concepts to carry out fusion of information originating from
the swarm’s multiple sensors and diffusion of control out
to the swarm’s multifarious platforms, sensors, and devices
(weapons). The CGS unifies a collection of semi-autonomous
intelligent agents operating in parallel that are neither tightly




coupled through a built-in command structure nor completely
independent and autonomous. Complex behaviors may emerge
from the coordination of semiautonomous agents in CGS,
which entails collective intelligence or swarm intelligence of
the CGS. The swarm intelligence of CGS emerges from the
distributed information processing/fusion and engagement of
control across multiple Al agents of the CGS. The swarm
intelligence leverages active machine learning technologies
and human-machine partnership that is enabled by edge com-
puting.

A commander of the CGS may desire to obtain multi-
perspective and multimodal observations of an object. Since
CGS comprises of different UxS each with different types
of edge devices (e.g., visual and infrared sensors), the goal
for the swarm is to evolve such that the positions for the
viewpoints of multimodal sensors observe an object/target
from different perspectives and distances. The multimodal
sensors could have an overlapping or orthogonal viewpoints.
The same viewpoints (0 degrees) maximizes data registration
whereas orthogonal viewpoints (90 degrees) offer different
perspective of the object. The confluence of Al and data (e.g.,
image) fusion in CGS requires support from models, methods,
and control [21]. Models assess theoretical performance of
task success based on the range/distance of a device (e.g.,
camera) to an object. Methods enable empirical performance
measurement of multimodal data fusion. Control enables co-
ordinated positioning of UxS to obtain multiperspective data.
Theoretical models relate object distance to the visual electro-
optical and infrared image resolution for object detection
and classification. The resolution increases and classification
accuracy improves as the distance of the sensor from the
object decreases. Theoretical models analyze the probability
of success for an object detection and classification task
using a single modality (e.g., an electro-optical camera) ver-
sus multimodality (e.g., electro-optical and infrared cameras).
Once theoretical models indicate benefits of image fusion,
Al methods for contextual analysis are then utilized. Context
from the scenario includes lighting conditions and position
of sensor as a function of range. Context analysis determines
which multimodal sensor configuration would yield successful
results, that is, whether to use visual, infrared, or visual
+ infrared camera sensors. Section VI-E demonstrates how
multimodal fusion help improve Al precision in CGS.

IV. ALIGNMENT OF MULTI-LEVEL FUSION AND Al

Data fusion and AI can be performed at multiple levels
utilizing the three hierarchical tiers, viz., edge devices, edge
servers, and cloud (Fig. 1). This section discusses different
levels of data fusion, characterizes Al into different types
and/or stages, and aligns types of Al with different levels of
fusion.

A. Multi-Level Fusion

DFIG model defines seven levels of fusion: LO—L6 (Sec-
tion III-A). Broadly, data fusion can be categorized as low-
level, intermediate-level, or high-level depending on the pro-
cessing stage at which information fusion transpires. In the
DFIG model, LO can be termed as low-level data fusion as it

combines raw data from multiple processes to produce new
raw data. The intermediate-level data fusion in the DFIG
model encompasses L1 as it provides object assessment based
on fusion and extraction of features from raw data. Finally,
L2-16 (i.e., L2, L3, L4, L5, and L6) in the DFIG model
can be construed as high-level data fusion as these levels fuse
high-level information/features to assess situation and impact,
and help refine process, display, and mission management. The
low-level information fusion deals with numerical data, such as
locations, kinematics, and target attributes, intermediate-level
information fusion handles objects/entities, whereas high-level
information fusion copes with abstract symbolic information,
such as threat, intent, and mission objectives.

Alternatively, levels of fusion can also be characterized as
[22]: (i) (sensor, pixel) data fusion, (ii) knowledge/feature
fusion, and (iii) decision fusion.

