
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A queueing theoretic approach for performance evaluation of
low-power multi-core embedded systems
Arslan Munir a,∗, Ann Gordon-Ross b,c, Sanjay Ranka d, Farinaz Koushanfar a
a Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
b Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
c NSF Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida, USA
d Department of Computer and Information Science and Engineering at the University of Florida, Gainesville, FL, USA

h i g h l i g h t s

• Queueing theory-based modeling technique for evaluating multi-core architectures.
• Enables quick and inexpensive architectural evaluation.
• Architectural evaluation for workloads with any computing requirements.
• Can be used for performance per watt & performance per unit area characterizations.
• Provides insights about shared last-level caches (LLCs) orchestration.

a r t i c l e i n f o

Article history:
Received 18 June 2012
Received in revised form
6 July 2013
Accepted 26 July 2013
Available online 11 August 2013

Keywords:
Multi-core
Low-power
Embedded systems
Queueing theory
Performance evaluation

a b s t r a c t

WithMoore’s law supplying billions of transistors on-chip, embedded systems are undergoing a transition
from single-core to multi-core to exploit this high transistor density for high performance. However, the
optimal layout of these multiple cores along with the memory subsystem (caches and main memory)
to satisfy power, area, and stringent real-time constraints is a challenging design endeavor. The short
time-to-market constraint of embedded systems exacerbates this design challenge and necessitates
the architectural modeling of embedded systems to reduce the time-to-market by expediting target
applications to device/architecture mapping. In this paper, we present a queueing theoretic approach for
modeling multi-core embedded systems that provides a quick and inexpensive performance evaluation
both in terms of time and resources as compared to the development ofmulti-core simulators and running
benchmarks on these simulators. We verify our queueing theoretic modeling approach by running
SPLASH-2 benchmarks on the SuperESCalar simulator (SESC). Results reveal that our queueing theoretic
model qualitatively evaluates multi-core architectures accurately with an average difference of 5.6% as
compared to the architectures’ evaluations from the SESC simulator. Our modeling approach can be
used for performance per watt and performance per unit area characterizations of multi-core embedded
architectures, with varying number of processor cores and cache configurations, to provide a comparative
analysis.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and motivation

WithMoore’s law supplying billions of transistors on-chip, em-
bedded systems are undergoing a paradigm shift from single-core
to multi-core to exploit this high transistor density for high per-
formance. This paradigm shift has led to the emergence of diverse
multi-core embedded systems in a plethora of application domains

∗ Corresponding author.
E-mail addresses: arslan@rice.edu, arslanmn@gmail.com (A. Munir),

ann@ece.ufl.edu (A. Gordon-Ross), ranka@cise.ufl.edu (S. Ranka), farinaz@rice.edu
(F. Koushanfar).

(e.g., high-performance computing, dependable computing, mo-
bile computing, etc.). Many modern embedded systems integrate
multiple cores (whether homogeneous or heterogeneous) on-chip
to satisfy computing demandwhilemaintaining design constraints
(e.g., energy, power, performance, etc.). For example, a 3G mo-
bile handset’s signal processing requires 35–40Giga operations per
second (GOPS). Considering the limited energy of amobile handset
battery, these performance levels must be met with a power dis-
sipation budget of approximately 1W, which translates to a per-
formance efficiency of 25 mW/GOP or 25 pJ/operation for the 3G
receiver [4]. These demanding and competing power–performance
requirementsmakemodern embedded system design challenging.

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.07.003



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1873

Increasing customer expectations/demands for embedded sys-
tem functionality has led to an exponential increase in design
complexity. While industry focuses on increasing the number of
on-chip processor cores to meet the customer performance de-
mands, embedded system designers face the new challenge of
optimal layout of these processor cores along with the memory
subsystem (caches and main memory) to satisfy power, area, and
stringent real-time constraints. The short time-to-market (time
from product conception to market release) of embedded systems
further exacerbates design challenges. Architectural modeling of
embedded systems helps in reducing the time-to-market by en-
abling fast application-to-device mapping since identifying an ap-
propriate architecture for a set of target applications significantly
reduces the design time of an embedded system. To ensure the
timely completion of an embedded system’s design with sufficient
confidence in the product’s market release, design engineers must
make tradeoffs between the abstraction level of the system’s archi-
tecture model and the attainable accuracy.

Modern multi-core embedded systems allow processor cores
to share hardware structures, such as last-level caches (LLCs)
(e.g., level two (L2) or level three (L3) cache), memory controllers,
and interconnection networks [12]. Since the LLC’s configuration
(e.g., size, line size, associativity) and the layout of the processor
cores (on-chip location) has a significant impact on a multi-core
embedded system’s performance and energy, our work focuses on
performance and energy characterization of embedded architec-
tures based on different LLC configurations and layout of the pro-
cessor cores. Though there is a general consensus on using private
level one (L1) instruction (L1-I) and data (L1-D) caches in embed-
ded systems, there has been no dominant architectural paradigm
for private or shared LLCs. Since many embedded systems contain
an L2 cache as the LLC,we focus on the L2 cache, however, our study
can easily be extended for L3 caches and beyond as LLCs.

Since multi-core benchmark simulation requires significant
simulation time and resources, a lightweight modeling technique
for multi-core architecture evaluation is crucial [11]. Furthermore,
simulation-driven architectural evaluation is based on specific
benchmarks and consequently only provides performance infor-
mation for programs similar to the benchmarks. A well-devised
modeling technique can model diverse workloads and thus en-
ables performance evaluation for workloads with any computing
requirements. Previous work presents various multi-core system
models, however, thesemodels become increasingly complexwith
varying degrees of cache sharing [33]. Many of the previous mod-
els assumed that sharing amongst processor cores occurred at ei-
ther the main memory level or the processor cores all shared the
same cache hierarchy, however,multi-core embedded systems can
have an L2 cache shared by a subset of cores (e.g., Intel’s six-core
Dunnington processor has L2 caches shared by two processor
cores). We leverage for the first time, to the best of our knowledge,
queueing network theory as an alternative approach for modeling
multi-core embedded systems for performance analysis (though
queueing network models have been studied in the context of tra-
ditional computer systems [31]). Our queueing networkmodel ap-
proach allows modeling the layout of processor cores (processor
cores can be either homogeneous or heterogeneous) with caches
of different capacities and configurations at different cache lev-
els. Our modeling technique only requires a high-level workload
characterization of an application (i.e., whether the application is
processor-bound (requiring high processing resources), memory-
bound (requiring a large number of memory accesses), or mixed).

Our main contributions in this paper are:

• wepresent a novel, queueing theory-basedmodeling technique
for evaluatingmulti-core embedded architectures that does not
require architectural-level benchmark simulation. This mod-
eling technique enables quick and inexpensive architectural

evaluation, with respect to design time and resources, as com-
pared to developing and/or using the existing multi-core sim-
ulators and running benchmarks on these simulators. Based
on a preliminary evaluation using our models, architecture de-
signers can run targeted benchmarks to further verify the per-
formance characteristics of selected multi-core architectures
(i.e., our queueing theory-based models facilitate early design
space pruning).

• our queueing theoretic approach enables the architectural
evaluation for synthetic workloads with any computing re-
quirements characterized probabilistically. We also propose a
method to quantify computing requirements of real bench-
marks probabilistically. Hence, our modeling technique can
provide performance evaluation for workloads with any com-
puting requirements as opposed to simulation-driven architec-
tural evaluation that can only provide performance results for
specific benchmarks.

• our queueing theoretic modeling approach can be used for per-
formance per watt and performance per unit area character-
izations of multi-core embedded architectures, with varying
number of processor cores and cache configurations, to provide
a comparative analysis. For performance per watt and perfor-
mance per unit area computations, we calculate chip area and
power consumption for different multi-core embedded archi-
tectures with a varying number of processor cores and cache
configurations.

