
1

High-Performance Energy-Efficient Multi-core
Embedded Computing

Arslan Munir, Student Member, IEEE, Sanjay Ranka, Fellow, IEEE, AAAS,
and Ann Gordon-Ross, Member, IEEE

Abstract —With Moore’s law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-
core to multi-core to exploit this high transistor density for high performance. Embedded systems differ from traditional high-
performance supercomputers in that power is a first-order constraint for embedded systems whereas performance is the major
benchmark for supercomputers. The increase in on-chip transistor density exacerbates power/thermal issues in embedded systems,
which necessitates novel hardware/software power/thermal management techniques to meet the ever-increasing high-performance
embedded computing demands in an energy-efficient manner. This paper outlines typical requirements of embedded applications and
discusses state-of-the-art hardware/software high-performance energy-efficient embedded computing (HPEEC) techniques that help
meeting these requirements. We also discuss modern multi-core processors that leverage these HPEEC techniques to deliver high
performance per watt. Finally, we present design challenges and future research directions for HPEEC system development.

✦

Index Terms —High-performance computing (HPC), multi-core, energy-
efficient computing, green computing, low-power, embedded systems

1 INTRODUCTION

EMBEDDED system design is traditionally power-
centric but there has been a recent shift towards

high-performance embedded computing (HPEC) due
to the proliferation of compute-intensive embedded
applications. For example, the signal processing for a
3G mobile handset requires 35-40 Giga operations per
second (GOPS) for a 14.4 Mbps channel and 210-290
GOPS for a 100 Mbps orthogonal frequency-division
multiplexing (OFDM) channel. Considering the limited
energy of a mobile handset battery, these performance
levels must be met with a power dissipation budget of
approximately 1W, which translates to a performance
efficiency of 25 mW/GOP or 25 pJ/operation for
the 3G receiver and 3-5 pJ/operation for the OFDM
receiver [1][2]. These demanding and competing power-
performance requirements make modern embedded
system design challenging.

The high-performance energy-efficient embedded
computing (HPEEC) domain addresses the unique
design challenges of high-performance and low-
power/energy (can be termed as green, however, green
may refer to a bigger notion of environmental impact)
embedded computing. These design challenges are
competing because high-performance typically requires

• Arslan Munir and Ann Gordon-Ross are with the Department of Electrical
and Computer Engineering, University of Florida, Gainesville, FL, 32611
USA. Ann Gordon-Ross is also affiliated with the NSF Center for High-
Performance Reconfigurable Computing (CHREC) at the University of
Florida. Sanjay Ranka is with the Department of Computer and Infor-
mation Science and Engineering at the University of Florida. e-mail:
{amunir@ufl.edu, ranka@cise.ufl.edu, ann@ece.ufl.edu}

maximum processor speeds with enormous energy
consumption, whereas low-power typically requires
nominal or low processor speeds that offer modest
performance. HPEEC requires thorough consideration
of the thermal design power (TDP) and processor
frequency relationship while selecting an appropriate
processor for an embedded application. For example,
decreasing the processor frequency by a fraction of
the maximum operating frequency (e.g., reducing from
3.16 GHz to 3.0 GHz) can cause 10% performance
degradation but can decrease power consumption
by 30-40% [3]. To meet HPEEC power-performance
requirements, embedded system design has transitioned
from a single-core to a multi-core paradigm that favors
multiple low-power cores running at low processors
speeds rather than a single high-speed power-hungry
core.

Chip multiprocessors (CMPs) provide a scalable
HPEEC platform as performance can be increased by
increasing the number of cores as long as the increase
in the number of cores offsets the clock frequency
reduction by maintaining a given performance level
with less power [4]. Multi-processor systems-on-
chip (MPSoCs), which are multi-processor version of
systems-on-chip (SoCs), are another alternative HPEEC
platform, which provide an unlimited combination of
homogeneous and heterogeneous cores. Though both
CMPs and MPSoCs are HPEEC platforms, MPSoCs
differ from CMPs in that MPSoCs provide custom
architectures (including specialized instruction sets)
tailored for meeting peculiar requirements of specific
embedded applications (e.g., real-time, throughput-
intensive, reliability-constrained). Both CMPs and
MPSoCs rely on HPEEC hardware/software techniques
for delivering high performance per watt and meeting
diverse application requirements.



2

TABLE 1: Top Green500 and Top500 supercomputers as of June 2011 [5][6]

Supercomputer Green500 Rank Top500 Rank Cores Power Efficiency Peak Performance Peak Power

Blue Gene/Q Prototype 2 1 109 8192 2097.19 MFLOPS/W 104857.6 GFLOPS 40.95 kW

Blue Gene/Q Prototype 1 2 165 8192 1684.20 MFLOPS/W 104857.6 GFLOPS 38.80 kW

DEGIMA Cluster, Intel i5 3 430 7920 1375.88 MFLOPS/W 111150 GFLOPS 34.24 kW

TSUBAME 2.0 4 5 73278 958.35 MFLOPS/W 2287630 GFLOPS 1243.80 kW

iDataPlex DX360M3, Xeon 2.4 5 54 3072 891.88 MFLOPS/W 293274 GFLOPS 160.00 kW

Even though literature discusses high-performance
computing (HPC) for supercomputers [7][8][9][10], there
exists little discussion on HPEEC [11]. The distinction
between HPC for supercomputers and HPEEC is
important because performance is the most significant
metric for supercomputers with less emphasis given to
energy-efficiency, whereas energy-efficiency is a primary
concern for HPEEC. For example, each of the 10
most powerful contemporary supercomputers has a
peak power requirement of up to 10 MW, which
is equivalent to the power needs of a city with
a population of 40,000 [5][11]. To acknowledge the
increasing significance of energy-efficient computing, the
Green500 list ranks supercomputers using the FLOPS
per watt performance metric [6]. Table 1 lists the
top 5 green supercomputers along with their top 500
supercomputer ranking. The table shows that the top
performing supercomputers are not necessarily energy-
efficient [5][6]. Table 1 indicates that most of the top
green supercomputers consist of low-power embedded
processor clusters aiming at achieving high performance
per watt and high performance per unit area [12].

Fig. 1 gives an overview of the HPEEC domain,
which spans architectural approaches to middleware
and software approaches. In this paper we focus
on high-performance and energy-efficient techniques
that are applicable to embedded systems (CMPs,
SoCs, or MPSoCs) to meet particular application
requirements. Although the main focus of the paper
is on embedded systems, many of the energy
and performance issues are equally applicable to
supercomputers since state-of-the-art supercomputers
leverage embedded processors/chips (e.g., Jaguar
supercomputer comprising of 224162 processor
cores leverages AMD Opteron six-core CMPs
[5]). However, we summarize several differences
between supercomputing applications and embedded
applications as follows:

1) Supercomputing applications tend to be highly
data parallel where the goal is to decompose a task
with a large dataset across many processing units
where each subtask operates on a portion of the
dataset. On the other hand, embedded applications
tend to consist of many tasks where each task is
executed on a single processing unit and may have
arrival and deadline constraints.

2) Supercomputing applications tend to focus on
leveraging a large number of processors whereas
the scale of embedded applications is generally

Threading Techniques

Hyper-Threading Helper Threading Speculative Threading

Reliability-constrainedThroughput-intensive Thermal-constrained Real-time Parallel and Distributed

Core Layout

Heterogeneous 

CMP

Conjoined-core 

CMP

3D Multi-core 

Architectures

Tiled Multi-core 

Architectures

Composable Multi-core 

Architectures

Stochastic 

Processors

Memory Design

Transactional Memory Cache Partitioning Smart CachingCooperative Caching

Interconnect Topology

1D Array 2D Mesh Hypercube

Interconnect Technology

Packet-switched Photonic Wireless

Architectural Approaches

Interconnection Network

Reduction Techniques

Leakage Current 

Reduction

Short Circuit Current 

Reduction

Interconnection 

Length Reduction

Peak Power 

Reduction

Instruction and Data Fetch

Energy Reduction

Gating Techniques

Power Gating Per-Core Power Gating Clock GatingSplit Power Planes

Software Approaches

Data Forwarding Task Scheduling Load Balancing and UnbalancingTask Migration

Hardware-Assisted Middleware Approaches

DVFS

Energy Monitoring 

and Management

DTM

CMP: Chip Multiprocessor

DVFS: Dynamic Voltage and Frequency Scaling

ACPI: Advanced Configuration and Power Interface

DTM: Dynamic Thermal Management

Embedded Applications

Dependable Techniques

NMR Dynamic Constitution Proactive Checkpoint Deallocation

NMR: N-modular Redundancy

ACPI

Fig. 1: High-performance energy-efficient embedded
computing (HPEEC) domain.

much smaller.
3) Supercomputing applications’ main optimization

objective is performance (although energy is
increasingly becoming a very important secondary
metric), while performance and energy are equally
important objectives for embedded applications.
Also, reliability and fault tolerance play a more
important role in embedded applications as
compared to supercomputing applications.

The HPEEC domain benefits from architectural
innovations in processor core layouts (e.g.,
heterogeneous CMP, tiled multi-core architectures),
memory design (e.g., transactional memory, cache
partitioning), and interconnection networks (e.g.,
packet-switched, photonic, wireless). The HPEEC
platforms provide hardware support for functionalities
that can be controlled by middleware such as dynamic



3

voltage and frequency scaling (DVFS), hyper-threading,
helper threading, energy monitoring and management,
dynamic thermal management (DTM), and various
power-gating techniques. The HPEEC domain benefits
from software approaches such as task scheduling,
task migration, and load balancing. Many of the
HPEEC techniques at different levels (e.g., architectural,
middleware, and software) are complementary in nature
and work in conjunction with one another to better meet
application requirements. To the best of our knowledge,
this is the first paper targeting HPEEC that provides
a comprehensive classification of various HPEEC
techniques in relation to meeting diverse embedded
application requirements.

2 EMBEDDED APPLICATIONS

The proliferation of embedded systems in various
domains (e.g., consumer electronics, automotive,
industrial automation, networking, medical, defense,
space, etc.) due to technological advancements has
given rise to a plethora of embedded applications. Thus,
embedded systems require HPEEC hardware/software
techniques to meet the ever increasing processing
demands of the embedded applications. Since economic
pressures have a large influence on embedded system
development, many embedded applications require
embedded systems to be reliable and robust, easy to
use, able to connected with other devices, and low
cost. Since many embedded application requirements
are competing, tradeoffs must be made between
these requirements, such as size versus flexibility,
robustness versus richness of functionality, and power
consumption versus performance. Therefore, embedded
system vendors market domain-specific platforms
that are specialized for a particular domain and offer
appropriate tradeoffs to better meet that domain’s
typical application requirements [13].

Different embedded applications have different
characteristics. Although a complete characterization
of embedded applications with respect to applications’
characteristics is outside the scope of this paper,
Fig. 2 provides a concise classification of embedded
applications based on their characteristics. We discuss
below some of these application characteristics in
context of their associated embedded domains.