(i) Sensor/Pixel Data Fusion: At the lowest level, raw
data produced by sensors and other sources is fused while
comprehending the characteristics and relations of the input.
This low-level data fusion is also known as sensor fusion
because the data from different sensors is fused together. In
case, sensors are camera sensors (e.g., visual or infrared),
sensor fusion is also known as pixel fusion because pixels
of images obtained from camera sensors are fused together.
This sensor/pixel fused data provides an updated represen-
tation of data for further processing. Sensor fusion can be
implemented as centralized or distributed [23]. In centralized
fusion architecture, measurements of all sensors are available
during the fusion process and a batch method is used to fuse
the sensor data. In distributed fusion architecture, different
sensor measurements are fused with a separate fusion model.
Then during the global fusion process, the fusion model
information of each sensor is available. The distributed fusion
architecture is more scalable with the increasing amount of
data as compared to the centralized architecture.

Depending on the sensor configuration, sensor fusion can
be classified into three cases: (a) competitive sensor fusion,
(b) complementary sensor fusion, and (c) cooperative sensor
fusion.

(a) Competitive sensor fusion: In competitive sensor fusion,
either data from the sensor of same modality are fused
together or the data from the sensors from multiple modalities
are first transformed to the same baseline and then fused.
Competitive sensor fusion is typically used to reduce noise
and uncertainty of the sensor measurements. For example, in
case of a surveillance application, multiple competitive camera
sensors obtain (homogeneous) images of a target at the same
time and fusing those images result in less noisy resultant
images that are more suitable for the surveillance or tracking
application.

(b) Complementary sensor fusion: In complementary sensor
fusion, sensors measure different and distinct parts of the same
event and the combination of these (heterogeneous) disparate
measurements results in a complete characterization of an
event. For example, a complementary set of cameras in a
surveillance application can provide an extended picture of
the scene which simplifies the subsequent tracking of a target.




(c) Cooperative sensor fusion: In cooperative sensor fusion, a
sensor is configured and/or positioned based on the informa-
tion from other sensors to generate more useful measurements.
For cooperative sensor fusion, either sensors can autonomously
collaborate to configure each other or some input from human
expert can be provided. For example, a tracking task can
require adapting the camera angles after observing behavior
of a target.

(ii) Knowledge/Feature Fusion: The fused sensor/pixel data
provides a basis for feature extraction that develops a model
for the underlying data to conceive patterns in the data. The
abstraction of fusion components increases with the level of
fusion. In the intermediate fusion levels, the data is available
in the form of models that represent knowledge from the
observed event. The knowledge fusion can be performed at
model level or parameter level. In model fusion, the knowledge
is represented in form of different models, which are fused
together. An example of such a model is Gaussian model
that provides information about the distribution of data. The
mixture of Gaussian distributions produces a Gaussian mixture
model (GMM), which describes the distribution of a data set
that is more complex than a unimodal Gaussian. The fused
model contains more precise knowledge about the overall
data distribution. Convolutional neural networks (CNNs) and
multiple kernel learning based ensemble methods are other
examples of model fusion techniques. In parameter fusion,
parameters of different models are fused together [22].

(iii) Decision Fusion: At the highest level of fusion, the goal is
to improve decision-making and choice of actions. Decisions
obtained based on different models can be fused together
to obtain better decisions. The decision fusion of multiple
models/classifiers can either consist of direct combination of
the decisions from the individual models or can select a
specific model/classifier for a given input. By observing the
impact of a chosen action, the entire fusion process can be
adapted for performance improvement and better decision-
making.

B. Types and Stages of Al

Since Al research profess to make machines emulate hu-
mans, the extent to which an Al system can imitate human
capabilities is used as a criterion to define types of Al. Al can
be classified into four main types based on their functionalities.
Type I Al — reactive machines belong to the most basic type
of Al systems that are purely reactive and do not have the
ability to form memories or use past experiences to inform
current decisions. These machines can only be utilized for
automatically responding to a limited set or combination of
inputs. A famous example of a reactive Al machine is IBM’s
Deep Blue, a supercomputer that beat chess Grandmaster
Garry Kasparov in 1997 [24]. Type I Al — limited memory
machines in addition to having the capability of reactive
machines have the ability to learn from historical data to make
decisions though this memory is limited and transient. Nearly
all existing Al applications (e.g., chatbots, virtual assistants,
autonomous vehicles) fall under this Al category. The next
two types of Al exist either as a concept or work in progress.