We point out that although queueing theory has been used in
the literature for performance analysis of multi-disk and pipelined
systems [13,18,31], we for the first time, to the best of our knowl-
edge, apply queueing theory-based modeling and performance
analysis techniques to multi-core embedded systems. Further-
more, we for the first time develop a methodology to synthesize
workloads/benchmarks on our queueing theoretic multi-core
models based on probabilities that are assigned according to
workload characteristics (e.g., processor-bound, memory-bound,
or mixed) and cache miss rates. We verify our queueing theoretic
modeling approach by running SPLASH-2 multi-threaded bench-
marks on the SuperESCalar simulator (SESC). Results reveal that
our queueing theoretic model qualitatively evaluates multi-core
architectures accuratelywith an average difference of 5.6% as com-
pared to the architectures’ evaluations from the SESC simulator.
The SESC simulation results validate our queueing theoretic mod-
eling approach as a quick and inexpensive architectural evaluation
method.

Our queueing theoretic approach can be leveraged for early de-
sign space pruning by eliminating infeasible architectures in very
early design stages, which reduces the number of lengthy archi-
tectural evaluations when running targeted benchmarks in later
design stages. Specifically, our approach focuses on the qualitative
comparison of architectures in the early design stage and not the
quantitative comparison of architectures for different benchmarks.
Our model is designed to operate using synthetic workloads that a
designer can categorize for an expected behavior, such as process-
or memory-bound workloads, along with an estimate of the ex-
pected cache miss rates. The synthetic workloads preclude the
need to obtain benchmark-specific statistics from an architecture-
level simulator. Furthermore, the cache miss rates are estimates,
and thus are not required to be the exact miss rates for any spe-
cific benchmark. Our discussions in Section 4.2 regarding statistics
obtained from an architecture-level simulator only explains how
a real workload can be represented with our queueing theoretic
model and is not required for synthetic workloads.

Our investigation of performance and energy for different cache
miss rates and workloads is significant because cache miss rates
and workloads can significantly impact the performance and en-
ergy of an embedded architecture. Furthermore, cache miss rates



Author's personal copy

1874 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

also give an indication of the degree of cache contention between
different threads’ working sets. Our performance, power, and per-
formance per watt results indicate that multi-core embedded ar-
chitectures that leverage shared LLCs are scalable and provide the
best LLC performance per watt. However, shared LLC architectures
may introduce main memory response time and throughput bot-
tlenecks for high cache miss rates. The architectures that leverage
a hybrid of private and shared LLCs are scalable and alleviate main
memory bottlenecks at the expense of reduced performance per
watt. The architectureswith private LLCs exhibit less scalability but
do not introduce main memory bottlenecks at the expense of re-
duced performance per watt.

2. Related work

Several previous works investigated analytical modeling tech-
niques for performance evaluation. Sorin et al. [37] developed an
analytical model for evaluating shared memory systems with pro-
cessors that aggressively exploited instruction-level parallelism
(ILP). The application’s ILP and interaction with the memory sub-
system were characterized by the model’s input parameters. Ipek
et al. [16] used predictive modeling based on artificial neural net-
works to efficiently explore the architectural design spaces. Sim-
ulation of sampled points in the design space helped the model
to generate functions that described the relationship between de-
sign parameters, which were then used to estimate performance
for other points in the design space. Chandra et al. [7] investi-
gated the performance models that predicted the impact of cache
sharing on co-scheduled threads for chipmulti-processors (CMPs).
The authors observed that cache contention could significantly in-
crease a thread’s cache miss rate depending on the co-scheduled
threads’ memory requirements. Chen et al. [8] proposed an analyt-
ical model for predicting the impact of cache contention on cache
miss rates for multi-programmed workloads running on multi-
threaded many-core architectures.

Queueing theory has been used in the literature for the per-
formance analysis of computer networks and other computer sys-
tems. Samari et al. [32] used queueing theory for the analysis of
distributed computer networks. The authors proposed a correc-
tion factor in the analytical model and compared these results
with the analytical model without this correction factor [21] and
with simulation results to verify the correctness of the proposed
model. Mainkar et al. [24] used queueing theory-based models
for the performance evaluation of computer systems with a cen-
tral processing unit (CPU) and disk drives. Willick et al. [39] used
queueing theory to model packet-switched multistage intercon-
nection networks. The analytical model permitted general inter-
connection network topologies (including arbitrary switch sizes)
and arbitrary memory reference patterns. Our work differs from
the previous work on queueing theory-basedmodels for computer
systems in that our work applies queueing theory for performance
evaluation of multi-core embedded systems with different cache
subsystems, which have not been investigated using queueing
theory. Furthermore, our work introduces a novel way of repre-
senting workloads with different computing requirements proba-
bilistically in a queueing theory based model.

Characterization of workloads for analytical models has been
explored in the literature. Nussbaum et al. [27] developed an ana-
lytical performancemodel for superscalar processors based on sta-
tistical simulation. The model depended on detailed simulation to
gather statistical information that was used to generate a synthetic
instruction trace that was then fed as input to the model along
with cache miss rate and branch prediction statistics. Karkhanis
et al. [20] developed an analytical performance model for super-
scalar processors. The model used trace-derived data dependence
information, data and instruction cache miss rates, and branch

miss-prediction rates as input. Wunderlich et al. [41] proposed
a framework for statistical sampling that enabled sampling of a
minimal subset of a benchmark’s instruction execution stream to
estimate the performance of the complete benchmark. Our work
differs from the previous work on workload characterization for
analytical models in that we characterize workloads probabilisti-
cally, which provides an alternative to statistical sampling.

The previous work presents evaluation and modeling tech-
niques for multi-core embedded architectures for different appli-
cations and varying workload characteristics. Savage et al. [33]
proposed a unified memory hierarchy model for multi-core archi-
tectures that captured varying degrees of cache sharing at different
cache levels. However, the model was only applicable to straight-
line computations that could be represented by directed acyclic
graphs (DAGs) (e.g., matrix multiplication, fast Fourier transform
(FFT)). Our queueing theoretic models are applicable to virtually
any type of workload with any computing requirements. Fedorova
et al. [12] studied contention-aware task scheduling for multi-
core architectures with shared resources (caches, memory con-
trollers, and interconnection networks). The authors modeled the
contention-aware task scheduler and investigated the scheduler’s
impact on application performance for multi-core architectures. In
contrast to these prior works, our queueing theoretic models per-
mit a wide range of scheduling disciplines based on the workload
requirements (e.g., first-come–first-served (FCFS), priority, round
robin (RR), etc.).

Some previous works investigated the performance and energy
aspects for multi-core systems. Kumar et al. [22] studied power,
throughput, and response time metrics for heterogeneous CMPs.
The authors observed that heterogeneous CMPs could improve
energy per instruction by 4–6× and throughput by 63% over an
equivalent-area homogeneous CMPbecause of closer adaptation to
the resource requirements of different application phases. The au-
thors used a multi-core simulator for performance analysis, how-
ever, our queueing theoretic models can be used as a quick and
inexpensive alternative for investigating the performance aspects
of heterogeneous CMPs. Sabry et al. [30] investigated performance,
energy, and area tradeoffs for private and shared L2 caches for
multi-core embedded systems. The authors proposed a SystemC-
based platform that could model private, shared, and hybrid L2
cache architectures. A hybrid L2 cache architecture contains sev-
eral private L2 caches, each containing only private data, and a
unified shared L2 cache that stores only shared data. However, the
SystemC-based model required integration with other simulators,
such as MPARM, to obtain the performance results. Our queueing
theoretic models do not require integration with other multi-core
simulators to obtain performance results and serve as an indepen-
dent comparative performance analysis approach for multi-core
architecture evaluation.