Throughput-intensive: Throughput-intensive embedded
applications are applications that require high
processing throughput. Networking and multimedia
applications, which constitute a large fraction of
embedded applications [13], are typically throughput-
intensive due to ever increasing quality of service
(QoS) demands. An embedded system containing an
embedded processor requires a network stack and
network protocols to connect with other devices.
Connecting an embedded device or a widget to a
network enables remote device management including
automatic application upgrades. On a large scale,

networked embedded systems can enable HPEC for
solving complex large problems traditionally handled
only by supercomputers (e.g., climate research, weather
forecasting, molecular modeling, physical simulations,
and data mining). However, connecting hundreds to
thousands of embedded systems for HPC requires
sophisticated and scalable interconnection technologies
(e.g., packet-switched, wireless interconnects). Examples
of networking applications include server I/O devices,
network infrastructure equipment, consumer electronics
(mobile phones, media players), and various home
appliances (e.g., home automation including networked
TVs, VCRs, stereos, refrigerators, etc.). Multimedia
applications, such as video streaming, require very high
throughput of the order of several GOPs. A broadcast
video with a specification of 30 frames per second with
720 × 480 pixels per frame requires approximately
400,000 blocks (group of pixels) to be processed per
second. A telemedicine application requires processing
of 5 million blocks per second [14].

Thermal-constrained: An embedded application is
thermal-constrained if an increase in temperature above
a threshold could lead to incorrect results or even
the embedded system failure. Depending on the target
market, embedded applications typically operate above
45 ◦C (e.g., telecommunication embedded equipment
temperature exceeds 55 ◦C) in contrast to traditional
computer systems, which normally operate below 38◦C
[15]. Meeting embedded application thermal constraints
is challenging due to typically harsh and high-
temperature operating environments. Limited space and
energy budgets exacerbate these thermal challenges
since active cooling systems (fans-based) are typically
infeasible in most embedded systems, resulting in only
passive and fanless thermal solutions.

Reliability-constrained: Embedded systems with high
reliability constraints are typically required to operate
for many years without errors and/or must recover
from errors since many reliability-constrained embedded
systems are deployed in harsh environments where
post-deployment removal and maintenance is infeasible.
Hence, hardware and software for reliability-constrained
embedded systems must be developed and tested more
carefully than traditional computer systems. Safety
critical embedded systems (e.g., automotive airbags,
space missions, aircraft flight controllers) have very high
reliability requirements (e.g., the reliability requirement
for a flight-control embedded system on a commercial
airliner is 10−10 failures per hour where a failure could
lead to aircraft loss [16]).

Real-time: In addition to correct functional operation,
real-time embedded applications have additional
stringent timing constraints, which impose real-time
operational deadlines on the embedded system’s
response time. Although real-time operation does not
strictly imply high-performance, real-time embedded



4

Fig. 2: Classification of high-performance energy-efficient embedded computing (HPEEC) techniques based on
embedded application characteristics.

systems require high performance only to the point that
the deadline is met, at which time high performance
is no longer needed. Hence, real-time embedded
systems require predictable high-performance. Real-
time operating systems (RTOSs) provide guarantees
for meeting the stringent deadline requirements for
embedded applications.

Parallel and Distributed: Parallel and distributed
embedded applications leverage distributed
embedded devices to cooperate and aggregate
their functionalities or resources. Wireless sensor
network (WSN) applications use sensor nodes to
gather sensed information (statistics and data) and
use distributed fault-detection algorithms. Mobile
agent (autonomous software agent)-based distributed
embedded applications allow the process state to be
saved and transported to another new embedded
system where the process resumes execution from
the suspended point (e.g., virtual migration). Many
embedded applications exhibit varying degrees (low
to high levels) of parallelism, such as instruction level
parallelism (ILP) and thread-level parallelism (TLP).
Innovative architectural and software HPEEC techniques
are required to exploit an embedded application’s
available parallelism to achieve high-performance with
low power consumption.

Various HPEEC techniques at different levels (e.g.,
architecture, middleware, and software) can be used to
enable an embedded platform to meet the embedded

application requirements. Fig. 2 classifies embedded
application characteristics and the HPEEC techniques
available at architecture, middleware, and software
levels that can be leveraged by the embedded
platforms executing these applications to meet the
application requirements (we describe the details
of these techniques in later sections of the paper).
For example, throughput-intensive applications can
leverage architectural innovations (e.g., tiled multi-core
architectures, high-bandwidth interconnects), hardware-
assisted middleware techniques (e.g., speculative
approaches, DVFS, hyper-threading), and software
techniques (e.g., data forwarding, task scheduling, and
task migration). We point out that HPEEC techniques
are not orthogonal and many of these techniques can be
applied in conjunction with one another to more closely
meet application requirements. Furthermore, HPEEC
techniques that benefit one application requirement
(e.g., reliability) may also benefit other application
requirements (e.g., throughput, real-time deadlines).
For example, the interconnection network not only
determines the fault-tolerance characteristics of
embedded systems but also affects the attainable
throughput and response time.

3 ARCHITECTURAL APPROACHES

Novel HPEEC architectural approaches play a dominant
role in meeting varying application requirements. These
architectural approaches can be broadly categorized
into four categories: core layout, memory design,



5

interconnection networks, and reduction techniques. In
this section, we describe these HPEEC architectural
approaches.

3.1 Core Layout

In this subsection, we discuss various core layout
techniques encompassing chip and processor design
since high-performance cannot be achieved only from
semiconductor technology advancements. There exist
various core layout considerations during chip and
processor design such as whether to use homogeneous
(cores of the same type) or heterogeneous cores (cores of
varying types), whether to position the cores in a 2D or
3D layout on the chip, whether to design independent
processor cores with switches that can turn on/off
processor cores, or to have a reconfigurable integrated
circuit that can be configured to form processor cores
of different granularity. In this subsection, we describe
a few core layout techniques including heterogeneous
CMP, conjoined-core CMP, tiled multi-core architectures,
3D multi-core architectures, composable multi-core
architectures, multi-component architectures, and
stochastic processors. We also discuss the power/energy
issues associated with these architectural approaches.

Heterogeneous CMP: Heterogeneous CMPs consist
of multiple cores of varying size, performance, and
complexity on a single die. Since the amount of ILP or
TLP varies for different workloads, building a CMP with
some large cores with high single-thread performance
and some small cores with greater throughput per die
area provides an attractive approach for chip design.
Research indicates that the best heterogeneous CMPs
contain cores customized to a subset of application
characteristics (since no single core can be well suited
for all embedded applications) resulting in non-monotonic
cores (i.e., cores cannot be strictly ordered in terms of
performance or complexity for all the applications) [17].
To achieve high performance, applications are mapped
to the heterogeneous cores such that the assigned
core best meets an application’s resource requirements.
Heterogeneous CMPs can provide performance gains
as high as 40% but at the expense of additional
customization cost [18].

Conjoined-core CMP: Conjoined-core CMPs are
multiprocessors that allow topologically feasible
resource sharing (e.g., floating-point units (FPUs),
instruction and data caches) between adjacent cores to
reduce die area with minimal impact on performance
and improve the overall computational efficiency. Since
conjoined-core CMPs are topology oriented, the layout
must be co-designed with the architecture otherwise
the architectural specifications for resource sharing
may not be topologically possible or may incur higher
communication costs. In general, the shared resources
should be large enough so that the cost of the additional
wiring required for sharing may not exceed the area
benefits achieved by sharing. Static scheduling is the

simplest way to organize resource sharing in conjoined-
core CMPs where cores share resources in different
non-overlapping cycles (e.g., one core may use the
shared resource during even cycles and the other core
may use the shared resource during odd cycles, or one
core may share the resource for the first five cycles,
another core for the next five cycles, and so on). Results
indicate that conjoined-core CMPs can reduce area
requirements by 50% and maintain performance within
9-12% of conventional cores without conjoining [19].

Tiled Multi-core Architectures: Tiled multi-core
architectures exploit massive on-chip resources by
combining each processor core with a switch to
create a modular element called a tile, which can
be replicated to create a multi-core embedded system
with any number of tiles. Tiled multi-core architectures
contain a high-performance interconnection network
that constrains interconnection wire length to no longer
than the tile width and a switch (communication router)
interconnects neighboring switches. Examples of tiled
multi-core architectures include the Raw processor,
Intel’s Tera-Scale research processor, Tilera TILE64,
TILEPro64, and TILE-Gx processor family [20].

3D Multi-core Architectures: A 3D multi-core
architecture is an integrated circuit that orchestrates
architectural units (e.g., processor cores and memories)
across cores in a 3D layout. The architecture provides
HPEEC by decreasing the interconnection lengths across
the chip, which results in reduced communication
latency. Research reveals that 3D multi-core processors
can achieve 47% performance gain and 20% power
reduction on average over 2D multi-core processors [21].
The 3D multi-core architectures’ disadvantages include
high power density that exacerbates thermal challenges
as well as increased interconnect capacitance due to
electrical coupling between different layers [22].

Composable Multi-core Architectures: The composable
multi-core architecture is an integrated circuit that
allows the number of processors and each processor’s
granularity to be configured based on application
requirements (i.e., large powerful processors for
applications (tasks) with more ILP and small less
powerful processors for tasks with more TLP). The
architecture consists of an array of composable
lightweight processors (CLPs) that can be aggregated
to form large powerful processors to achieve high
performance depending upon the task granularity.
Examples of composable multi-core architectures
include TRIPS and TFlex [20].

Stochastic Processors: Stochastic processors are
processors used for fault-tolerant computing that are
scalable with respect to performance requirements
and power constraints while producing outputs that
are stochastically correct in the worst case. Stochastic
processors maintain scalability by exposing multiple
functionally equivalent units to the application layer



6

that differ in their architecture and exhibit different
reliability levels. Applications select appropriate
functional units for a program or program phase
based on the program and/or program phase’s
reliability requirements. Stochastic processors can
provide significant power reduction and throughput
improvement especially for stochastic applications
(applications with a priori knowledge of reliability
requirements, such as multimedia applications, where
computational errors are considered an additional noise
source). Results indicate that stochastic processors
can achieve 20-60% power savings in the the motion
estimation block of H.264 video encoding application
[23].

3.2 Memory Design

The cache miss rate, fetch latency, and data transfer
bandwidth are some of the main factors impacting the
performance and energy consumption of embedded
systems. The memory subsystem encompasses the
main memory and cache hierarchy and must take into
consideration issues such as consistency, sharing,
contention, size, and power dissipation. In this
subsection, we discuss HPEEC memory design
techniques, which include transactional memory,
cache partitioning, cooperative caching, and smart
caching.

Transactional Memory: Transactional memory
incorporates the definition of a transaction (a sequence
of instructions executed by a single process with
the following properties: atomicity, consistency, and
isolation) in parallel programming to achieve lock-free
synchronization efficiency by coordinating concurrent
threads. A computation within a transaction executes
atomically and commits on successful completion,
making the transaction’s changes visible to other
processes, or aborts, causing the transaction’s changes
to be discarded. A transaction ensures that concurrent
reads and writes to shared data do not produce
inconsistent or incorrect results. The isolation property
of a transaction ensures that a transaction produces the
same result as if no other transactions were running
concurrently [24]. In transactional memories, regions
of code in parallel programming can be defined as
a transaction. Transactional memory benefits from
hardware support that ranges from complete execution
of transactions in hardware to hardware-accelerated
software implementations of transactional memory [20].