Type Il AI — theory of mind is used to represent a machine
(AI agent) that has the ability to form a predictive model of
self and others and have the ability to represent and discern
the mental states of others, including their emotions, desires,
beliefs, and intentions. Theory of mind Al can provide intelli-
gent machines/robots with powerful capabilities, in particular,
social intelligence for human-machine interaction [25]. Type
IV Al — self-awareness is an extension of theory of mind
Al and is often regarded as the ultimate objective of all
Al research. Self-awareness Al refers to an Al agent that
has consciousness and has the ability to form representation
of itself and others. Self-aware Al agents know about their
internal states and can predict the feelings and actions of
others. This type of Al will not only be able to understand
and induce emotions in those it interacts with, but also have
emotions, needs, beliefs, and likely desires of its own [24].
Although self-aware Al can potentially boost our progress
as a civilization tremendously, it can also possibly lead to
catastrophe because self-aware Al would have the capability
of developing ideas like self-preservation and outmaneuver
the human intellect to plot elaborate schemes to take over
humanity [24]. Consequently, Al safety has been gaining
traction in Al research and non-profit organizations [26].

An alternate system of classification that is more prevalent
in Al community is the classification of Al into different
stages, viz., artificial narrow intelligence, artificial general
intelligence, and artificial super intelligence. Artificial narrow
intelligence (ANI) represents all the existing Al even the most
complicated ones including deep learning. ANI refers to those
Al systems that can only perform a specific task (e.g., driving,
speech recognition) with human-like capabilities. Artificial
general intelligence (AGI) refers to the capability of Al to
learn, perceive, understand and function like humans. AGI
will independently build multiple competencies and general-
izations across various domains thus massively reducing the
time needed for training. AGI will make AI agents just as
capable as humans by replicating the multi-functional abilities
of humans. Artificial super intelligence (ASI) marks the apex
of AI research as ASI agents will exceedingly do better at
everything than humans because of great memory, processing,
analysis, and decision-making. The development of ASI can
potentially lead to a scenario referred to as the singularity [27].

C. Mapping of AI/ML to Fusion Levels

Table II provides a mapping of Al types to different fusion
levels: Type I AI — reactive machines with rules support
LO processing; Type II AI — limited memory utilizes signal
processing based methods to provide L1 functions; Type III
Al — theory of mind provides representations about the
world supporting L2/L.3 functions; and Type IV Al — self-
awareness supports prediction and interact with L4/L5/L6
analyses. Although in Table II, we have aligned Type III and
Type IV Al with data fusion levels L2-L6, this alignment
is idealistic and imply that these Al types will be able to
best perform the capabilities associated with intermediate- and
high-level fusion. Currently, all fusion levels are assisted with
Type I and Type II Al only and a contemporary (not idealistic)
alignment will map Type I and Type II to all fusion levels.



TABLE II: AI aligned with information fusion.

Type of Al Focus Objective Information Fusion Alignment
Type 1 Reactive machines Identify patterns from rules for immediate action L0 Data assessment
Type 11 Limited memory Estimate response leveraging signal processing L1 Object assessment
. Form representations of world L2 Situation assessment
Type 1I Theory of mind
and other agents L3 Impact assessment
. . L4 Process refinement
Understand self conscious to interact
Type IV Self-awareness . L L5 User refinement
with prediction
L6 Mission refinement
TABLE III: ML aligned with information fusion.
Types of ML Information
ML Methods Symbolic | Probabilistic | Connectionist | Analogistic | Evolutionary | Possibilistic Fusion
(Logic) (Bayes) (DL) (SVM) (GA) (Fuzzy) Alignment
Registration, Estimation X v X v X X L0 Data Assessment
CNN, RNN, LSTM, Estimation X v v v N v L1 Object Assessment
CNN, Pattern Matching v v v X X v L2 Situation Assessment
GAN X v v X v X L3 Impact Assessment
RL, Optimization, Regularization X v v X X v L4 Process Refinement
Active Learning v v v X X X LS5 User Refinement
RL v v v X X X L6 Mission Refinement

Since Al is dominated by ML techniques, Table III provides
a mapping of ML methods to different fusion levels. It is
to be noted that different ML methods can provide different
types of Al For example, deep neural networks (DNNs),
either a single DNN or a connection of multiple DNN, can
provide different types of Al, ranging from Type I to Type
IIT AL Table III categorizes ML methods into six types: (i)
symbolic, (ii) probabilistic, (iii) connectionist, (iv) analogistic,
(v) evolutionary, and (vi) possibilistic.