Benítez et al. [5] proposed an adaptive L2 cache architecture
that adapted to fit the code and data during runtime using partial
cache array shut down. The adaptive cache could be configured
in four modes that prioritized either instructions per cycle (IPC),
processor power dissipation, processor energy consumption, or
processor power2× delay product. Experiments revealed that
CMPswith 2MBof private adaptive L2 cacheprovided14.2%, 44.3%,
18.1%, and 29.4% improvement in IPC, power dissipation, energy
consumption, and power2× delay, respectively, over a 4MB shared
L2 cache. Our work does not consider the adaptive private caches
but compares private, shared, and hybrid caches on an equal area
basis to provide a fair comparison between different LLCs.

There exists work in the literature related to the memory sub-
system latency and throughput analysis. Ruggiero [29] investi-
gated cache latency (at all cache levels), memory latency, cache
bandwidth/throughput (at all cache levels), and memory band-
width for multi-core embedded systems using LMBench, an open



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1875

Table 1
Multi-core embedded architectures with varying processor cores and cache configurations (P denotes a processor core, Mmainmemory, and integer
constants in front of P, L1ID (L1 instruction and data cache), L2, and M denotes the number of these architectural components in the embedded
architecture).

Architecture Description

2P-2L1ID-2L2-1M Multi-core embedded architecture with 2 processor cores, private L1 I/D caches, private L2 caches, and a shared M
2P-2L1ID-1L2-1M Multi-core embedded architecture with 2 processor cores, private L1 I/D caches, a shared L2 cache, and a shared M
4P-4L1ID-4L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, private L2 caches, and a shared M
4P-4L1ID-1L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, a shared L2 cache, and a shared M
4P-4L1ID-2L2-1M Multi-core embedded architecture with 4 processor cores, private L1 I/D caches, 2 shared L2 caches, and a shared M

source benchmark suite, on Intel processors. Our models enable
measurement of cache latency and throughput of modeled archi-
tectures in an early design phasewhen the fabricated architectures
are not available.

Although there exist previous works on performance evalu-
ation, our work is novel because we for the first time develop
queueing network models for various multi-core embedded ar-
chitectures. Some previousworks present benchmark-driven eval-
uation for specific embedded architectures, however, multi-core
embedded architecture evaluation considering different workload
characteristics, cache configurations (private, shared, or hybrid),
and miss rates with comparative analysis has not been addressed.

3. Queueing network modeling of multi-core embedded archi-
tectures

Although queueing networks are widely used in computer
networks, the interpretation of queueing network terminology for
multi-core embedded architectures is a pre-requisite for queueing
theory-based modeling. Furthermore, because of the diversity of
queueing network models, the specific approach taken to model
multi-core embedded architectures is the most critical aspect of
queueing theory-based modeling. Finally, the queueing theory-
basedmodel relies on some assumptions underwhich themodel is
a valid representation of the multi-core embedded architectures.
This section discusses the queueing network terminology in
the context of multi-core embedded architectures, our modeling
approach, and the underlying simplifying assumptions.

3.1. Queueing network terminology

A queueing network consists of service centers (e.g., processor
core, L1-I cache, L1-D cache, L2 cache, and main memory (MM))
and customers (e.g., jobs/tasks). A service center consists of one or
more queues to hold jobs waiting for service. We use the term jobs
instead of tasks (decomposedworkload resulting fromparallelizing
a job) to be consistentwith general queueingnetwork terminology.
Our modeling approach is broadly applicable tomulti-programmed
workloads where multiple jobs run on the multi-core embedded
architecture as well as for parallelized applications/jobs that run
different tasks on the multi-core architectures. Arriving jobs enter
the service center’s queue and a scheduling/queueing discipline
(e.g., first-come–first-served (FCFS), priority, round robin (RR),
processor sharing (PS), etc.) selects the next job to be servedwhen a
service center becomes idle. The queueing discipline is preemptive
if an arriving higher priority job can suspend the service/execution
of a lower priority job, otherwise the queueing discipline is non-
preemptive. FCFS is a non-preemptive queueing discipline that
serves the waiting jobs in the order in which the jobs enter the
queue. Priority-based queueing disciplines can be preemptive or
non-preemptive and serve the jobs based on an assigned job
priority. In the RR queueing discipline, a job receives a service time
quantum (slot). If the job does not complete during the service time
quantum, the job is placed at the end of the queue to resumeduring
a subsequent service time quantum. In the PS queueing discipline,

all jobs at a service center are serviced simultaneously (and hence
there is no queue) with the service center’s speed equally divided
across all of the jobs. After being serviced, a job either moves to
another service center or leaves the network.

A queueing network is open if jobs arrive from an external
source, spend time in the network, and then depart. A queueing
network is closed if there is no external source and no departures
(i.e., a fixed number of jobs circulate indefinitely among the service
centers). A queueing network is a single-chain queueing network if
all jobs possess the same characteristics (e.g., arrival rates, required
service rates, and routing probabilities for various service centers)
and are serviced by the same service centers in the same order. If
different jobs can belong to different chains, the network is amulti-
chain queueing network. An important class of queueing networks
is product-formwhere the joint probability of the queue sizes in the
network is a product of the probabilities for the individual service
centers’ queue sizes.

The queueing network performance metrics include response
time, throughput, and utilization. The response time is the amount
of time a job spends at the service center including the queueing
delay (the amount of time a job waits in the queue) and the service
time. The service time of a job depends on the amount of work
(e.g., number of instructions) needed by that job. The throughput is
defined as the number of jobs served per unit of time. In our multi-
core embedded architecture context, throughput measures the
number of instructions/data (bits) processed by the architectural
element (processor, cache, MM) per second. Utilization measures
the fraction of time that a service center (processor, cache, MM) is
busy. Little’s law governs the relationship between the number of
jobs in the queueing networkN and response time tr (i.e.,N = κ ·tr
where κ denotes the average arrival rate of jobs admitted to the
queueing network [25]).

3.2. Modeling approach

We consider the closed product-form queueing network for
modeling multi-core embedded architectures because the closed
product-form queueing network enables unequivocal modeling of
workloads. A typical embedded system executes a fixed number of
jobs (e.g., a mobile phone has only a few applications to run, such
as instant messaging, audio coding/decoding, calculator, graphics
interface, etc.). We point out that additional applications can be
added/updated in an embedded system (e.g., a smartphone) over
time, however, these additional applications can be represented
as synthetic workloads in our queueing-theoretic model. Further-
more, closed product-form queueing networks assume that a job
leaving the network is replaced instantaneously by a statistically
identical new job [31]. Table 1 describes the multi-core embed-
ded architectures that we evaluate in this paper. We focus on em-
bedded architectures ranging from 2 (2P) to 4 (4P) processor cores
to reflect current architectures [15], however, our model is ap-
plicable to any number of cores. Our modeled embedded archi-
tectures contain processor cores, L1-I and L1-D private caches, L2
caches (private or shared), and MM (embedded systems are typi-
cally equipped with DRAM/NAND/NOR Flash memory [23,36]).



Author's personal copy

1876 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Fig. 1. Queueing network model for the 2P-2L1ID-2L2-1M multi-core embedded architecture.