Cache Partitioning: One of the major challenges
in using multi-core embedded systems for real-time
applications is timing unpredictability due to core
contention for on-chip shared resources (e.g., level two
(L2) or level three (L3) caches, interconnect networks).
Worst-case execution time (WCET) estimation techniques
for single-core embedded systems are not directly
applicable to multi-core embedded systems because a
task running on one core may evict useful L2 cache

contents of another task running on another core. Cache
partitioning is a cache space isolation technique that
exclusively allocates different portions of shared caches
to different cores to avoid cache contention for hard real-
time tasks, thus ensuring a more predictable runtime.
Cache partitioning-aware scheduling techniques allow
each task to use a fixed number of cache partitions
ensuring that a cache partition is occupied by at most
one scheduled task at any time [25]. Cache partitioning
can enhance performance by assigning larger portions
of shared caches to cores with higher workloads as
compared to the cores with lighter workloads.

Cooperative Caching: Cooperative caching is a
hardware technique that creates a globally-managed
shared cache using the cooperation of private caches.
Cooperative caching allows remote L2 caches to hold
and serve data that would not fit in the local L2 cache of
a core and therefore improves average access latency by
minimizing off-chip accesses [26]. Cooperative caching
provides three performance enhancing mechanisms:
cooperative caching facilitates cache-to-cache transfers
of unmodified data to minimize off-chip accesses,
cooperative caching replaces replicated data blocks to
make room for unique on-chip data blocks called singlets,
and cooperative caching allows eviction of singlets from
a local L2 cache to be placed in another L2 cache.
Cooperative caching implementation requires placement
of cooperation-related information in private caches and
the extension of cache coherence protocols to support
data migration across private caches for capacity sharing.
Results indicate that for an 8-core CMP with 1MB
L2 cache per core, cooperative caching improves the
performance of multi-threaded commercial workloads
by 5-11% and 4-38% as compared to shared L2 cache
and private L2 caches, respectively [27].

Smart Caching: Smart caching focuses on energy-
efficient computing and leverages cache set (way)
prediction and low-power cache design techniques [14].
Instead of waiting for the tag array comparison, way
prediction predicts the matching way prior to the
cache access. Way prediction enables faster average cache
access time and reduces power consumption because
only the predicted way is accessed if the prediction
is correct. However, if the prediction is incorrect, the
remaining ways are accessed during the subsequent
clock cycle(s), resulting in a longer cache access time
and increased energy consumption as compared to a
cache without way prediction. The drowsy cache is a
low-power cache design technique that reduces leakage
power by periodically setting the unused cache line’s
SRAM cells to a drowsy, low-power mode. A drowsy
cache is advantageous over turning off cache lines
completely because the drowsy mode preserves the
cache line’s data whereas turning off the cache line loses
the data. However, drowsy mode requires transitioning
the drowsy cache line to a high-power mode before
accessing cache line’s data. Research reveals that 80-90%



7

of cache lines can be put in drowsy mode with less than a
1% performance degradation and result in a cache static
and dynamic energy reduction of 50-75% [28].

3.3 Interconnection Network

As the number of on-chip cores increases, a scalable
and high-bandwidth interconnection network to connect
on-chip resources becomes crucial. Interconnection
networks can be static or dynamic. Static interconnection
networks consist of point-to-point communication links
between computing nodes and are also referred
to as direct networks (e.g., bus, ring, hypercube).
Dynamic interconnection networks consist of switches
(routers) and links and are also referred to as
indirect networks (e.g., packet-switched networks). This
subsection discusses prominent interconnect topologies
(e.g., bus, 2D mesh, hypercube) and interconnect
technologies (e.g., packet-switched, photonic, wireless).

Interconnect Topology: One of the most critical
interconnection network parameters is the network
topology, which determines the on-chip network cost
and performance. The interconnect topology governs the
number of hops or routers a message must traverse
as well as the interconnection length. Therefore, the
interconnect topology determines the communication
latency and energy dissipation (since message traversal
across links and through routers dissipates energy).
Furthermore, the interconnect topology determines the
number of alternate paths between computing nodes,
which affects reliability (since messages can route
around faulty paths) as well as the ability to evenly
distribute network traffic across multiple paths, which
affects the effective on-chip network bandwidth and
performance. The interconnect topology cost is dictated
by the node degree (the number of links at each computing
node) and length of the interconnecting wires. Examples
of on-chip interconnection network topologies include
buses (linear 1D array or ring), 2D mesh, and hypercube.
In bus topology, the processor cores share a common
bus for exchanging data. Buses are the most prevalent
interconnect network in multi-core embedded systems
due to the bus’s low cost and ease of implementation.
Buses provide lower costs than other interconnect
topologies because of a lower node degree: the node
degree for a bus interconnect is two, for a 2D mesh is
four, and for a hypercube is log p where p is the total
number of computing nodes. However, buses do not
scale well as the number of cores in the CMP increases.
The 2D mesh interconnect topology provides short
channel lengths and low router complexity, however, the
2D mesh diameter is proportional to the perimeter of the
mesh, which can lead to energy inefficiency and high
network latency (e.g., the diameter of 10 x 10 mesh is 18
hops) [29]. The hypercube topology is a special case of a
d-dimensional mesh (a d-dimensional mesh has a node
degree of 2d) when d = log p.

Packet-switched Interconnect: Packet-switched

interconnection networks replace buses and crossbar
interconnects as scalability and high-bandwidth demand
increases for multi-core embedded systems. Packet-
switched networks connect a router to each computing
node and routers are connected to each other via
short-length interconnect wires. Packet-switched
interconnection networks multiplex multiple packet
flows over the interconnect wires to provide highly
scalable bandwidth [20]. Tilera’s TILE architectures
leverage the packet-switched interconnection network.

Photonic Interconnect: As the number of on-chip
cores in a CMP increases, global on-chip communication
plays a prominent role in overall performance. While
local interconnects scale with the number of transistors,
the global wires do not because the global wires
span across the entire chip to connect distant logic
gates and the global wires’ bandwidth requirements
increases as the number of cores increases. A photonic
interconnection network — consisting of a photonic
source, optical modulators (rates exceed 12.5 Gbps), and
symmetrical optical waveguides — can deliver higher
bandwidth and lower latencies with considerably lower
power consumption than an electronic signaling based
interconnect network. In photonic interconnects, once a
photonic path is established using optical waveguides,
data can be transmitted end-to-end without repeaters,
regenerators, or buffers as opposed to the electronic
interconnects that requires buffering, regeneration,
and retransmission of messages multiple times from
source to destination [30]. The photonic interconnection
network is divided into zones each with a drop point
such that the clock signal is optically routed to the drop
point where the optical clock signal is converted to the
electrical signal. Analysis reveals that power dissipation
in an optical clock distribution is lower than an electrical
clock distribution [22].

The photonic interconnection networks can benefit
several classes of embedded applications, including real-
time and throughput-intensive applications (especially
applications with limited data reuse such as streaming
applications) (Fig. 2). However, even though photonic
interconnection networks provide many benefits, these
networks have several drawbacks such as delays
associated with the rise and fall times of optical emitters
and detectors, losses in the optical waveguides, signal
noise due to waveguides coupling, limited buffering,
and signal processing [22].

Wireless Interconnect: Wireless interconnect is an
emerging technology that promises to provide high
bandwidth, low latency, and low energy dissipation
by eliminating lengthy wired interconnects. Carbon
nanotubes (CNT) are a good candidate for wireless
antennas due to a CNT’s high aspect ratio (virtually a
one-dimensional wire), high conductance (low losses),
and high current carrying capacity (109 A/cm2,
which is much higher than silver and copper) [22].
Wireless interconnect can deliver high bandwidth



8

by providing multiple channels and using time-
division, code-division, frequency-division, or some
hybrid of these multiplexing techniques. Experiments
indicate that a wireless interconnect can reduce the
communication latency by 20-45% as compared to a
2D-mesh interconnect while consuming a comparable
amount of power [29]. A wireless interconnect’s
performance advantage increases as the number of on-
chip cores increases. For example, a wireless interconnect
can provide a performance gain of 217%, 279%, 600%
over a 2D-mesh interconnect when the number of on-
chip cores is equal to 128, 256, and 512, respectively [31].

3.4 Reduction Techniques

Due to an embedded system’s constrained resources,
embedded system architectural design must consider
power dissipation reduction techniques. Power
reduction techniques can be applied at various design
levels: the complementary metal-oxide-semiconductor
(CMOS)-level targets leakage and short circuit current
reduction, the processor-level targets instruction/data
supply energy reduction as well as power-efficient
management of other processor components (e.g.,
execution units, reorder buffers, etc.), and the
interconnection network-level targets minimizing
interconnection length using an appropriate network
layout. In this subsection, we present several power
reduction techniques including leakage current
reduction, short circuit current reduction, peak power
reduction, and interconnection length reduction.

Leakage Current Reduction: As advances in the
chip fabrication process reduces the feature size, the
CMOS leakage current and associated leakage power has
increased. Leakage current reduction techniques include
back biasing, silicon on insulator technologies, multi-
threshold MOS transistors, and power gating [14].

Short Circuit Current Reduction: Short circuit current
flows in a CMOS gate when both nMOSFET and
pMOSFET are on, which causes a large amount of
current to flow through transistors and can result in
increased power dissipation or even transistor burn-
out. The short circuit effect is exacerbated as the clock
period approaches the transistor switching period due
to increasing clock frequencies. The short circuit current
can be reduced using low-level design techniques that
aim to reduce the time during which both nMOSFET
and pMOSFET are on [14].

Peak Power Reduction: Peak power reduction
not only increases power supply efficiency but also
reduces packaging, cooling, and power supply cost
as these costs are proportional to the peak power
dissipation rather than the average power dissipation.
Adaptive processors can reduce peak power by centrally
managing architectural component configurations (e.g.,
instruction and data caches, integer and floating
point instruction queues, reorder buffers, load-store

execution units, integer and floating point registers,
register renaming, etc.) to ensure that not of all these
components are maximally configured simultaneously.
Adaptive processors incur minimal performance loss
and high peak power reduction by restricting maximum
configuration to a single resource or a few resources
(but not all) at a time. Research reveals that adaptive
processors reduce peak power consumption by 25% with
only a 5% performance degradation [32].

Interconnection Length Reduction: The
interconnecting wire length increases as the number of
on-chip devices increases, resulting in both increased
power dissipation and delay. An energy-efficient design
requires reduced interconnection wire lengths for high
switching activity signals and use of placement and
routing optimization algorithms for reduced delay and
power consumption [14]. Chip design techniques (e.g.,
3D multi-core architectures) and various interconnect
topologies (e.g., 2D-mesh, hypercube) help in reducing
interconnection wire lengths.