(i) Symbolic ML: Symbolic ML is based on first-order logic
models and truth tables. Symbolic ML has been termed as
good old-fashioned Al It is excellent for implementing ma-
chine reasoning but is rigid in the sense that logic statements
are either true or false with no possibility of compromise.
Failure of logical systems lead to catastrophic failures and
thus more sophisticated ML approaches are needed for solving
complex problems.

(ii) Probabilistic ML: Probabilistic ML is based on Bayesian
statistics, conditional probabilities, and network/graphs of
nodes. Probabilistic ML avoids the rigidness of symbolic ML
by modeling relationships as conditional probability distribu-
tions; however, probabilistic models lack the rich represen-
tations and reasoning ability of symbolic ML. The ML for
complex systems, such as CGS (discussed in Section III-B
as a case study), utilizes a novel hybrid of symbolic and
probabilistic ML. This hybrid ML approach, which is referred
to as statistical relational learning (SRL), combines Bayesian
graphical models with first-order logic where logical symbolic
representations capture the underlying rich structure of the
problem domain, while the probabilistic methods handle the
uncertainty in data.

(iii) Connectionist ML: Connectionist ML utilizes computa-
tional models inspired by neural architecture of the biolog-

ical brain. Examples of connectionist ML include artificial
neural networks (ANNs) and multilayer ANNs (i.e., deep
learning). Table III also list some other ML methods that fall
under connectionist ML, such as CNN, RNN, long short-term
memory (LSTM), GAN, and reinforcement learning (RL). An
RNN is a class of ANNs where connection between nodes
constitute a directed graph along a temporal sequence that
enables it to exhibit dynamic temporal behavior. RNNs utilize
their internal state (memory) to process variable lengths of
input sequences, which makes RNNs suitable for tasks such
as connected handwriting recognition and speech recognition.
LSTM is a type of RNNs that have feedback connections
and help overcome the vanishing gradient problem in RNNs.
GAN is a machine learning framework based on ANNs that
learns to generate new data with the same statistics as the
training set. RL is another area of ML that is concerned with
determining an optimal set of actions in an environment in
order to maximize cumulative reward. RL is typically stated in
the form of a Markov decision process (MDP), where dynamic
programming provides a solution for the MDP [28]. Deep
RL (DRL) combines deep neural networks with reinforcement
learning algorithms (e.g., Q-learning) to solve previously un-
solvable problems as DRL can learn from raw sensor data
and/or images supplied as input. In active learning, an ML
algorithm can interactively pose queries during the training
process, usually in the form of unlabelled data instances to be
labelled by a human user. Thus, active learning is an example
of human-in-the-loop learning. Connectionist ML often lever-
ages regularization. Regularization is a technique which makes
slight modifications to the ML algorithm to prevent overfitting
to the training data and to make the model more generalizable
for different test data sets. Connectionist ML also preprocesses
the input data through data registration. Registration, often



performed for images and thus known as image registration,
is the process of transforming different images of one scene
into the same coordinate system. Registration is required in
order to compare or fuse the data obtained from different
measurements. For example, images can be taken at different
times (multi-temporal registration), by different sensors (multi-
modal registration), and/or from different viewpoints [29].
(iv) Analogistic ML: Analogistic ML analyzes data analogies
and similarities through distance computations in feature hy-
perspace. Examples of analogistic ML include support vector
machines (SVMs) and nearest neighbors, such as K-nearest
neighbor (KNN) algorithm.

(v) Evolutionary ML: Evolutionary ML utilizes computational
models inspired by evolutionary competition and survival.
Examples of evolutionary ML include genetic algorithms
(GAs), genetic programming, and neuroevolution . We note
that neuroevolution is similar to genetic programming but
the genomes represent ANNs by specifying structure and
connection weights.

(vi) Possibilistic ML: Possibilistic ML analyzes ambiguous
data using extension of classical logic to represent partial
truths. Fuzzy inference systems and possibilistic logic systems
are examples of possibilistic ML.