We consider a closed product-form queueing network with I
service centers where each service center i ∈ I has a service rate
µi. Let pij be the probability of a job leaving service center i and
entering another service center j. The relative visit count ϑj to
service center j is:

ϑj =

I
i=1

ϑipij. (1)

The performance metrics (e.g., throughput, response time, etc.)
for a closed product-form queueing network can be calculated
using a mean value analysis (MVA) iterative algorithm [28]. The
basis of MVA is a theorem stating that when a job arrives at a
service center in a closed network with N jobs, the distribution
of the number of jobs already queued is the same as the steady
state distribution of N − 1 jobs in the queue [35]. Solving (1) using
MVA recursively gives the following performance metric values:
the mean response time ri(k) at service center i (k denotes the
number of jobs in the network), mean network response time R(k),
mean queueing network throughput T (k), the mean throughput of
jobs λi(k) at service center i, and the mean queue length li(k) at
service center i when there are k jobs in the network. The initial
recursive conditions are k = 0 such that ri(0) = R(0) = T (0) =

ti(0) = li(0) = 0. The values for these performance metrics can be
calculated for k jobs based on the computed values for k − 1 jobs
as [31]:

ri(k) =
1
µi

(1 + li(k − 1)) (2)

R(k) =

I
i=1

ϑi · ri(k) (3)

T (k) =
k

R(k)
(4)

λi(k) = ϑi · T (k) (5)
li(k) = λi(k) · ri(k) (6)

To explain our modeling approach for multi-core embedded
architectures, we describe a sample queueing model for the 2P-
2L1ID-2L2-1M architecture in detail (other architecture models
follow a similar explanation). Fig. 1 depicts the queueing net-
workmodel for 2P-2L1ID-2L2-1M. The task scheduler schedules the
tasks/jobs on the two processor cores P1 and P2. We assume that
the task scheduler is contention-aware and schedules tasks with
minimal or no contention on cores sharing LLCs [12]. The queueing
network consists of two chains: chain one corresponds to proces-
sor core P1 and chain two corresponds to processor core P2. The jobs
serviced by P1 either reenter P1 with probability pc1P1P1

(c1 in the
subscript denotes chain one) or enter the L1-I cache with probabil-
ity pc1P1L1I

or the L1-D cachewith probability pc1P1L1D
. The job arrival

probabilities into the service centers (processor core, L1-I, L1-D, L2,
or MM) depend on the workload characteristics (i.e., processor-
bound, memory-bound, or mixed). The data from the L1-I cache
and the L1-D cache return to P1 with probabilities pc1L1IP1

and
pc1L1DP1

, respectively, after L1-I and L1-D cache hits. The requests
from the L1-I cache and the L1-D cache are directed to the L2 cache
with probabilities pc1L1IL2

and pc1L1DL2
, respectively, after L1-I and L1-

D cache misses. The probability of requests entering P1 or the L2
cache from the L1-I and L1-D cache depends on the miss rates of
the L1-I and L1-D caches. After an L2 cache hit, the requested data
is transferred to P1 with probability pc1L2P1

or entersMMwith prob-
ability pc1L2M

after an L2 cache miss. The requests fromMM always
return to P1 with probability pc1MP1

= 1. The queueing network
chain and path for chain two corresponding to P2 follow the same
pattern as chain one corresponding to P1. For example, requests
from the L2 cache in chain two either return to P2 with probabil-
ity pc2L2P2

after an L2 cache hit or enter MM with probability pc2L2M

after an L2 cache miss (c2 in the subscript denotes chain two).
To further elaborate on our modeling approach, Fig. 2 depicts

the queueing model for 2P-2L1ID-1L2-1M, which is similar to the
model for 2P-2L1ID-2L2-1M (Fig. 1) except that this queueing
model contains a shared L2 cache (L2s denotes the shared L2 cache
in Fig. 2) for the two processor cores P1 and P2 instead of private L2



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1877

Fig. 2. Queueing network model for the 2P-2L1ID-1L2-1M multi-core embedded architecture.

caches. The queueing network consists of two chains: chain one
corresponds to processor core P1 and chain two corresponds to
processor core P2. The requests from the L1-I cache and the L1-D
cache for chain one go to the shared L2 cache (L2s) with probabil-
ity pc1L1IL2s

and pc1L1DL2s
, respectively, on L1-I and L1-D cachemisses.

The requesteddata is transferred from the L2 cache to P1 withprob-
ability pc1L2sP1

on an L2 cache hit whereas the data request goes to
MMwith probability pc1L2sM

on an L2 cachemiss. The requests from
the L1-I cache and the L1-D cache for chain two go to the shared
L2 cache (L2s) with probability pc2L1IL2s

and pc2L1DL2s
, respectively, on

L1-I and L1-D cachemisses. The requested data from the L2 cache is
transferred to P2 withprobability pc2L2sP2

on an L2 cachehitwhereas
the data request goes toMMwith probability pc2L2sM

on an L2 cache
miss.

The probabilities assignment in our queueing network models
to represent a synthetic workload (or to emulate a real workload)
on a multi-core architecture is critical to our modeling approach
and the fidelity of our evaluations. Ourmodels can be leveraged for
studying workloads based on an overall workload behavior, where
processor-to-processor probability pPP and processor-to-memory
probability pPM remain uniform throughout the workload, or for
a more detailed study of workloads with different phases, where
a different pPP and pPM would be assigned for each phase. These
probabilities can be determined based on processor and memory
statistics for a given workload using one of two methods: actual
statistics for realworkloads can be gathered using a functional sim-
ulator if these statistics are not available from prior research; or
synthetic workloads can be leveraged wherein the designer would
assign these statistics based on the expected workload behavior.
For our models, pPP can be estimated as:

pPP = OP/OT (7)

where OP and OT denote the number of processor operations and
total operations (processor and memory) in a benchmark, respec-
tively. Processor operations refer to arithmetic and logic unit (ALU)
micro-operations, such as add and subtract, and memory opera-
tions refer tomicro-operations involvingmemory accesses, such as

load and store. For floating point benchmarks, OP can be assumed
to be equal to the number of floating point operations. OT can be
estimated as:

OT = OP + OM (8)

where OM denotes the number of memory operations, which is the
sum of the total read and total write operations. pPM can be esti-
mated as:

pPM = 1 − pPP . (9)

The probability of requests going from the processor core Pi in
chain i to the L1-I and L1-D caches can be estimated from the L1-
I and L1-D cache access ratios (defined below), which require the
number of L1-I and L1-D accesses. The number of L1-I accesses can
be calculated as (assuming there is no self-modifying code):

L1-I accesses = L1-I read misses + L1-I read hits. (10)

The number of L1-D accesses can be calculated as:

L1-D accesses = L1-D read misses + L1-D read hits
+ L1-D write misses + L1-D write hits. (11)

Total number of L1 cache accesses can be calculated as:

Total L1 accesses = L1-D accesses + L1-I accesses. (12)

The L1-I access ratio can be calculated as:

L1-I Access Ratio =
L1-I accesses

Total L1 accesses
(13)

The L1-D access ratio can be calculated as

L1-D Access Ratio = 1 − L1-I Access Ratio (14)

The probability of requests going from the processor core Pi in
chain i to the L1-I cache pciPiL1I

can be calculated as:

pciPiL1I
= pPM × L1-I Access Ratio (15)

Similarly, the probability of requests going from the processor core
Pi in chain i to the L1-D cache pciPiL1D

can be calculated as:

pciPiL1D
= pPM × L1-D Access Ratio (16)



Author's personal copy

1878 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

The probabilities of requests going from the L1-I and L1-D
caches to the L2 cache and from the L2 cache to MM can be cal-
culated directly from the cachemiss rate statistics and are omitted
for brevity.