Instruction and Data Fetch Energy Reduction:
Hardwired ASICs typically provide 50x more
efficient computing as compared to general purpose
programmable processors, however, architecture-level
energy consumption analysis can help in energy-efficient
design of programmable processors [1]. Previous work
indicates that the programmable processors spend
approximately 70% of the total energy consumption
fetching instructions (42%) and data (28%) to the
arithmetic units, whereas performing the arithmetic
consumes a small fraction of the total energy (around
6%). Moreover, the instruction cache consumes the
majority of the instruction fetch energy (67%) [1].
Research indicates that reducing instruction and
data fetch energy can reduce the energy-efficiency
gap between ASICs and programmable processors
to 3x. Specifically, instruction fetch techniques that
avoid accessing power-hungry caches are required for
energy-efficient programmable processors (e.g., the
Stanford efficient low-power microprocessor (ELM)
fetches instructions from a set of distributed instruction
registers rather than the cache) [1].

4 HARDWARE - ASSISTED MIDDLEWARE
APPROACHES

Various HPEEC techniques (Fig. 1) are implemented
as middleware and/or part of an embedded OS to
meet application requirements. The HPEEC middleware
techniques are assisted and/or partly implemented in
hardware to provide the requested functionalities (e.g.,
power gating support in hardware enables middleware
to power gate processor cores). HPEEC hardware-
assisted middleware techniques include dynamic voltage
and frequency scaling (DVFS), advanced configuration
and power interface (ACPI), threading techniques
(hyper-threading, helper threading, and speculative



9

threading), energy monitoring and management,
dynamic thermal management (DTM), dependable
HPEEC techniques (N-modular redundancy, dynamic
constitution, and proactive checkpoint deallocation), and
various low-power gating techniques (power gating,
per-core power gating, split power planes, and clock
gating).

4.1 Dynamic Voltage and Frequency Scaling

DVFS is a dynamic power management (DPM)
technique in which the performance and power
dissipation is regulated by adjusting the processor’s
voltage and frequency. The one-to-one correspondence
between processor’s voltage and frequency in CMOS
circuits imposes a strict constraint on dynamic voltage
scaling (DVS) techniques to ensure that the voltage
adjustments do not violate application timing (deadline)
constraints (especially for real-time applications). Multi-
core embedded systems leverage two DVFS techniques:
global DVFS scales the voltages and frequencies of all the
cores simultaneously and local DVFS scales the voltage
and frequency on a per-core basis [14]. Experiments
indicate that local DVFS can improve performance
(throughput) by 2.5x on average and can provide an 18%
higher throughput than global DVFS on average [33][34].

DVFS-based optimizations can be employed for real-
time applications to conform with tasks’ deadlines in an
energy-efficient manner. For example, if a task deadline
is impending, DVFS can be adjusted to operate at the
highest frequency to meet the task deadline whereas if
the task deadline is not close, then DVFS can be adjusted
to lower voltage and frequency settings to conserve
energy while still meeting the task deadline.

Although DVFS is regarded as one of the most efficient
energy saving technique, the associated overhead of
performing DVFS needs to be considered. DVFS requires
a programmable DC-DC converter and a programmable
clock generator (mostly phase lock loop (PLL)-based)
that incurs time and energy overhead whenever the
processor changes its voltage and frequency setting. This
overhead dictates the minimum duration of time that
the target system should stay in a particular voltage-
frequency state for the DVS to produce a positive energy
gain [35].

4.2 Advanced Configuration and Power Interface

Though DPM techniques can be implemented in
hardware as part of the electronic circuit, hardware
implementation complicates the modification and
reconfiguration of power management policies. The
advanced configuration and power interface (ACPI)
specification is a platform-independent software-based
power management interface that attempts to unify
existing DPM techniques (e.g., DVFS, power and clock
gating) and put these techniques under the OS control
[36]. ACPI defines various states for an ACPI-compliant
embedded system, but the processor power states (C-
states) and the processor performance states (P-states)

are most relevant to HPEEC. ACPI defines four C-states:
C0 (the operating state where the processor executes
instructions normally), C1 (the halt state where the
processor stops executing instructions but can return
to C0 instantaneously), C2 (the stop-clock state where
the processor and cache maintains state but can take
longer to return to C0), and C3 (the sleep state where the
processor goes to sleep, does not maintain the processor
and cache state, and takes longest as compared to other
C-states to return to C0). ACPI defines n P-states (P1, P2,
. . ., Pn) where n ≤ 16, corresponding to the processor
C0 state. Each P-state designates a specific DVFS setting
such that P0 is the highest performance state while P1
to Pn are successively lower performance states. ACPI
specification is implemented in various manufactured
chips (e.g., Intel names P-states as SpeedStep while
AMD as Cool‘n’Quiet).

4.3 Gating Techniques

To enable low-power operation and meet an
application’s constrained energy budget, various
hardware-supported low power gating techniques
can be controlled by the middleware. These gating
techniques can switch off a component’s supply voltage
or clock signal to save power during otherwise idle
periods. In this subsection, we discuss gating techniques
such as power gating, per-core power gating, split power
planes, and clock gating.

Power Gating: Power gating is a power management
technique that reduces leakage power by switching off
the supply voltage to idle logic elements after detecting
no activity for a certain period of time. Power gating
can be applied to idle functional units, cores, and cache
banks [14].

Per-Core Power Gating: Per-core power gating is a
fine-grained power gating technique that individually
switches off idle cores. In conjunction with DVFS,
per-core power gating provides more flexibility in
optimizing performance and power dissipation of multi-
core processors running applications with varying
degrees of parallelism. Per-core power gating increases
single-thread performance on a single active core by
increasing the active core’s supply voltage while power
gating the other idle cores, which provides additional
power- and thermal-headroom for the active core.
Experiments indicate that per-core power gating in
conjunction with DVFS can increase the throughput of a
multi-core processor (with 16 cores) by 16% on average
for different workloads exhibiting a range of parallelism
while maintaining the power and thermal constraints
[37].

Split Power Planes: Split power planes is a low-
power technique that allows different power planes to
coexist on the same chip and minimizes both static
and dynamic power dissipation by removing power
from idle portions of the chip. Each power plane has



10

separate pins, a separate (or isolated) power supply, and
independent power distribution routing. For example,
Freescale’s MPC8536E PowerQUIC III processor has two
power planes: one plane for the processor core (e500) and
L2 cache arrays, and a second plane for the remainder
of the chip’s components [38].

Clock Gating: Clock gating is a low-power technique
that allows gating off the clock signal to registers,
latches, clock regenerators, or entire subsystems (e.g.,
cache banks). Clock gating can yield significant power
savings by gating off the functional units (e.g., adders,
multipliers, and shifters) not required by the currently
executing instruction, as determined by the instruction
decode unit. Clock gating can also be applied internally
for each functional unit to further reduce power
consumption by disabling the functional unit’s upper
bits for small operand values that do not require the
functional unit’s full bit width. The granularity at which
clock gating can be applied is limited by the overhead
associated with the clock enable signal generation [14].

4.4 Threading Techniques

Different threading techniques target high performance
by either enabling a single processor to execute multiple
threads or by speculatively executing multiple threads.
Prominent high-performance threading techniques
include hyper-threading, helper threading, and
speculative threading. We point out that helper
and speculative threading are performance-centric and
may lead to increased power consumption in case of
misspeculation where speculative processing needs
to be discarded. Therefore, helper and speculative
threading should be used with caution in energy
critical embedded systems. Below we describe a brief
description of these threading techniques.

Hyper-Threading: Hyper-threading leverages
simultaneous multithreading to enable a single
processor to appear as two logical processors and
allows instructions from both of the logical processors
to execute simultaneously on the shared resources [26].
Hyper-threading enables the OS to schedule multiple
threads to the processor so that different threads
can use the idle execution units. The architecture
state, consisting of general-purpose registers, interrupt
controller registers, control registers, and some machine
state registers, is duplicated for each logical processor.
However, hyper-threading does not offer the same
performance as a multiprocessor with two physical
processors.

Helper Threading: Helper threading leverages special
execution modes to provide faster execution by reducing
cache miss rates and miss latency [26]. Helper threading
accelerates performance of single-threaded applications
using speculative pre-execution. This pre-execution is
most beneficial for irregular applications where data
prefetching is ineffective due to challenging data

addresses prediction. The helper threads run ahead
of the main thread and reduce cache miss rates and
miss latencies by pre-executing regions of the code
that are likely to incur many cache misses. Helper
threading can be particularly useful for applications with
multiple control paths where helper threads pre-execute
all possible paths and prefetch the data references
for all paths instead of waiting until the correct path
is determined. Once the correct execution path is
determined, all the helper threads executing incorrect
paths are aborted.

Speculative Threading Speculative threading
approaches provide high performance by removing
unnecessary serialization in programs. We discuss two
speculative approaches: speculative multi-threading and
speculative synchronization.

Speculative multi-threading divides a sequential
program into multiple contiguous program segments
called tasks and execute these tasks in parallel on
multiple cores. The architecture provides hardware
support for detecting dependencies in a sequential
program and rolling back the program state
on misspeculations. Speculative multi-threaded
architectures exploit high transistor density by having
multiple cores and relieves programmers from parallel
programming, as is required for conventional CMPs.
Speculative multi-threaded architectures provide
instruction windows much larger than conventional
uniprocessors by combining the instruction windows
of multiple cores to exploit distant TLP as opposed to
the nearby ILP exploited by conventional uniprocessors
[20].

Speculative synchronization removes unnecessary
serialization by applying thread-level speculation to
parallel applications and preventing speculative threads
from blocking at barriers, busy locks, and unset flags.
Hardware monitors detect conflicting accesses and roll
back the speculative threads to the synchronization point
prior to the access violation. Speculative synchronization
guarantees forward execution using a safe thread that
ensures that the worst case performance of the order
of conventional synchronization (i.e., threads not using
any speculation) when speculative threads fail to make
progress.

4.5 Energy Monitoring and Management

Profiling the power consumption of various components
(e.g., processor cores, caches) for different embedded
applications at a fine granularity identifies how, when,
and where power is consumed by the embedded
system and the applications. Power profiling is
important for energy-efficient HPEEC system design.
Energy monitoring software can monitor, track, and
analyze performance and power consumption for
different components at the function-level or block-level
granularity. PowerPack is an energy monitoring tool that
uses a combination of hardware (e.g., sensors and digital



11

meters) and software (e.g., drivers, benchmarks, and
analysis tools). PowerPack profiles power and energy,
as well as power dynamics, of DVFS in CMP-based
cluster systems for different parallel applications at the
component and code segment granularity [39].

Power management middleware dynamically adapts
the application behavior in response to fluctuations
in workload and power budget. PowerDial is a
power management middleware that transforms static
application configuration parameters into dynamic
control variables stored in the address space of the
executing application [40]. These control variables are
accessible via a set of dynamic knobs to change
the running application’s configuration dynamically to
tradeoff computation accuracy (as far as the applications
minimum accuracy requirements are satisfied) and
resource requirements, which translates to power
savings. Experiments indicate that PowerDial can reduce
power consumption by 75%.

Green is a power management middleware
that enables application programmers to exploit
approximation opportunities to meet performance
demands while meeting quality of service (QoS)
guarantees [41]. Green provides a framework that
enables application programmers to approximate
expensive functions and loops. Green operates in two
phases: the calibration phase and the operation phase. In the
calibration phase, Green creates a QoS loss model for the
approximated functions to quantify the approximation
impact (loss in accuracy). The operational phase uses this
QoS loss model to make approximation decisions based
on programmer-specified QoS constraints. Experiments
indicate that Green can improve the performance and
energy consumption by 21% and 14%, respectively, with
only a 0.27% QoS degradation.