V. ADVANTAGES OF DATA FUSION AND Al AT THE EDGE

Data fusion and Al at the edge can provide various advan-

tages in terms of latency, energy, accuracy, security, privacy,
cost, scalability, and sustainability as discussed in the follow-
ing.
Latency: Latency refers to the time spent in the whole
Al inference process, including pre-processing, data fusion,
model inference, data transmission and post processing [30].
Many edge devices and systems (e.g., surveillance systems,
autonomous vehicles, robots) have stringent deadline require-
ments (in the order of microseconds to milliseconds) and
missing those deadlines can result in catastrophes. According
to Steve Roddy, the Vice President (VP) of Special Project in
Arm’s Machine Learning Group [2]: “Applications that people
will engage within real-world products such as controlling
home devices or providing driver assistance in a car, all
of those applications are running on the edge and many
will require real-time responses. Any delay from bouncing
information to the cloud and back could be a problem.” Sri
Chandrasekaran, Senior Director of IEEE Standards Associ-
ation, has also emphasized the importance of speed/latency
for Al inference [2]: “We can’t overlook the importance of
latency. Al at the edge will allow for faster data transfer, which
will, in turn, benefit the many industries Al touches, especially
industrial IoT and automotive. These industries benefit from
Al at the edge because the machines and automobiles must
be able to understand many different aspects at once. Sending
data to the cloud and back is not only inefficient, but it is
also less secure and much slower, ultimately leading to a
decrease in productivity and reliability.” Research results also
verify that data fusion and Al at the edge provides much faster
response as compared to sending data to the cloud for fusion
and inference [31].

Energy Efficiency: Data fusion and Al at the edge is much
more energy-efficient than the data fusion and inference at the
cloud because it takes a large amount of power to send data
over the air whereas it takes orders of magnitude lesser power
to do computations on the device when the data is available
on-device. Since many of the edge devices are battery-powered
with no energy harvesting system (e.g., solar, thermal), sending
data to the cloud for fusion and inference and receiving the
results back will expeditiously deplete these devices of the
battery power.

Precision: Al precision or accuracy refers to the ratio of the
number of input samples that get correct prediction to the total
number of input samples [30]. Many edge applications, such as
autonomous driving and face authentication, require ultrahigh
Al accuracy. Although increase in the number and type of
sensors assist in covering large areas, the growing number
of sensors have often resulted in an increase in false alarm
rates and have compounded the target acquisition process in
case of surveillance applications due to the fact that sensors
can provide inaccurate, incomplete, or inconsistent data. Data
fusion at the edge can help filter the outliers and malicious
readings, which results in an improved AI/ML model with
better precision than a model that is trained on outliers and
malicious data. Furthermore, in many edge applications, Al
inference accuracy is also affected by the speed at which
an application needs to process the input data. For a video
analytics application under a fast feeding rate, some input
samples may be skipped due to limited resources of edge
devices. In such conditions, data fusion can help improve
the accuracy by fusing a few adjacent frames of video and
presenting the fused frames to the AI model for inference. The
number of frames to be fused will depend on the application
and available resources of an edge device. The fused frame
will be able to capture the salient information in the video
frames and will provide better prediction accuracy instead of
skipping the video frames if an edge device could not handle
the feed rate.

Security: Security is another advantage that is provided by
data fusion and Al at the edge. In case of fusion and Al at
the cloud, data needs to travel from edge devices to the cloud
and from the cloud to edge devices hundreds of miles over
multiple channels including wireless channels and Internet
thus exposing the data en route to attackers. The data sent
to and received from the cloud can be compromised over
the wireless channels, wired channels, intermediate routers,
or even the cloud computers itself. Data fusion and Al at the
edge devices minimizes the data transfer and thus alleviates
the security issues associated with data transfer over multiple
channels.