We exemplify the assignment of probabilities for our queueing
network models using the 2P-2L1ID-2L2-1M multi-core architec-
ture for memory-bound workloads given the following statistics:
pPP = 0.1; pPM = 0.9 assuming that the L1-I, L1-D, and L2 cache
miss rates are 25%, 50%, and 30%, respectively; and L1-I and L1-D
access ratios are 0.8 and 0.2, respectively. The probabilities are set
as: pc1P1P1

= 0.1, pc1P1L1I
= 0.72, pc1P1L1D

= 0.18, pc1L1IP1
= 0.75,

pc1L1DP1
= 0.5, pc1L1IL2

= 0.25, pc1L1DL2
= 0.5, pc1L2P1

= 0.7,
pc1L2M

= 0.3, pc1MP1
= 1 (different probabilities can be assigned

for processor-bound or mixed workloads).
Our queueing theoretic models determine the performance

metrics of component-level architectural elements (e.g., proces-
sor cores, L1-1, L1-D, etc.), however, embedded system designers
are often also interested in system-wide performance metrics. For
example, system-wide response time of an architecture is an im-
portant metric for real-time embedded applications. Our queueing
theoretic models enable calculations of system-wide performance
metrics. Based on our queueing theoretic models, we can calculate
the system-wide response time R of a multi-core embedded archi-
tecture as:

R = max
∀ i=1,...,NP


(pciPiPi

× rPi) + (pciPiL1I
× riL1I) + (pciPiL1D

× riL1D)

+ ((pciL1IL2
+ pciL1DL2

) × riL2) + (pciL2M
× rM)


(17)

whereNP denotes the total number of processor cores in themulti-
core embedded architecture. rPi , riL1I , riL1D, riL2, and rM denote the
response times for processor core Pi, L1-I, L1-D, and L2 correspond-
ing to chain i, and MM, respectively. pciPiPi

denotes the probability
of requests looping back from processor core Pi to processor core
Pi in the queueing network chain i (the total number of chains in
the queueing network is equal to NP ). pciPiL1I

and pciPiL1D
denote the

probability of requests going from processor core Pi in chain i to
the L1-I cache and the L1-D cache, respectively. pciL1IL2

and pciL1DL2

denote the probability of requests going from the L1-I cache and
the L1-D cache in chain i to the L2 cache, respectively. pciL2M

de-
notes the probability of requests going from the L2 cache in chain
i to MM. We point out that (17) is an extension of (3) for a multi-
chain queueing network and also simplifies the calculation by us-
ing probabilities between architectural elements directly instead
of relative visit counts as in (3). Since processor cores in a multi-
core embedded architecture operate in parallel, the effective re-
sponse time of a multi-core architecture is themaximum response
time out of all of the chains in the queueing network operating in
parallel, as given in (17). In the context of queueing networks for
parallel computing, the overall response time is determined by the
slowest chain since the other chains must wait idle for the slowest
chain to complete (load balancing deals withmaking the processor
cores’ response times close to each other tominimize the idlewait-
ing). The response time of a single chain in the queueing network
is the sum of the processing times of the architectural elements in
a chain (e.g., processor core, L1-1, L1-D, L2, and MM)multiplied by
the associated service probabilities of these architectural elements.
System-wide throughput can be given similar to (17).

Our queueing network modeling provides a faster alternative
for performance evaluation of multi-core architectures as com-
pared to running complete benchmarks on multi-core simula-
tors (and/or trace simulators) though at the expense of accuracy.
Our queueing network models require simulating only a subset
of the benchmark’s instructions (specified implicitly by the ser-
vice rates of the architectural components, such as processor cores
and caches) that are necessary to reach a steady state/equilibrium

in the queueing network with the workload behavioral charac-
teristics captured by the processor-to-processor and processor-to-
memory probabilities (as shown in Fig. 1). Since the service centers
(processors, caches, memory) have been modeled explicitly in our
queueing theoretic models, the effect of these service centers on
the overall system performance is captured by our model [39].

3.3. Assumptions

Ourqueueing theoreticmodelsmake some simplifying assump-
tions, which do not affect the general applicability of our approach.
Our queueing network models assume cycle-level assignments of
tokens (service time slices) for a given workload/job such that in
each cycle, the tokens receive service from a particular service cen-
ter with a given probability. For example, a job leaving the pro-
cessor core either returns to the processor core’s queue to wait
for another time slice or goes to either the L1-I or L1-D cache for
an instruction or data fetch, respectively [31]. Completed jobs are
replaced immediately by a statistically identical job, an assump-
tion for closed product-form queueing networks, which holds true
for embedded systems [31]. Our queueing network modeling ap-
proach can be extended to instruction-level tokens if desired (al-
though not required) for a given workload where an instruction
can go to multiple service centers simultaneously (e.g., an instruc-
tion going to the L1-I and L1-D cache simultaneously to obtain
the instruction opcodes and data, respectively). For these cases, a
compound service center can be added to our queueing network
model (e.g., L1-I + L1-D) that represents multiple service centers.
The probability of a job going to a compound service center would
be the sumof the probabilities of the individual service centers rep-
resented by that compound service center.

Our models are well suited for multi-programmed workloads
that are common in the embedded systems, however, our approach
is also applicable to multi-threaded workloads with some simpli-
fying assumptions.We assume that the LLCs’ sizes are large enough
to hold the working sets of the executing threads, which allevi-
ates performance problems, such as sub-optimal throughput aris-
ing due to cache thrashing and thread starvation [7]. We assume
that the appropriate inter-thread cache partitioning schemes alle-
viate the performance issues due to cache sharing and is not the
focus of our model. Furthermore, since cache contention impacts
cache miss rates, our model allows specification of appropriate
cache miss rates for investigating the impact of workloads with
cache contention. For example, workloads that are likely to cause
cache contention can be assigned higher cache miss rates in our
models to incorporate the cache contention effects. Additionally,
shared LLCs and MM in our queueing network model account for
the contention of resources between the processor cores and/or ex-
ecuting threads [31].

Although our current models do not explicitly model the criti-
cal sections and coherence in multi-threaded programs as stated
in our modeling assumptions, our models can capture the criti-
cal sections in a workload. We point out that a critical section is a
piece of code that accesses a shared resource (e.g., a data structure)
that must not be concurrently accessed by more than one thread
of execution. Since critical sections are effectively serialized, the
response time of the workload containing critical sections will in-
crease depending on the number of critical sections and the num-
ber of instructions in each critical section. Hence, additional time
for executing critical sections can be calculated by the number of
critical sections and the number of instructions in each critical sec-
tion and added to the response time of the workload. The coher-
ence is implicitly modeled in our queueing theory models since
coherence issueswill cause coherencemisses and thesemisses can
be incorporated into our cache miss rate specifications for a work-
load as our models enable specification of any cache miss rates for



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1879

5 10 15 20
0

5

10

15

20

25

30

35

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

Core
L1–I
L1–D
L2s
M

L1–I Miss Rate: 0.3
L1–D Miss Rate: 0.3
L2s Miss Rate: 0.3

2P–2L1ID–1L2–1M

Fig. 3. Queueing network model validation of the response time in ms for mixed workloads for 2P-2L1ID-1L2-1M for a varying number of jobs N .

our synthesizedworkloads. The effects of different cachemiss rates
for a workload on performance are discussed in Appendix B.

We note that even though some of these assumptions may
violate practical scenarios, such violations would not significantly
impact the insights obtained from our queueing theoretic models
because our models measure performance trends and focus on
the relative performance of architectures for different benchmarks
rather than the absolute performance.

4. Queueing network model validation

In this section, we validate our queueing networkmodels to as-
sure that ourmodels’ results conformwith expected queueing the-
oretic results. We further validate our queueing network models
with a multi-core simulator running multi-threaded benchmarks.
We also calculate the speedups attained by our queueing network
models as compared to a multi-core simulator for architectural
performance evaluation.