4.6 Dynamic Thermal Management

Temperature has become an important constraint in
HPEEC embedded systems because high temperature
increases cooling costs, degrades reliability, and reduces
performance. Furthermore, an embedded application’s
distinct and time-varying thermal profile necessitates
dynamic thermal management (DTM) approaches. DTM
for multi-core embedded systems is more challenging
than for the single-core embedded systems because
a core’s configuration and workload has a significant
impact on the temperature of neighboring cores due to
lateral heat transfer between adjacent cores. The goal
of DTM techniques is to maximize performance while
keeping temperature below a defined threshold.

Temperature Determination for DTM: DTM requires
efficient chip thermal profiling, which can be done
using sensor-based, thermal model-based, or performance
counters-based methods. Sensor-based methods leverage
physical sensors to monitor the temperature in real-time.
DTM typically uses one of the two sensor placement
techniques: global sensor placement monitors global chip

hotspots and local sensor placement places sensors in
each processor component to monitor local processor
components. Thermal model-based methods use thermal
models that exploit the duality between electrical
and thermal phenomena by leveraging lumped-RC
(resistor/capacitor) models. Thermal models can either
be low-level or high-level. Low-level thermal models
estimate temperature accurately and report the steady
state as well as provide transient temperature estimation,
however, are computationally expensive. High-level
thermal models leverage a simplified lumped-RC model
that can only estimate the steady state temperature,
however, are computationally less expensive than the
low-level thermal methods. Performance counters-based
methods estimate the temperature of different on-
chip functional units using temperature values read
from specific processor counter registers. These counter
readings can be used to estimate the access rate and
timing information of various on-chip functional units.

Techniques Assisting DTM: DVFS is one of the
major technique that helps DTM in maintaining a
chip’s thermal balance and alleviates a core’s thermal
emergency by reducing the core voltage and frequency.
DVFS can be global or local. Global DVFS provides
less control and efficiency as a single core’s hotspot
could result in unnecessary stalling or scaling of
all the remaining cores. Local DVFS control each
core’s voltage and frequency individually to alleviate
thermal emergency of the affected cores, however,
introduces design complexity. A hybrid local-global
thermal management approach has the potential to
provide better performance than local DVFS while
maintaining the simplicity of global DVFS. The hybrid
approach applies global DVFS across all the cores but
specializes the architectural parameters (e.g., instruction
window size, issue width, fetch throttling/gating) of
each core locally. Research reveals that the hybrid
approach achieves a 5% better throughput than the
local DVFS [34]. Although DVFS can help DTM to
maintain thermal balance, there exists other techniques
to assist DTM, e.g., Zhou et al. [42] suggested
that adjusting micro-architectural parameters such as
instruction window size and issue width have relatively
lower overhead than DVFS-based approaches.

4.7 Dependable Techniques

To achieve performance-efficiency while meeting
an application’s reliability requirements defines the
dependable HPEEC (DHPEEC) domain, which ranges
from redundancy techniques to dependable processor
design. DHPEEC platforms are critical for space
exploration, space science, and defense applications
with ever increasing demands for high data bandwidth,
processing capability, and reliability. We describe several
hardware-assisted middleware techniques leveraged by
DHPEEC including N-modular redundancy, dynamic
constitution, and proactive checkpoint deallocation.



12

N-modular Redundancy: The process variation,
technology scaling (deep submicron and nanoscale
devices), and computational energy approaching
thermal equilibrium leads to high error rates in CMPs,
which necessitates redundancy to meet reliability
requirements. Core-level N-modular redundancy
(NMR) runs N program copies on N different cores and
can meet high reliability goals for multi-core processors.
Each core performs the same computation and the
results are voted (compared) for consistency. Voting
can either be time-based or event-based. Based on the
voting result, program execution continues or rolls back
to a checkpoint (a previously stored, valid architectural
state). A multi-core NMR framework can provide either
static or dynamic redundancy. Static redundancy uses
a set of statically configured cores whereas dynamic
redundancy assigns redundant cores during runtime
based on the application’s reliability requirements and
environmental stimuli [43]. Static redundancy incurs
high area requirement and power consumption due
to the large number of cores required to meet an
application’s reliability requirements, whereas dynamic
redundancy provides better performance, power, and
reliability tradeoffs.

The dependable multiprocessor (DM) is an example
of a DHPEEC platform which leverages NMR. The
DM design includes a fault-tolerant embedded message
passing interface (FEMPI) (a lightweight fault-tolerant
version of the Message Passing Interface (MPI) standard)
for providing fault-tolerance to parallel embedded
applications [44]. Furthermore, DM can leverage HPEC
platforms such as the TilePro64 [45].

Dynamic Constitution: Dynamic constitution, an
extension of dynamic redundancy, permits an arbitrary
core on a chip to be a part of an NMR group,
which increases dependability as compared to the static
NMR configuration by scheduling around cores with
permanent faults. For example, if an NMR group is
statically constituted and the number of cores with
permanent faults drops below the threshold to meet the
application’s reliability requirements, the remaining non-
faulty cores in the NMR group are rendered useless.
Dynamic constitution can also be helpful in alleviating
thermal constraints by preventing NMR hotspots [46].

Proactive Checkpoint Deallocation: Proactive
checkpoint deallocation is a high-performance extension
for NMR that permits cores participating in voting to
continue execution instead of waiting on the voting
logic results. After a voting logic decision, only the
cores with correct results are allowed to continue further
execution.

5 SOFTWARE APPROACHES

The performance and power efficiency of an embedded
platform not only depends upon the built-in hardware
techniques but also depends upon the software’s ability

to effectively leverage the hardware support. Software-
based HPEEC techniques assist DPM by signaling the
hardware of the resource requirements of an application
phase. Software approaches enable high performance
by scheduling and migrating tasks statically or
dynamically to meet application requirements. HPEEC
software-based techniques include data forwarding,
task scheduling, task migration, and load balancing.

5.1 Data Forwarding

Data forwarding benefits HPEEC by hiding memory
latency, which is more challenging in multiprocessor
systems as compared to uniprocessor systems because
uniprocessor caches can hide memory latency by
exploiting spatial and temporal locality whereas
coherent multiprocessors have sharing misses in
addition to the non-sharing misses present in
uniprocessor systems. In a shared memory architecture,
processors that cache the same data address are
referred as sharing processors. Data forwarding integrates
fine-grained message passing capabilities in a shared
memory architecture and hides the memory latency
associated with sharing accesses by sending the
data values to the sharing processors as soon as the
data values are produced [47]. Data forwarding can
be performed by the compiler where the compiler
inserts write and forward assembly instructions in
place of ordinary write instructions. Compiler-assisted
data forwarding uses an extra register to indicate
the processors that should receive the forwarded
data. Another data forwarding technique referred
as programmer-assisted data forwarding requires
a programmer to insert a post-store operation that
causes a copy of an updated data value to be sent
to all the sharing processors. Experiments indicate
that remote writes together with prefetching improve
performance by 10-48% relative to the base system
(no data forwarding and prefetching) whereas remote
writes improve performance by 3-28% relative to the
base system with prefetching [26].

5.2 Load Distribution

A multi-core embedded system’s performance is dictated
by the workload distribution across the cores, which
in turn dictates the execution time and power/thermal
profile of each core. Load distribution techniques focus
on load balancing between the executing cores via task
scheduling and task migration.

Task Scheduling: The task scheduling problem can
be defined as determining an optimal assignment of
tasks to cores that minimizes the power consumption
while maintaining the chip temperature below the
DTM enforced ceiling temperature with minimal or
no performance degradation given the total energy
budget. Task scheduling applies for both DPM and
DTM and plays a pivotal role in extending battery
life for portable embedded systems, alleviating thermal



13

emergencies, and enabling long-term savings from
reduced cooling costs. Task scheduling can be applied in
conjunction with DVFS to meet real-time task deadlines
as a higher processing speed results in faster task
execution and shorter scheduling lengths, but at the
expense of greater power consumption. Conversely,
the decrease in processor frequency reduces power
consumption but increases the scheduling length, which
may increase the overall energy consumption. Since
the task scheduling overhead increases as the number
of cores increases, hardware-assisted task scheduling
techniques are the focus of emerging research (e.g.,
thread scheduling in graphics processing units (GPUs) is
hardware-assisted). Experiments indicate that hardware-
assisted task scheduling can improve the scheduling
time by 8.1% for CMPs [48].

Task Migration: In a multi-threaded environment,
threads periodically and/or aperiodically enter and
leave cores. Thread migration is a DPM and DTM
technique that allows a scheduled thread to execute,
preempt, or migrate to another core based on the
thread’s thermal and/or power profile. The OS or
thread scheduler can dynamically migrate threads
running on cores with limited resources to the cores
with more resources as resources become available.
Depending on the executing workloads, there can be
a substantial temperature variation across cores on the
same chip. Thread migration-based DTM periodically
moves threads away from the hot cores to the cold cores
based on this temperature differential to maintain the
cores’ thermal balance. A thread migration technique
must take into account the overhead incurred due
to thread migration communication costs and address
space updates. Temperature determination techniques
(e.g., performance counter-based, sensor-based) assist
thread management techniques in making migration
decisions.

Thread migration techniques can be characterized
as rotation-based, temperature-based, or power-based [49].
The rotation-based technique migrates a thread from
core (i) to core ((i + 1) mod N) where N denotes the
total number of processor cores. The temperature-based
technique orders cores based on the cores’ temperature
and the thread on core (i) is swapped with the thread
on core (N − i− 1) (i.e., the thread on the hottest core is
swapped with the thread on the coldest core, the thread
on the second hottest core is swapped with the thread
on the second coldest core, and so on). The power-based
technique orders cores based on the cores’temperature in
ascending order and orders threads based on the threads’
power consumption in descending order. The power-
based technique then schedules thread (i) to core (i)
(e.g., the most power-hungry thread is scheduled to the
coldest core).

Thread migration can be applied in conjunction with
DVFS to enhance performance. Research indicates that
thread migration alone can improve performance by

2x on average whereas thread migration in conjunction
with DVFS can improve performance by 2.6x on average
[33].

Load Balancing and Unbalancing: Load balancing
techniques distribute a workload equally across all
the cores in a multi-core embedded system. Load
unbalancing can be caused by either extrinsic or intrinsic
factors. Extrinsic factors are associated with the OS and
hardware topology. For example, the OS can schedule
daemon processes during the execution of a parallel
application and an asymmetric hardware topology can
result in varying communication latencies for different
processes. Intrinsic factors include imbalanced parallel
algorithms, imbalanced data distribution, and changes
in the input data set. An unbalanced task assignment
can lead to a performance degradation because cores
executing light workloads may have to wait/stall for
other cores executing heavier workloads to reach a
synchronization point. Load balancing relies on efficient
task scheduling techniques as well as balanced parallel
algorithms. Cache partitioning can assist load balancing
by assigning more cache partitions to the cores executing
heavier workloads to decrease the cache miss rate and
increase the core’s execution speed, and thus reduce the
stall time for the cores executing light workloads [50].