Privacy: Privacy preservation is another advantage of data
fusion and AI at the edge. Often the data requiring inference
is private and contains sensitive information (e.g., medical
records, personal photos, financial reports, target information
in defense applications). Sending this private data to the
cloud for AI provides no privacy guarantees to the user.
Microsoft Research has proposed a homomorphic encryption
based solution referred to as CryptoNets [32] that permits a



data owner to send their data in encrypted form to the cloud
service for inference. Since the cloud does not have access
to the encryption key, the user data remain confidential. In
CryptoNets, the cloud service is able to provide inference
on the encrypted data and return the results to the user in
an encrypted form. However, the overhead of homomorphic
encryption limits the applicability of this solution on resource-
constrained edge devices. Data fusion and Al at the edge
enables inference at the edge and thus alleviates the privacy
issues associated with sending data to the cloud.

Cost: Data fusion and Al at the edge also provide cost advan-
tages. Due to advancements in semiconductor technology, the
cost of system-on-chips (SoCs) is decreasing with increasing
capability to perform fusion and AI on these SoCs. These
edge SoCs cost much lesser than building the apparatus and
infrastructure required to perform fusion and inference in the
cloud.

Scalability: The number of edge devices are continuously on
the rise approaching 100 billion in near future and producing
hundreds of zettabytes of data. If each edge device has to send
all the data back to the cloud data center for fusion and Al
inference, it will put an enormous pressure on the network
bandwidth likely causing the network to collapse (denial of
service) as well as will require huge investments on expensive
data centers. Data fusion and Al at the edge imparts scalability
to an intelligent computing system because majority of the data
fusion and Al computations are performed at edge devices and
only limited fused and processed data needs to be sent over
the network to the cloud.

Sustainability: Data fusion and Al at the edge provide a
sustainable solution for emerging smart applications (e.g.,
autonomous vehicles, smart agriculture, surveillance, swarm
intelligence) because increasing advances in semiconductor
will continue to make edge devices more powerful to carry out
inferences in real-time in a cost-effective manner. Moreover,
edge Al will be able to meet Al needs for applications even
in communication-denied environments or places where no
infrastructure exists for connection to the cloud.

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results demonstrat-
ing latency, energy, and precision advantages of combined
data fusion and Al at the edge. The experimental results
present latency and energy consumption comparison between
two CNN models with and without data fusion. Furthermore,
results demonstrate how multimodal fusion help improve the
precision of Al for a CGS system.

A. Experimental Setup

We conduct two set of experiments to demonstrate latency,
energy, and precision advantages of combined data fusion
and Al at the edge. The primary set of experiments use
handwritten digit datasets whereas secondary experiments use
different types of camera sensors, viz., visual (VI) and medium
wavelength infrared (MWIR) outfitted on UAVs.

In our primary set of experiments, we obtain experimental
results for MNIST handwritten digit dataset [33]. We clarify

that we have chosen this dataset for illustrating the effective-
ness of combined data fusion and AI; however, experimen-
tal results for other datasets can be obtained similarly. For
practical relevance, we note that for social intelligence, often
handwritten digits and text need to be analyzed. We have
randomly selected 100 handwritten images from the dataset
for each digit. We have made 10 sets of each digit image
where each set contains 10 handwritten images. We then fuse
the images in each set to produce 10 fused images for each
digit. Our data fusion technique adds the pixel values at the
same location of the ten images in the set. Thus, our primary
set of experiments demonstrates competitive pixel data fusion
done explicitly and model data fusion (knowledge/feature data
fusion) implicitly by the CNN inference.

We consider three use cases for Al and data fusion on
multiple hardware platforms suitable for edge computing: (1)
data fusion and CNN model execution in Intel Xeon CPU
[9] (Xeon_CPU), (2) data fusion and CNN model execution
in Nvidia Jetson TX2 graphics processing unit (GPU) (JTX2
[34]) CPU (JTX2_CPU), and (3) data fusion in JTX2 CPU
and CNN model execution in JTX2 GPU (JTX2_CPU+JTX2_-
GPU). We average the execution time of performing data
fusion and CNN inference over ten sets of ten digits. We have
run our experiments on Ubuntu 18.04 operating system using
CUDA 10.1 as general purpose GPU (GPGPU) framework,
and Python 3.6.9 for implementation of data fusion. For im-
plementing Al with data fusion, first the ten images in each set
are fused using data fusion in Python and the resulting fused
image is then provided as input to the Darknet framework [35]
for CNN inference. We use two CNN models: LeNet [36] and
AlexNet [37], for our experiments. Regarding the training of
CNN models, we utilize the trained weights provided by [38]
for LeNet whereas we train the weights of AlexNet ourselves
using MNIST training dataset comprising of 60,000 images.
To smooth out any inconsistencies in latency due to operating
system overhead and variations in environmental parameters,
we average the execution time results over ten independent
measurements.