4.1. Theoretical validation

We analyzed our queueing network models for different cache
miss rates and workloads and find that the model’s simulation re-
sults conform with expected queueing theoretical results. For ex-
ample, Fig. 3 depicts the response time formixedworkloads (pPP =

0.5, pPM = 0.5) for 2P-2L1ID-1L2-1M as the number of jobs/tasks
N varies. The figure shows that as N increases, the response time
for the processor core, L1-I, L1-D, L2, andMM increases for all of the
cachemiss rates.We point out that cachemiss rates could increase
as N increases due to inter-task address conflicts and increasing
cache pressure (increased number of working sets in the cache),
but we assume that the cache sizes are sufficiently large enough so
that capacity misses remain the same for the considered number
of jobs. We present the average response time individually for the
processor cores and the L1-I, L1-D, and L2 caches. For smaller L1-I,
L1-D, and L2 cachemiss rates, the processor core response time in-
creases drastically asN increases becausemost of the time jobs are
serviced by the processor corewhereas for larger L1-I, L1-D, and L2
cache miss rates, the MM response time increases drastically be-
cause of a large number of MM accesses. These results along with

our other observed results conform with the expected queueing
theoretical results and validate our queueing network models for
multi-core architectures.

4.2. Validation with a multi-core simulator

We further validate our queueing theoretic approach formodel-
ingmulti-core architectures usingmulti-threaded benchmarks ex-
ecuting on amulti-core simulator. We choose kernels/applications
from the SPLASH-2 benchmark suite, which represent a range of
computations in the scientific, engineering, and graphics domains.
Our selected kernels/applications from the SPLASH-2 benchmark
suite include fast Fourier transform (FFT), LU decomposition, radix,
raytrace, and water-spatial [40].

Tables 2 and 3 depict the queueing networkmodel probabilities
for SPLASH-2 benchmarks for 2P-2L1ID-2L2-1M and 2P-2L1ID-
1L2-1M, respectively (Section 3.2). These probabilities are obtained
using Eqs. (7)–(16)where the statistics required by these equations
are acquired from an architecture-level simulator (SESC in this
case) for an accurate representation of the benchmarks in our
queueing network model. From our probabilistic characterization
of the workloads, FFT, LU, radix, and water-spatial can be classified
as processor-bound workloads and raytrace can be classified as a
mixed workload. We reemphasize that this statistics gathering is
only required for the accurate representation of real benchmarks
and is not required for synthetic workloads.

We simulate the architectures in Table 1 using SESC [34]. To
accurately capture our modeled architectures with SESC, our
queueing theoretic models use the same processor and cache
parameters (e.g., processor operating frequency, cache sizes and
associativity, etc.) for the architectures as specified in the SESC
configuration files. We consider single-issue processors with five
pipeline stages and a 45 nm process technology. The execution
times for the benchmarks on SESC are calculated from the num-
ber of cycles required to execute those benchmarks (i.e., execution
time = (Number of cycles) × (cycle time)). For example, FFT re-
quires 964,057 cycles to execute on 4P-4L1ID-4L2-1M at 16.8 MHz
(59.524 ns), which gives an execution time of 57.38 ms.

To verify that the insights obtained from our queueing theo-
retic models regarding architectural evaluation are the same as



Author's personal copy

1880 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Table 2
Queueing network model probabilities for SPLASH-2 benchmarks for 2P-2L1ID-2L2-1M.

Benchmark Chain i pciPiPi
pciPiL1I

pciPiL1D
pciL1IPi

pciL1DPi
pciL1IL2

pciL1DL2
pciL2Pi

pciL2M

FFT i = 1 0.68 0.26 0.06 0.99 0.947 0.00962 0.053 0.97 0.0258
i = 2 0.7 0.249 0.051 0.9996 0.837 0.000414 0.163 0.956 0.044

LU i = 1 0.68 0.2598 0.0602 0.99979 0.852 0.00021 0.148 0.9858 0.0142
i = 2 0.76 0.2016 0.0384 0.9999 0.87 0.0000314 0.13 0.988 0.012

Radix i = 1 0.781 0.184 0.035 0.9999 0.932 0.000051 0.068 0.894 0.106
i = 2 0.78 0.1848 0.0352 0.99998 0.932 0.0000151 0.068 0.894 0.106

Raytrace i = 1 0.58 0.3158 0.1042 0.9788 0.9382 0.0212 0.0618 0.961 0.039
i = 2 0.584 0.312 0.104 0.9862 0.9146 0.0138 0.0854 0.9463 0.0537

Water-spatial i = 1 0.68 0.2544 0.0656 0.99717 0.982 0.00283 0.018 0.9956 0.00442
i = 2 0.68 0.2547 0.0653 0.9991 0.9814 0.000882 0.0186 0.9969 0.00307

Table 3
Queueing network model probabilities for SPLASH-2 benchmarks for 2P-2L1ID-1L2-1M.

Benchmark Chain i pciPiPi
pciPiL1I

pciPiL1D
pciL1IPi

pciL1DPi
pciL1IL2

pciL1DL2
pciL2Pi

pciL2M

FFT i = 1 0.68 0.26 0.06 0.9905 0.947 0.0095 0.053 0.982 0.018
i = 2 0.7 0.249 0.051 0.9996 0.84 0.0004 0.16 0.982 0.018

LU i = 1 0.68 0.2624 0.0576 0.9998 0.9655 0.000166 0.0345 0.9987 0.0013
i = 2 0.76 0.202 0.036 0.9999 0.86 0.000011 0.14 0.9987 0.0013

Radix i = 1 0.781 0.184 0.035 0.99996 0.9331 0.000036 0.0669 0.888 0.112
i = 2 0.78 0.1848 0.0352 0.999998 0.9335 0.0000022 0.0665 0.888 0.112

Raytrace i = 1 0.582 0.314 0.1037 0.9791 0.752 0.0209 0.248 0.9881 0.0119
i = 2 0.584 0.312 0.104 0.9867 0.9285 0.0133 0.0715 0.9881 0.0119

Water-spatial i = 1 0.679 0.256 0.0655 0.9972 0.9821 0.00283 0.0179 0.99819 0.00181
i = 2 0.679 0.2558 0.0652 0.99915 0.9814 0.000854 0.0186 0.99819 0.00181

obtained from a multi-core simulator, we compare the execu-
tion time results for the FFT, LU (non-contiguous), Raytrace, radix
(an example for memory-boundworkloads), and water-spatial (an
example for mixed workloads) benchmarks on SESC and our
queueing theoreticmodels (the benchmarks are represented prob-
abilistically for our queueing theoretic models (as shown in
Tables 2 and 3 for the dual-core architectures). System-wide re-
sponse time is obtained from our queueing theoretic models for
these benchmarks using (17). We compare the execution time
trends for the FFT, LU, raytrace, water-spatial, and radix bench-
marks on SESC and themodeled benchmarks for our queueing the-
oretic models using the SHARPE modeling tool/simulator [31].

Table 4 summarizes the performance (execution time) results
on SESC for the FFT, LU (non-contiguous), radix, raytrace, and
water-spatial benchmarks for both the two core and four core pro-
cessor architectures. The results from SESC and our queueing theo-
retic models provide similar insights and show that the multi-core
architectures with shared LLCs provide better performance than
the architectures with private and hybrid LLCs for these bench-
marks. Furthermore, the architectures with hybrid LLCs exhibit su-
perior performance than the architectures with private LLCs. Since
our queueing theoretic models provide relative performance mea-
sures for different architectures and benchmarks by simulating a
minimum number of the benchmarks’ representative instructions,
the results show a difference in the absolute execution times ob-
tained fromSESC and our queueing theoreticmodels. Furthermore,
the execution time of the benchmarks on SESC depends on the in-
put sizes for the benchmarks and varies for different input sizes
but normally retains similar trends across different architectures.
Our queueing theoretic models capture the performance trends,
which are important for relative comparison of different architec-
tures, and these trends match the performance trends obtained
from SESC.

In a high-level qualitative comparison of architectures, de-
signers are typically interested in the relative performance mea-
sures for various benchmarks on the evaluated architectures. To

Table 4
Execution time comparison of the SPLASH-2 benchmarks on SESC for multi-core
architectures.