Although load balancing provides a mechanism
to achieve high performance in embedded systems,
load balancing may lead to high power consumption
if not applied judiciously because load balancing
focuses on utilizing all the cores even for a small
number of tasks. A load unbalancing strategy that
considers workload characteristics (i.e., periodic or
aperiodic) can achieve better performance and lower
power consumption as compared to a load balancing
or a load unbalancing strategy that ignores workload
characteristics. A workload-aware load unbalancing
strategy assigns repeatedly executed periodic tasks to
a minimum number of cores and distributes aperiodic
tasks that are not likely to be executed repeatedly
to a maximum number of cores. We point out that
the critical performance metric for periodic tasks is
deadline satisfaction rather than faster execution (a
longer waiting time is not a problem as long as the
deadline is met), whereas the critical performance metric
for aperiodic tasks is response time rather than deadline
satisfaction. The periodic tasks not distributed over all
the cores leave more idle cores for scheduling aperiodic
tasks, which shortens the response time of aperiodic
tasks. Results on an ARM11MPCore chip demonstrate
that the workload-aware load unbalancing strategy
reduces power consumption and the mean waiting time
of aperiodic tasks by 26% and 82%, respectively, as
compared to a load balancing strategy. The workload-
aware load unbalancing strategy reduces the mean
waiting time of aperiodic tasks by 92% with similar
power efficiency as compared to a workload unaware
load unbalancing strategy [51].



14

TABLE 2: High-performance energy-efficient multi-core processors

Processor Cores Speed Power Performance

ARM11 MPCore 1 - 4 620 MHz 600 mW 2600 DMIPS

ARM Cortex A-9 MPCore 1 - 4 800 MHz - 2 GHz 250 mW per CPU 4,000 - 10,000 DMIPS

MPC8572E PowerQUICC III 2 1.2 GHz - 1.5 GHz 17.3 W @ 1.5 GHz 6897 MIPS @ 1.5 GHz

Tilera TILEPro64 64 tiles 700 MHz - 866 MHz 19 - 23 W @ 700 MHz 443 GOPS

Tilera TILE-Gx 16/36/64/100 tiles 1 GHz - 1.5 GHz 10 - 55 W 750 GOPS

AMD Opteron 6100 8/12 1.7 - 2.3 GHz 65 - 105 W —

Intel Xeon Processor LV 5148 2 2.33 GHz 40 W —

Intel Sandy Bridge 4 3.8 GHz 35 - 45 W 121.6 GFLOPS

AMD Phenom II X6 1090T 6 3.6 GHz 125 W —

NVIDIA GeForce GTX 460 336 CUDA cores 1.3 GHz 160 W 748.8 GFLOPS

NVIDIA GeForce 9800 GX2 256 CUDA cores 1.5 GHz 197 W 1152 GFLOPS

NVIDIA GeForce GTX 295 480 CUDA cores 1.242 GHz 289 W 748.8 GFLOPS

NVIDIA Tesla C2050/C2070 448 CUDA cores 1.15 GHz 238 W 1.03 TFLOPS

AMD FireStream 9270 800 stream cores 750 MHz 160 W 1.2 TFLOPS

ATI Radeon HD 4870 X2 1600 stream cores 750 MHz 423 W 2.4 TFLOPS

6 HIGH-PERFORMANCE ENERGY-EFFICIENT
MULTI-CORE PROCESSORS

Silicon and chip vendors have developed various high-
performance multi-core processors that leverage the
various HPEEC techniques discussed in this paper.
Although providing an exhaustive list of all the
prevalent high-performance multi-core processors that
can be used in embedded applications is outside of the
scope of this paper, we discuss some prominent multi-
core processors (summarized in Table 2) and focus on
their HPEEC features.1

Tilera TILEPro64 and TILE-Gx: Tilera revolutionizes
high-performance multi-core embedded computing by
leveraging a tiled multi-core architecture (e.g., the
TILEPro64 and TILE-Gx processor family [52][53]). The
TILEPro64 and TILE-Gx processor family feature an
8 x 8 grid and an array of 16 to 100 tiles (cores),
respectively, where each tile consists of a 32-bit very
long instruction word (VLIW) processor, three deep
pipelines delivering up to 3 instructions per cycle (IPC),
integrated L1 and L2 cache, and a non-blocking switch
that integrates the tile into a power-efficient interconnect
mesh. The TILEPro64 and TILE-Gx processors offer 5.6
MB and 32 MB of on-chip cache, respectively, and
implement Tilera’s dynamic distributed cache (DDC)
technology that provides a 2x improvement on average
in cache coherence performance over traditional cache
technologies using a cache coherence protocol. Each tile
can independently run a complete OS or multiple tiles
can be grouped together to run a multi-processing OS
like SMP Linux. The TILEPro64 and TILE-Gx processor
family employs DPM to put idle tiles into a low-
power sleep mode. The TILEPro64 and TILE-Gx family
of processor can support a wide range of computing
applications including advanced networking, wireless
infrastructure, telecom, digital multimedia, and cloud

1. Additional discussion for multi-core processors is given in
appendix which is provided by the authors as a supplementary
material available at http://ieeexplore.ieee.org.

computing.

Intel Xeon Processor: Intel leverages Hafnium Hi-
K and metal gates in next generation Xeon processors
to achieve higher clock speeds and better performance
per watt. The Xeon processors also implement hyper-
threading and wide dynamic execution technologies for
high performance. The wider execution pipelines enable
each core to simultaneously fetch, dispatch, execute, and
retire up to four instructions per cycle [54]. The Intel
Xeon 5500 processor family features 15 power states and
a fast transition between these power states (less than
2 microseconds) [3]. The Xeon processors are based on
Intel Core 2 Duo micro-architecture where the two cores
share a common L2 cache to provide faster inter-core
communication. The shared L2 cache can be dynamically
resized depending on individual core’s needs. Intel’s deep
power down technology enables both cores and the L2
cache to be powered down when the processor is idle
[55]. Intel’s dynamic power coordination technology allows
software-based DPM to alter each core’s sleep state to
tradeoff between power dissipation and performance.
The processor incorporates digital temperature sensors
on each core to monitor thermal behavior using Intel’s
advanced thermal manager technology [56]. The Dual-
core Intel Xeon processor LV 5148 — a low-power
embedded processor — enables micro-gating of processor
circuitry to disable the processor’s inactive portions
with finer granularity [57]. Typical applications for
the Intel Xeon processor include medical imaging,
gaming, industrial control and automation systems,
mobile devices, military, and aerospace.

Graphics Processing Units: A graphics processing
unit (GPU) is a massively parallel processor capable
of executing a large number of threads concurrently,
and accelerates and offloads graphics rendering from
the CPU. GPUs feature high memory bandwidth that is
typically 10x faster than contemporary CPUs. NVIDIA
and AMD/ATI are the two main GPU vendors. GPUs
are suitable for high-definition (HD) videos, photos,



15

3D movies, high-resolution graphics, and gaming.
Apart from high graphics performance, GPUs enable
general-purpose computing on graphics processing
units (GPGPU), which is a computing technique
that leverages GPUs to perform compute-intensive
operations traditionally handled by CPUs. GPGPUs are
realized by adding programmable stages and higher
precision arithmetic to the rendering pipelines, which
enables stream processors to process non-graphics data.
For example, NVIDIA Tesla personal supercomputer
consisting of 3 or 4 Tesla C1060 computing processors
[58] offers up to 4 TFLOPS of compute capability with 4
GB of dedicated memory per GPU [59].

NVIDIA’s PowerMizer technology — available on all
NVIDIA GPUs — is a DPM technique that adapts
the GPU to suit an application’s requirements [60].
Digital watchdogs monitor GPU utilization and turn
off idle processor engines. NVIDIA’s Parallel DataCache
technology accelerates algorithms, such as ray-tracing,
physics solvers, and sparse matrix multiplication, where
data addresses are not known a priori [61]. ATI’s
PowerPlay technology is a DPM solution that monitors
GPU activity and adjusts GPU power between low,
medium, and high states via DVFS based on workload
charateristics. For example, PowerPlay puts the GPU
in a low-power state when receiving and composing
emails, and switches the GPU to a high-power state
for compute-intensive gaming applications. PowerPlay
incorporates on-chip sensors to monitor the GPU’s
temperature and triggers thermal actions accordingly.
The PowerPlay technology is available on the ATI
Radeon HD 3800 and 4800 series graphics processors,
the ATI Mobility Radeon graphics processors, and the
Radeon Express motherboard chipsets.

7 CONCLUSIONS , CHALLENGES , AND
FUTURE RESEARCH DIRECTIONS

HPEEC is an active and expanding research domain
with applications ranging from consumer electronics
to supercomputers. The introduction of HPEEC
into supercomputing has boosted the significance
of the HPEEC domain as power is becoming a
concern for modern supercomputing considering
the long-term operation and cooling costs. Modern
supercomputers are a combination of custom-design
and embedded processors, such as Opteron, Xeon,
and coprocessors such as NVIDIA Tesla general-
purpose graphics processing units (GPGPUs), AMD
graphics processing units (GPUs), etc. For example, the
Tianhe-1A supercomputer (the world’s second fastest
supercomputer as of June 2011 and located at the
National Supercomputing Center in Tianjinin, China
[5]) leverages Intel Xeon processors as well as NVIDIA
Tesla GPGPUs. An increasing growth and expansion
of HPEEC is envisioned in the foreseeable future as
supercomputers rely more and more on HPEEC.

This paper gives an overarching survey of HPEEC
techniques that enable meeting diverse embedded
application requirements. We discuss state-of-the-art
multi-core processors that leverage these HPEEC
techniques. Despite remarkable advancements, the
HPEEC domain still faces various arduous challenges,
which require further research to leverage the full-scale
benefits of HPEEC techniques. Although power is still
a first-order constraint in HPEEC platforms, we discuss
several additional challenges facing the HPEEC domain
(summarized in Table 3) along with future research
directions.

Heterogeneous CMPs provide performance efficiency,
but present additional design challenges as design
space increases considering various types of cores and
the flexibility of changing each core’s architectural
parameters (e.g., issue width, instruction window size,
fetch gating) for an arbitrary permutations of workloads.
Furthermore, for a given die size, there exists a
fundamental tradeoff between number and type of
cores and appropriate cache sizes for these cores.
Efficient distribution of available cache size across the
cache hierarchies (private and shared) to provide high
performance is challenging [17].

Synchronization between multiple threads running
on multiple cores introduces performance challenges.
Threads use semaphores or locks to control access
to shared data, which degrades performance due to
the busy waiting of threads. Furthermore, threads use
synchronization barriers (a defined point in the code
where all threads must reach before further execution),
which decreases performance due to idle-waiting of
faster threads for slower threads.

Although different threads can work independently
on private data, shared memory becomes a bottleneck
due to large number of shared-data accesses to
different cache partitions. Furthermore, threads can
communicate via shared memory, which requires cache
state transitions to transfer data between threads.
Threads must stall until cache state transitions occur,
as there is likely insufficient speculative or out-of-
order work available for these threads. Moreover,
designing a common interface to the shared cache, clock
distribution, and cache coherence provides additional
design challenges [26].