B. Average Latency for Combined Data Fusion and Al at the
Edge

Table IV shows the speedup of AI (LeNet and AlexNet
CNN models) with data fusion over Al without data fusion.
Results verify that AI with data fusion provides significant
speedups over Al without data fusion. For example, Al with
data fusion on Xeon CPU results in a speedup of 2.6x and
9.7x for LeNet and AlexNet, respectively. For JTX2 CPU,
Al with data fusion provides a speedup of 3.8 x and 9.8 for
LeNet and AlexNet, respectively, as compared to Al without
data fusion. The data fusion in JTX2 CPU and CNN model
execution in JTX2 GPU leads to a speedup of 9.6x and 9.3x
for LeNet and AlexNet, respectively.

Since GPUs serve as a decent platform for acceleration of
deep learning models, offloading the CNN inference tasks to
the JTX2 GPU engenders a speedup of 2.8x to 2.9x for
AlexNet as compared to only using the JTX2 CPU. However,
experimental results indicate the LeNet execution on GPUs
results in lower performance as compared to LeNet execution



TABLE IV: Speedup of Al with data fusion as compared to
Al without data fusion.

Edge Computing CNN Model
Platform LeNet AlexNet
Xeon_CPU 2.55X 9.72X
JTX2_CPU 3.82X 9.76X
JTX2_CPU + JTX2_GPU 9.57X 9.29X
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Fig. 4: Energy reduction imparted by data fusion and Al as
compared to Al without data fusion.

on CPU. This is due to the small size of LeNet model (i.e.,
LeNet model consists of only ~60 thousand parameters),
which can be efficiently run on CPU without offloading. For
LeNet inference on GPU, the data transfer between CPU,
memory, and GPU incurs non-negligible latency overhead
that causes higher overall execution time of LeNet inference
on GPU as compared to CPU. Conversely, since AlexNet is
a large CNN model with ~60 million parameters, AlexNet
inference on GPU provides better performance than CPU
because the computation time for large data dominates the
data transfer time.

C. Energy Consumption for Combined Data Fusion and Al at
the Edge

Data fusion also imparts energy benefits to Al. Fig. 4
depicts the energy reduction furnished by data fusion and
Al as compared to Al without data fusion across three edge
computing platforms and the two CNN models. Results verify
that the data fusion leads to huge energy savings for Al. For
Xeon CPU and JTX2 CPU, the energy reductions furnished by
data fusion and Al over Al without data fusion are 56.11%-—
88.32% and 70.88%—88.42%, respectively. For the data fusion
and Al execution on GPU along with the CPU in the JTX2
platform, energy reduction is 88.00%—88.52% as compared
to Al without data fusion. These energy savings are attained
because with data fusion, same amount of input data can
be processed much quicker by the AI models as compared
to the case without data fusion (Section VI-B). This lower
latency of AI with data fusion also translates to lower energy
consumption as compared to Al without data fusion.

D. Accuracy for Combined Data Fusion and Al at the Edge

Al with data fusion can obviously result in improved
performance as illustrated in Section VI-B because inference
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Fig. 5: Accuracy of Al with data fusion as compared to Al
without data fusion.

is performed on reduced data size. However, there may be a
concern regarding accuracy of combined data fusion and Al
because the fused data is different from the original raw data.
Hence, we measure the impact of data fusion on accuracy
using average softmax probability as a metric by which the
CNN model predicts a class. For accuracy evaluations, we
use Darknet framework [35] with LeNet CNN model. The
experimental setup is the same as described in Section VI-A.
We generate one image with fusing 10 images by averaging
the pixel values, resulting in data size reduction by 90%. For
inference with data fusion, we use 100 fused input images
while we use 1000 original images in the case of inference
without data fusion.