Architecture FFT (ms) LU (ms) Radix (s) Raytrace (s) Water-
spatial (s)

2P-2L1ID-2L2-1M 65.06 518.52 4.24 26.32 24.47
2P-2L1ID-1L2-1M 60.23 480.85 4.16 23.5 24.22
4P-4L1ID-4L2-1M 57.38 362.13 2.24 17.84 13.06
4P-4L1ID-1L2-1M 52.77 336.54 2.19 15.91 14.08
4P-4L1ID-2L2-1M 52.81 337.3 2.38 16.52 14.16

Table 5
Dual-core architecture evaluation (Ty/Tz ) on SESC and QT (our queueing theoretic
model) based on the SPLASH-2 benchmarks. Ty and Tz denote the time to execute
a benchmark on architecture y = 2P-2L1ID-2L2-1M and z = 2P-2L1ID-1L2-1M,
respectively.

Evaluation FFT
(Ty/Tz)

LU
(Ty/Tz)

Radix
(Ty/Tz)

Raytrace
(Ty/Tz)

Water-spatial
(Ty/Tz)

SESC 1.08× 1.08× 0.935× 1.166× 1.01×
QT 1.16× 1.13× 0.99× 1.07× 1.02×
% Difference 7.4 % 4.63 % 5.88 % 8.97 % 0.99 %

verify that our queueing network models can capture the dif-
ferences in execution times for various benchmarks, Table 5
summarizes the evaluation results comparing different dual-core
architectures (2P-2L1ID-2L2-1M and 2P-2L1ID-1L2-1M) on SESC
and our queueing theoreticmodel. Results indicate that our queue-
ing theoretic model qualitatively evaluates the two architectures
accurately with an average difference of 5.6% as compared to the
SESC simulator evaluation of the architectures. We observed simi-
lar architectural evaluation trends for four-core architectures and
omit these details for brevity.

The SESC simulation results on multi-threaded benchmarks
verify the results and insights obtained from our queueing the-
oretic models for mixed and processor-bound workloads (Sec-
tion 5.2). From the probabilistic characterization of the SPLASH-2
benchmarks, we ascertain that it is difficult to find benchmarks



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1881

Table 6
Execution time and speedup comparison of our queueing theoretic models
versus SESC. T x-core

Y denotes the execution time required for simulating an x-core
architecture using Y where Y = {SESC,QT } (QT denotes our queueing theoretic
model).

Benchmark T 2-core
SESC (s) T 2-core

SESC /T 2-core
QT T 4-core

SESC (s) T 4-core
SESC /T 4-core

QT

FFT 1.7 885 1.4 168
LU 21 10,938 26.1 3,133
Radix 72.1 37,552 77.3 9,280
Raytrace 772.7 402,448 780.3 93,673
Water-spatial 927.35 482,995 998.4 119,856

in a benchmark suite that cover the entire range of processor-to-
processor and processor-to-memory probabilities (e.g., pPP rang-
ing from 0.05 for some benchmarks to 0.95 for others). The lack
of computationally diverse benchmarks in terms of processor and
memory requirements in a benchmark suite makes our queueing
theoretic modeling approach an attractive solution for rigorous ar-
chitectural evaluation because our modeling approach enables the
architectural evaluation via synthetic benchmarks with virtually
any computing requirements characterized probabilistically.

4.3. Speedup

To verify that our queueing theoretic modeling approach pro-
vides a quick architectural evaluation as compared to executing
benchmarks on a multi-core simulator, we compare the execution
time required to evaluate multi-core embedded architectures on
SESC to our queueing theoretic model’s execution time. The execu-
tion times for the SPLASH-2 benchmarks on SESC were measured
using the Linux time command on an Intel Xeon E5430 processor
running at 2.66 GHz. The execution times for our queueing theo-
retic models were measured using the Linux time command on
an AMD Opteron 246 processor running at 2 GHz and these results
were scaled to 2.66 GHz to provide a fair comparison. The SHARPE
execution time was measured on the AMD Opteron processor due
to site-specific server installations [10]. The results reveal that our
queueing theoretic models require 1.92 ms and 8.33 ms on aver-
age for multi-core embedded architectures with two and four pro-
cessor cores, respectively. We note that the execution times of our
queueing theoretic models do not include the time taken to ob-
tain processor, memory, and cache statistics (either from any prior
work in the literature or running benchmarks on amulti-core sim-
ulator or a functional simulator if these statistics are not avail-
able in any prior work) as the time to gather these statistics can
vary for different benchmarks and depends on the existing work
in the literature and available functional simulators for different
benchmarks. Table 6 depicts the average execution time for the
SPLASH-2 benchmarks on SESC for multi-core embedded architec-
tures with two and four processor cores and the ratio of the SESC
execution times compared to our queueing theoretic models’ exe-
cution times. Results reveal that our queueing theoreticmodels can
provide architectural evaluation results 482, 995× faster as com-
pared to executing benchmarks on SESC. Therefore, our queueing
theoretic modeling approach can be used for quick architectural
evaluation for multi-core embedded systems for virtually any set
of workloads.

5. Queueing theoretic model insights

In this section, we present insights obtained from our queueing
theoretic models regarding performance, performance per watt,
and performance per unit area for the five different multi-core
embedded architectures depicted in Table 1. Furthermore, we
verify the insights/trends for various workloads with different
computational requirements that cannot be captured by a subset

of benchmarks in a benchmarks suite and corroborate these results
with our presented trends (for brevity, we present a subset of the
results, however, our analysis and derived conclusions are based
on our complete set of experimental results).

5.1. Model setup

We consider the ARM7TDMI processor core, which is a 32-
bit low-power processor with 32-bit instruction and data bus
widths [1,2]. We consider the following cache parameters [38]:
cache sizes of 8 KB, 8 KB, and 64 KB for the L1-I, L1-D, and L2 caches,
respectively; associativities of direct-mapped, 2-way, and 2-way
for the L1-I, L1-D, and L2 caches, respectively; and block (line) sizes
of 64 B, 16 B, and 64 B for the L1-I, L1-D, and L2 caches, respectively.
We assume a 32 MB MM for all architectures, which is typical for
mobile embedded systems (e.g., Sharp Zaurus SL-5600 personal
digital assistant (PDA)) [42]. To provide a fair comparison between
architectures, we ensure that the total L2 cache size for the shared
L2 cache architectures and the private L2 cache architectures is
equal. Furthermore, the shared bus bandwidth for the shared LLC
(L2 in our experiments) architectures is n times the bandwidth
of the private LLC architectures where n is the number of cores
sharing an LLC cache.

We implement our queueing network models of the multi-core
embedded architectures using the SHARPEmodeling tool/simulator
[31]. Fig. 4 depicts the flow chart for our queueing network model
setup in SHARPE. To set up our queueing network model simu-
lation in SHARPE, we first specify the probabilities for a synthe-
sized workload for a given multi-core architecture (Section 3). We
then calculate the service rates for the service centers used in our
multi-core queueing models. We assume that the processor core
delivers 15 MIPS @ 16.8 MHz [1] (cycle time = 1/(16.8 × 106) =

59.524 ns), which for 32-bit instructions corresponds to a service
rate of 480Mbps. We assume L1-I, L1-D, and L2 cache, andMM ac-
cess latencies of 2, 2, 10, and 100 cycles, respectively [1,14]. With
an L1-I cache line size of 64 B, an access latency of 2 cycles, and a
32-bit (4 B) bus, transferring 64 B requires 64/4 = 16 cycles,which
results in a total L1-I time (cycles) = access time+transfer time =

2 + 16 = 18 cycles, with a corresponding L1-I service rate =

(64 × 8)/(18 × 59.524 × 10−9) = 477.86 Mbps. With an L1-D
cache line size of 16 B, the transfer time = 16/4 = 4 cycles, and
the total L1-D time = 2+4 = 6 cycles, with a corresponding L1-D
service rate = (16×8)/(6×59.524×10−9) = 358.4Mbps. With
an L2 cache line size of 64 B, the transfer time = 64/4 = 16 cycles,
which gives the total L2 time = 10 + 16 = 26 cycles, with a cor-
responding L2 service rate = (64 × 8)/(26 × 59.524 × 10−9) =

330.83 Mbps. With an MM line size of 64 B, the transfer time =

64/4 = 16 cycles, which gives a total MM time = 100 + 16 =

116 cycles, with a corresponding service rate = (64 × 8)/(116 ×

59.524 × 10−9) = 74.15 Mbps. We assume that each individual
job/task requires processing 1 Mb of instruction and data, which is
implicit in our queueing models via service rate specifications (en-
sures steady state/equilibrium behavior of the queueing network
for our simulated workloads).