Cache coherence is required to provide a consistent
memory view in shared-memory multi-core processors
with various cache hierarchies. Embedded systems
conventionally rely on software-managed cache
coherency, which does not scale well with the number
of cores and thereby necessitates hardware-assisted
cache coherence. Hardware-software codesign of
cache coherence protocol defines challenging tradeoffs
between performance, power, and time-to-market [62].

Cache thrashing — an additional HPEEC challenge
— is a phenomenon where threads continually evict
each others working set from the cache, which increases
the miss rate and latency for all threads. Although



16

TABLE 3: High-performance energy-efficient embedded computing (HPEEC) challenges.
Challenge Description

Complex design space
Large design space due to various core types (homogeneous, heterogeneous) and each core’s tunable

parameters (e.g., instruction window size, issue width, fetch gating)

High on-chip bandwidth Increased communication due to increasing number of cores requires high-bandwidth on-chip interconnects

Synchronization Synchronization primitives (e.g., locks, barriers) results in programs serialization degrading performance

Shared memory bottleneck Threads running on different cores make large number of accesses to various shared memory data partitions

Cache coherence
Heterogeneous cores with different cache line sizes require cache coherence protocols redesign and

synchronization primitives (e.g., semaphores, locks) increase cache coherence traffic

Cache thrashing Threads working concurrently evict each others data out of the shared cache to bring their own data

direct-mapped caches present an attractive choice for
multi-core embedded systems due to a direct-mapped
cache’s power efficiency as compared to associative
caches, direct-mapped caches are more predisposed to
thrashing as compared to set associative caches. Cache
thrashing can be minimized by providing larger and
more associative caches, however, these opportunities
are constrained by strict power requirements for
embedded systems. Victim caches employed alongside
direct-mapped caches help to alleviating cache thrashing
by providing associativity for localized cache conflict
regions [63].

Various new avenues are emerging in HPEEC such as
energy-efficient data centers, grid and cluster embedded
computing and dependable HPEEC. Various vendors
are developing energy-efficient high-performance
architectures for data centers by leveraging a huge
volume of low-power mobile processors (e.g., SeaMicro’s
SM10000 servers family integrates 512 low-power X86
1.66 GHz, 64-bit, Intel Atom cores [64]). Advances are
being made in grid and cluster embedded computing,
e.g., AMAX’s ClusterMax SuperG GPGPU clusters
consisting of NVIDIA Tesla 20-series GPU computing
platforms feature 57,344 GPU cores and offer 131.84
TFLOPS of single precision performance and 65.92
TFLOPS of double precision performance [65]. Though
grid embedded computing has revolutionized HPEEC,
but requires further investigation in associated task
scheduling policies due to the unique dynamics of
grid embedded computing. Different heterogeneous
embedded processors can be added to or removed
from the grid dynamically, which requires intelligent
dynamic task scheduling policies to map tasks to the
best available computing nodes. The task scheduling
policies must consider the impact of dynamic changes
in available computing resources on time and energy
requirements of tasks.

As the number of on-chip cores increases to
satisfy performance demands, communicating data
between these cores in an energy-efficient manner
becomes challenging and requires scalable, high-
bandwidth interconnection networks. Although
wireless interconnects provide a power-efficient
high-performance alternative to wired interconnects,
associated research challenges include partitioning of
wired and wireless interconnect domains, directional
antenna design, and lightweight medium access

control (MAC) protocols. Since many supercomputing
applications leverage multiple many-core chips (CMOS
technology and power dissipation limit restricts the
number of processor cores on a single chip), design
of high-bandwidth and low-power interconnection
networks between these many-core chips is also
an emerging research avenue. Although photonic
network designs have been proposed in literature as a
prospective low-power and high-bandwidth solution
to interconnect many-core CMPs [66][67], the domain
of scalable interconnection networks (inter-chip and
intra-chip) requires further research.

Dynamic optimization techniques that can
autonomously adapt embedded systems according to
changing application requirements and environmental
stimuli present an interesting research avenue. The task
scheduling techniques in real-time embedded systems
are typically based on tasks’ worst-case execution times,
which can produce slack time whenever a task finishes
execution before the task’s deadline. Therefore, dynamic
task scheduling techniques that leverage this slack time
information at runtime to reduce energy consumption
are crucial for HPEEC systems and require further
research.

To keep up with the Moore’s law, innovative transistor
technologies are needed that can permit high transistor
density on-chip facilitating chip miniaturization while
allowing operation at higher speeds with lower power
consumption as compared to the contemporary CMOS
transistor technology. Miniaturized embedded multi-
core processor/memory design and fabrication using
new transistor technologies (e.g., multiple gate field-
effect transistors (MuGFETs), FinFETs, Intel’s tri-gate) is
an interesting HPEEC lithography research avenue [68].

Finally, advanced power monitoring and analysis
tools are required for HPEEC platforms to monitor
power at a fine granularity (i.e., the functional unit-
level in relation to an application’s code segments) and
profile architectural components with respect to power
consumption for different code segments. Specifically,
power measurement and analysis tools for GPUs are
required considering the proliferation of GPUs in the
HPEEC domain [69].

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC)



17

and the National Science Foundation (NSF) (CNS-
0953447 and CNS-0905308). Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the NSERC and the NSF.

REFERENCES

[1] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh,
J. Park, and D. Sheffield, “Efficient Embedded Computing,” IEEE
Computer, vol. 41, no. 7, pp. 27–32, July 2008.

[2] J. Balfour, “Efficient Embedded Computing,” Ph.D. Thesis, EE
Dept., Stanford Univ., May 2010.

[3] P. Gepner, D. Fraser, M. Kowalik, and R. Tylman, “New Multi-
Core Intel Xeon Processors Help Design Energy Efficient Solution
for High Performance Computing,” in Proc. of IMCSIT, Mragowo,
Poland, October 2009.

[4] P. Crowley, M. Franklin, J. Buhler, and R. Chamberlain, “Impact
of CMP Design on High-Performance Embedded Computing,”
in Proc. of HPEC Workshop, Lexington, Massachusetts, September
2006.

[5] Top500, “Top 500 Supercomputer Sites,” June 2011. [Online].
Available: http://www.top500.org/

[6] Green500, “Ranking the World’s Most Energy-Efficient
Supercomputers,” June 2011. [Online]. Available: http:
//www.green500.org/

[7] K. Hwang, “Advanced Parallel Processing with Supercomputer
Architectures,” Proceedings of the IEEE, vol. 75, no. 10, pp. 1348–
1379, October 1987.

[8] A. Klietz, A. Malevsky, and K. Chin-Purcell, “Mix-and-match
High Performance Computing,” IEEE Potentials, vol. 13, no. 3,
pp. 6–10, August/September 1994.

[9] W. Pulleyblank, “How to Build a Supercomputer,” IEEE Review,
vol. 50, no. 1, pp. 48–52, January 2004.

[10] S. Bokhari and J. Saltz, “Exploring the Performance of Massively
Multithreaded Architectures,” Concurrency and Computation: Prac-
tice & Experience, vol. 22, no. 5, pp. 588–616, April 2010.

[11] W.-c. Feng and K. Cameron, “The Green500 List: Encouraging
Sustainable Supercomputing,” IEEE Computer, vol. 40, no. 12, pp.
38–44, December 2007.

[12] I. Ahmad and S. Ranka, Handbook of Energy-Aware And Green
Computing. Taylor and Francis Group, CRC Press, 2011.

[13] D. Milojicic, “Trend Wars: Embedded Systems,” IEEE Concurrency,
vol. 8, no. 4, pp. 80–90, October-December 2000.

[14] G. Kornaros, Multi-core Embedded Systems. Taylor and Francis
Group, CRC Press, 2010.

[15] C. Gonzales and H. Wang, “White Paper: Thermal Design
Considerations for Embedded Applications,” June 2011.
[Online]. Available: http://download.intel.com/design/intarch/
papers/321055.pdf

[16] J. C. Knight, Software Challenges in Aviation Systems. Springer
Berlin/Heidelberg, 2002.

[17] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas,
“Single-ISA Heterogeneous Multi-Core Architectures for Multi-
threaded Workload Performance,” in Proc. of IEEE ISCA, Munich,
Germany, June 2004.

[18] R. Kumar, D. Tullsen, and N. Jouppi, “Core Architecture Opti-
mization for Heterogeneous Chip Multiprocessors,” in Proc. of
ACM International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), Seattle, Washington, September 2006.

[19] R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined-core Chip Mul-
tiprocessing,” in Proc. of IEEE/ACM MICRO-37, Portland, Oregon,
December 2004.

[20] S. Keckler, K. Olukotun, and H. Hofstee, Multicore Processors and
Systems. Springer, 2009.

[21] K. Puttaswamy and G. Loh, “Thermal Herding: Microarchitecture
Techniques for Controlling Hotspots in High-Performance 3D-
Integrated Processors,” in Proc. of IEEE HPCA, Phoenix, Arizona,
February 2007.

[22] P. Pande, A. Ganguly, B. Belzer, A. Nojeh, and A. Ivanov, “Novel
Interconnect Infrastructures for Massive Multicore Chips - An
Overview,” in Proc. of IEEE ISCAS, Seattle, Washington, May 2008.

[23] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable
Stochastic Processors,” in Proc. of IEEE/ACM DATE, Dresden,
Germany, March 2010.

[24] M. Hill, “Transactional Memory,” in Synthesis Lectures on
Computer Architecture, June 2010. [Online]. Available: http:
//www.morganclaypool.com/toc/cac/1/1

[25] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-Aware Scheduling
and Analysis for Multicores,” in Proc. of ACM EMSOFT, Grenoble,
France, October 2009.

[26] S. Fide, Architectural Optimizations in Multi-Core Processors. VDM
Verlag, 2008.

[27] J. Chang and G. Sohi, “Cooperative Caching for Chip Multipro-
cessors,” in Proc. of ACM ISCA, Boston, Massachusetts, May 2006.

[28] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
Caches: Simple Techniques for Reducing Leakage Power,” in Proc.
of IEEE/ACM ISCA, Anchorage, Alaska, May 2002.

[29] S.-B. Lee, S.-W. Tam, I. Pefkianakis, S. L. Lu, M. Chang, C. Guo,
G. Reinman, C. Peng, M. Naik, L. Zhang, and J. Cong, “A Scalable
Micro Wireless Interconnect Structure for CMPs,” in Proc. of ACM
MobiCom, Beijing, China, September 2009.

[30] A. Shacham, K. Bergman, and L. Carloni, “Photonic Networks-
on-Chip for Future Generations of Chip Multiprocessors,” IEEE
Trans. on Computers, vol. 57, no. 9, pp. 1246–1260, September 2008.

[31] P. Pande, A. Ganguly, K. Chang, and C. Teuscher, “Hybrid Wire-
less Network on Chip: A New Paradigm in Multi-Core Design,”
in Proc. of IEEE NoCArc, New York, New York, December 2009.

[32] V. Kontorinis, A. Shayan, D. Tullsen, and R. Kumar, “Reducing
Peak Power with a Table-Driven Adaptive Processor Core,” in
Proc. of IEEE/ACM MICRO-42, New York, New York, December
2009.