Fig. 5 shows data fusion impact on softmax probability
for CNN inference. Our CNN model has ten output classes
C_i where 4, ¢ € 0,1,2,3,...,9. C_i denotes class ¢ that
corresponds to the output for digit ¢ (e.g., C_O corresponds to
digit 0 and C_9 corresponds to digit 9). Results indicate that
data fusion does not adversely affect the softmax probability
though there is a fluctuation in softmax probability depending
on the digit class. Results show that data fusion imparts
higher accuracy to Al on average. For example, data fusion
results in CNN inference accuracy of 88.53% as compared
to the accuracy of 87.51% without data fusion for all digit
classes. Results depict that for some classes, data fusion
may lead to lower accuracy for Al than without using data
fusion. For example, for C_5 in our experiments, softmax
probability of CNN inference actually decreases, meaning
that the data fusion may lead to inaccurate prediction (or
classification). We observe that the softmax probability for
C_5 with data fusion decreases by 32% as compared to the
softmax probability without data fusion. The reason being that
sometime for image classification, data fusion may cause the
image to become blurry, which may cause the CNN model
to misclassify the input. However, post-processing of fused
images and/or applying different data fusion techniques can
help improve the accuracy. Results also reveal that for all
classes other than C_5, softmax probability with data fusion
is either very close to or higher than the softmax probability
without data fusion. For example, data fusion provides an
improvement of 4.25% for softmax probability as compared
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Fig. 6: Precision vs. distance for multimodal fusion and Al.

to the softmax probability without data fusion for all digit
classes except C_5. Results show that data fusion imparts
maximum improvement in softmax probability for C_3, where
the attained improvement is 15.81%. Hence, our results verify
that data fusion significantly improves the performance of Al
while also improving or maintaining the accuracy of Al in
most cases.

E. Multimodal Fusion and Al at the Edge

This experimental result focuses on the CGS case study
where a commander of the CGS may desire to obtain mul-
tiperspective and multimodal observations of an object using
different types of camera sensors, viz., VI and MWIR, outfitted
on UAVs. This experiment demonstrates multimodal compet-
itive data fusion and multimodal complementary data fusion.
Fig. 6 illustrates how and when multimodal image fusion
benefits deep learning based inference from images [18]. Fig. 6
indicates that multimodal image fusion (VI + MWIR) benefits
deep learning precision when sensor-to-object distance is
greater than 3 km whereas using only visual imagery produces
acceptable precision when the sensor-to-object distance is less
than 3 km. We clarify that for CGS multimodal sensing, con-
trol is asserted through user commands. The control asserted
through high-level user commands permeates to different
components of CGS through control diffusion, which results
in routing of UAVs to positions through which overlapping or
orthogonal viewpoints can be obtained as required by the deep
learning methods for improving classification precision.

VII. CONCLUSIONS

In this article, we have discussed the emerging discipline
of data fusion and artificial intelligence (AI) at the edge. As
the price of computing continues to fall, edge fusion and
intelligence will continue to proliferate. In the foreseeable
future, the cloud and edge AI will continue to coexist where
the cloud will be mostly used for training of AI whereas more
and more inference will be performed at the edge. In this
article, we have proposed a hierarchical framework for data
fusion and AI at the edge. The article provides a comparative
discussion of contemporary data fusion and AI models and
architectures with special emphasis on data fusion information
group (DFIG) model and cyber-physical command-guided
(CPCQG) architecture. The article also presents a case study

of command-guided swarm (CGS) as a practical application
of CPCG architecture. The article aligns the Al techniques
to different fusion levels. Finally, the article demonstrates the
advantages of Al and data fusion at the edge including latency,
energy efficiency, precision, security, privacy, cost, scalability,
and sustainability. Experimental results have revealed that
combining Al with data fusion can impart a speedup of 9.8 x
over Al without data fusion. Additionally, data fusion leads to
energy savings of up to 88.5% for Al as compared to the Al
without data fusion. Furthermore, results have demonstrated
that data fusion either maintains or improves the accuracy of
Al in most cases. For our experiments, data fusion imparts a
maximum improvement of 15.8% in accuracy to Al. Further-
more, experimental results for a CGS case study demonstrate
the advantage of multimodal data fusion on precision of Al
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