[33] J. Donald and M. Martonosi, “Techniques for Multicore Thermal
Management: Classification and New Exploration,” in Proc. of
IEEE ISCA, Boston, Massachusetts, June 2006.

[34] R. Jayaseelan and T. Mitra, “A Hybrid Local-Global Approach for
Multi-Core Thermal Management,” in Proc. of IEEE/ACM ICCAD,
San Jose, California, November 2009.

[35] J. Park, D. Shin, N. Chang, and M. Pedram, “Accurate Modeling
and Calculation of Delay and Energy Overheads of Dynamic
Voltage Scaling in Modern High-Performance Microprocessors,”
in Proc. of ACM/IEEE ISLPED, Austin, Texas, August 2010.

[36] ACPI, “Advanced Configuration and Power Interface,” June
2011. [Online]. Available: http://www.acpi.info/

[37] J. Lee and N. Kim, “Optimizing Throughput of Power- and
Thermal-Constrained Multicore Processors Using DVFS and Per-
Core Power-Gating,” in Proc. of IEEE/ACM DAC, San Francisco,
California, July 2009.

[38] Freescale, “Green Embedded Computing and the MPC8536E
PowerQUICC III Processor,” 2009. [Online]. Avail-
able: http://www.freescale.com/files/32bit/doc/white paper/
MPC8536EWP.pdf

[39] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron,
“PowerPack: Energy Profiling and Analysis of High-Performance
Systems and Applications,” IEEE Trans. on Parallel and Distributed
Systems, vol. 21, no. 5, pp. 658–671, May 2010.

[40] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard, “Power-Aware Computing with Dynamic Knobs,”
MIT Technical Report: Computer Science and Artificial Intelligence
Laboratory (MIT-CSAIL-TR-2010-027), May 2010.

[41] W. Baek and T. Chilimbi, “Green: A Framework for Supporting
Energy-Conscious Programming using Controlled Approxima-
tion,” in Proc. of ACM SIGPLAN PLDI, Toronto, Ontario, Canada,
June 2010.

[42] X. Zhou, J. Yang, M. Chrobak, and Y. Zhang, “Performance-
aware Thermal Management via Task Scheduling,” ACM Trans.
on Architecture and Code Optimization (TACO), vol. 7, no. 1, pp.
5:1–5:31, April 2010.

[43] A. Jacobs, A. George, and G. Cieslewski, “Reconfigurable Fault
Tolerance: A Framework for Environmentally Adaptive Fault Mit-
igation in Space,” in Proc. of IEEE FPL, Prague, Czech Republic,
August-September 2009.

[44] J. Samson, J. Ramos, A. George, M. Patel, and R. Some, “Technol-
ogy Validation: NMP ST8 Dependable Multiprocessor Project,” in
Proc. of IEEE Aerospace Conference, Big Sky, Montana, March 2006.

[45] CHREC, “NSF Center for High-Performance Reconfigurable
Computing,” June 2011. [Online]. Available: http://www.chrec.
org/

[46] J. Sloan and R. Kumar, “Towards Scalable Reliability Frameworks
for Error Prone CMPs,” in Proc. of ACM CASES, Grenoble, France,
October 2009.



18

[47] D. Poulsen and P.-C. Yew, “Data Prefetching and Data Forwarding
in Shared Memory Multiprocessors,” in Proc. of IEEE ICPP, North
Carolina State University, North Carolina, August 1994.

[48] L. Yan, W. Hu, T. Chen, and Z. Huang, “Hardware Assistant
Scheduling for Synergistic Core Tasks on Embedded Heteroge-
neous Multi-core System,” Journal of Information & Computational
Science, vol. 5, no. 6, pp. 2369–2373, 2008.

[49] P. Chaparro, J. Gonzalez, G. Magklis, Q. Cai, and A. Gonzalez,
“Understanding the Thermal Implications of Multicore Architec-
tures,” IEEE Trans. on Parallel and Distributed Systems, vol. 18, no. 8,
pp. 1055–1065, August 2007.

[50] G. Suo and X.-j. Yang, “Balancing Parallel Applications on Multi-
core Processors Based on Cache Partitioning,” in Proc. of IEEE
ISPA, Chendu and JiuZhai Valley, China, August 2009.

[51] H. Jeon, W. Lee, and S. Chung, “Load Unbalancing Strategy
for Multi-Core Embedded Processors,” IEEE Trans. on Computers,
vol. 59, no. 10, pp. 1434–1440, October 2010.

[52] TILERA, “Manycore without Boundaries: TILEPro64 Processor,”
June 2011. [Online]. Available: http://www.tilera.com/products/
processors/TILEPRO64

[53] ——, “Manycore without Boundaries: TILE-Gx Processor Family,”
June 2011. [Online]. Available: http://www.tilera.com/products/
processors/TILE-Gx Family

[54] Intel, “High-Performance Energy-Efficient Processors for Em-
bedded Market Segments,” June 2011. [Online]. Available: http:
//www.intel.com/design/embedded/downloads/315336.pdf

[55] ——, “Intel Core 2 Duo Processor Maximizing Dual-
Core Performance Efficiency,” June 2011. [Online]. Avail-
able: ftp://download.intel.com/products/processor/core2duo/
mobile prod brief.pdf

[56] ——, “Dual-Core Intel Xeon Processors LV and ULV for
Embedded Computing,” June 2011. [Online]. Available: ftp:
//download.intel.com/design/intarch/prodbref/31578602.pdf

[57] ——, “Intel Xeon Processor LV 5148,” June 2011. [Online].
Available: http://ark.intel.com/Product.aspx?id=27223

[58] NVIDIA, “NVIDIA Tesla C1060 Computing Processor,” June 2011.
[Online]. Available: http://www.nvidia.com/object/product
tesla c1060 us.html

[59] ——, “NVIDIA Tesla Personal Supercomputer,” June 2011.
[Online]. Available: http://www.nvidia.com/docs/IO/43395/
NV DS Tesla PSC US Mar09 LowRes.pdf

[60] ——, “NVIDIA PowerMizer Technology,” June 2011. [Online].
Available: http://www.nvidia.com/object/feature powermizer.
html

[61] ——, “NVIDIA Tesla C2050/C2070 GPU Computing Processor,”
June 2011. [Online]. Available: http://www.nvidia.com/object/
product tesla C2050 C2070 us.html

[62] T. Berg, “Maintaining I/O Data Coherence in Embedded Multi-
core Systems,” IEEE MICRO, vol. 29, no. 3, pp. 10–19, May/June
2009.

[63] G. Bournoutian and A. Orailoglu, “Miss Reduction in Embedded
Processors through Dynamic, Power-Friendly Cache Design,” in
Proc. of IEEE/ACM DAC, Anaheim, California, June 2008.

[64] SeaMicro, “The SM10000 Family,” June 2011. [Online]. Available:
http://www.seamicro.com/

[65] AMAX, “High Performance Computing: ClusterMax Su-
perG Tesla GPGPU HPC Solutions,” June 2011. [On-
line]. Available: http://www.amax.com/hpc/productdetail.asp?
product id=superg

[66] P. Koka, M. McCracken, H. Schwetman, X. Zheng, R. Ho,
and A. Krishnamoorthy, “Silicon-photonic Network Architectures
for Scalable, Power-efficient Multi-chip systems,” in Proc. of
ACM/IEEE ISCA, Saint-Malo, France, June 2010.

[67] M. Asghari and A. Krishnamoorthy, “Silicon Photonics: Energy-
efficient Communication,” Nature Photonics, pp. 268–270, May
2011.

[68] C.-W. Lee, S.-R.-N. Yun, C.-G. Yu, J.-T. Park, and J.-P. Colinge,
“Device Design Guidelines for Nano-scale MuGFETs,” Elsevier
Solid-State Electronics, vol. 51, no. 3, pp. 505–510, March 2007.

[69] S. Collange, D. Defour, and A. Tisserand, “Power Consumption of
GPUs from a Software Perspective,” in Proc. of ACM ICCS, Baton
Rouge, Louisiana, May 2009.

Arslan Munir received his B.S. in Electrical En-
gineering from the University of Engineering and
Technology (UET), Lahore, Pakistan, in 2004,
and his M.A.Sc. degree in Electrical and Com-
puter Engineering (ECE) from the University of
British Columbia (UBC), Vancouver, Canada, in
2007. He is currently working towards his Ph.D.
degree in ECE at the University of Florida (UF),
Gainesville, Florida, USA. From 2007 to 2008,
he worked as a software development engineer
at Mentor Graphics in the Embedded Systems

Division. He was the recipient of many academic awards including the
Gold Medals for the best performance in Electrical Engineering and
academic Roll of Honor. He received a Best Paper award at the IARIA
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM) in 2010. His current research
interests include embedded systems, low-power design, computer archi-
tecture, multi-core platforms, parallel computing, dynamic optimizations,
fault-tolerance, and computer networks.

Sanjay Ranka is a Professor in the Depart-
ment of Computer and Information Science
and Engineering at the University of Florida,
Gainesville, Florida, USA. His current research
interests are energy-efficient computing, high-
performance computing, data mining and infor-
matics. Most recently he was the Chief Tech-
nology Officer at Paramark where he developed
real-time optimization software for optimizing
marketing campaigns. Sanjay has also held po-
sitions as a tenured faculty positions at Syracuse

University and as a researcher/visitor at IBM T.J. Watson Research Labs
and Hitachi America Limited.

Sanjay earned his Ph.D. (Computer Science) from the University
of Minnesota and a B. Tech. in Computer Science from IIT, Kanpur,
India. He has coauthored two books: Elements of Neural Networks (MIT
Press) and Hypercube Algorithms (Springer Verlag), 75 journal articles
and 125 refereed conference articles. His recent work has received a
student best paper award at ACM-BCB 2010, best paper runner up
award at KDD-2009, a nomination for the Robbins Prize for the best
paper in the journal of Physics in Medicine and Biology for 2008, and a
best paper award at ICN 2007.

He is a fellow of the IEEE and AAAS, and a member of IFIP
Committee on System Modeling and Optimization. He is the associate
Editor-in-Chief of the Journal of Parallel and Distributed Computing and
an associate editor for IEEE Transactions on Parallel and Distributed
Computing, IEEE Transactions on Computers, Sustainable Computing:
Systems and Informatics, Knowledge and Information Systems, and
International Journal of Computing.

Ann Gordon-Ross received her B.S and Ph.D.
degrees in Computer Science and Engineer-
ing from the University of California, Riverside
(USA) in 2000 and 2007, respectively. She is
currently an Assistant Professor of Electrical
and Computer Engineering at the University of
Florida (USA) and is a member of the NSF Cen-
ter for High Performance Reconfigurable Com-
puting (CHREC) at the University of Florida. She
is also the faculty advisor for the Women in
Electrical and Computer Engineering (WECE)

and the Phi Sigma Rho National Society for Women in Engineering
and Engineering Technology. She received her CAREER award from
the National Science Foundation in 2010 and Best Paper awards at the
Great Lakes Symposium on VLSI (GLSVLSI) in 2010 and the IARIA
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM) in 2010. Her research interests
include embedded systems, computer architecture, low-power design,
reconfigurable computing, dynamic optimizations, hardware design,
real-time systems, and multi-core platforms.