After service rate assignments for the architectural elements,
we create a multi-chain product form the queueing network that
outlines the architectural elements in each chain along with the
associated transition probabilities between the architectural ele-
ments. Next, we specify the appropriate scheduling disciplines for
the architectural elements (Section 3), such as FCFS scheduling for
the processor core, L1-I, L1-D, and L2, and PS for MM. We spec-
ify the number of jobs for each chain in the queueing network
depending on the workloads (parallelized tasks in a workload
or multi-programmed workloads). To simulate a particular (sin-
gle) benchmark in SHARPE, we set the number of jobs equal to 1
in our queueing network models. Finally, we compute statistics



Author's personal copy

1882 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Probabilities assignment for synthesized 
workload and architecture

Service rates assignment for 
architectural elements

Multi-chain product-form 
queueing network creation

Statistics computation for 
architectural elements

Number of jobs specification 
for each chain

Scheduling discipline specification 
for architectural elements

Architectural elements: Processor core, level one instruction (L1-I) cache, 
level one data (L1-D) cache, level two (L2) cache, 

and main memory (MM)

Fig. 4. Flow chart for our queueing network model setup in SHARPE.

(e.g., queue length, throughput, utilization, response time) from
the queueing networkmodels for a given number of jobs for the ar-
chitectural elements. The code snippets for implementing the flow
chart for our queueing network model in SHARPE are presented in
Appendix A.

5.2. The effects of workloads on performance

In this subsection, we present the results describing the effects
of different workloads on the response time and throughput per-
formancemetrics when the L1-1, L1-D, and L2 cachemiss rates are
held constant. We discuss the effects of varying the computing re-
quirements of these workloads. The computing requirement of a
workload signifies theworkload’s demand for processor resources,
which depends on the percentage of arithmetic, logic, and control
instructions in the workload relative to the load and store instruc-
tions. The computing requirements of the workloads are captured
by pPP and pPM in our models.

The results show that the response time for the processor core,
L1-I, and L1-D for 2P-2L1ID-1L2-1M is very close (within 7%) to 2P-
2L1ID-2L2-1M as the computing requirements of the processor-
bound workload vary. However, 2P-2L1ID-1L2-1M provides a
21.5% improvement in L2 response time and a 12.3% improvement
in MM response time as compared to 2P-2L1ID-2L2-1M when
pPP = 0.7 and a 23.6% improvement in L2 response time and a 1.4%
improvement in MM response time when pPP = 0.95 and N = 5.
4P-4L1ID-2L2-1M provides a 22.3% improvement in L2 response
time and a 13% improvement inMM response time over 4P-4L1ID-
4L2-1M when pPP = 0.7 and N = 5. 4P-4L1ID-2L2-1M provides a
22.3% improvement in L2 response time and a 3% improvement in
MM response time as compared to 4P-4L1ID-4L2-1M when pPP =

0.95 because a larger pPP results in fewerMMreferences. 4P-4L1ID-
1L2-1M provides a 7.4% improvement in L2 response time with a
5.2% degradation in MM response time as compared to 4P-4L1ID-
2L2-1M when pPP = 0.7 and N = 5. 4P-4L1ID-1L2-1M provides
a 12.4% improvement in L2 response time with no degradation
in MM response time over 4P-4L1ID-2L2-1M when pPP = 0.95
and N = 5. These results indicate that the shared LLCs provide
more improvement in L2 response time as compared to the hybrid
and private LLCs for more compute-intensive processor-bound
workloads. However, the hybrid LLCs provide better MM response
time than shared LLCs for more compute-intensive processor-
bound workloads. These results suggest that hybrid LLCs may
be more suitable than shared LLCs in terms of scalability and
overall response time for comparatively less compute-intensive
processor-bound workloads.

Response time and throughput results reveal that memory
subsystems for an architecture with private, shared, or hybrid LLCs
have a profound impact on the response time of the architecture

Table 7
Area and power consumption of architectural elements for two-core embedded
architectures.

Element 2P-2L1ID-2L2-1M 2P-2L1ID-1L2-1M
Area (mm2) Power (mW) Area (mm2) Power (mW)

Core 0.065 2.016 0.065 2.016
L1-I 0.11 135.44 0.11 135.44
L1-D 0.0998 79.76 0.0998 79.76
L2 0.578 307.68 0.5075 253.283
MM 34.22 3174.12 34.22 3174.12

and throughputs for the L2 andMMwith relatively little impact on
throughput for the processor cores, L1-I, and L1-D.

The effects of different cache miss rates on performance for
synthesized workloads are presented in Appendix B. Further in-
sights obtained from our queueing theoretic models on the effects
of workloads on response time and throughput are presented in
Appendix C.

5.3. Performance per watt and performance per unit area computa-
tions

In this subsection, we compute performance per watt and per-
formance per unit area for the multi-core embedded architectures
using our queueing theoretic models. The performance per unit
area is an importantmetric for embedded systemswhere the entire
system is constrained to a limited space, however, performance
per unit area is less important for desktop and supercomputing.
Our performance per watt and performance per unit area compu-
tations assist in relative comparisons between differentmulti-core
embedded architectures. For these computations, we first need to
calculate the area and worst-case (peak) power consumption for
different multi-core embedded architectures, which we obtain us-
ing CACTI 6.5 [6], International Technology Roadmap for Semicon-
ductors (ITRS) specifications [17], and datasheets for multi-core
embedded architectures.

Tables 7 and 8 show the area and peak power consumption for
the processor cores, L1-I, L1-D, L2, and MM for two-core and four-
core embedded architectures, respectively, assuming a 45 nm pro-
cess. The core areas are calculated using Moore’s law and the ITRS
specifications [17] (i.e., the chip area required for the same num-
ber of transistors reduces by approximately 1/2× every technol-
ogy node (process) generation). For example, ARM7TDMI core area
is 0.26 mm2 at 130 nm process [3], the core area at 45 nm pro-
cess (after three technology node generations, i.e., 130 nm, 90 nm,
65 nm, 45 nm) is approximately (1/2)3 × 0.26 = 0.0325 mm2.

To illustrate our area and power calculation procedure that can
be combined with the results obtained from our queueing the-
oretic models to obtain the performance per unit area and the



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1883

Table 8
Area and power consumption of architectural elements for four-core embedded architectures.

Element 4P-4L1ID-4L2-1M 4P-4L1ID-1L2-1M 4P-4L1ID-2L2-1M
Area (mm2) Power (mW) Area (mm2) Power (mW) Area (mm2) Power (mW)

Core 0.13 4.032 0.13 4.032 0.13 4.032
L1-I 0.2212 270.88 0.2212 270.88 0.2212 270.88
L1-D 0.1996 159.52 0.1996 159.52 0.1996 159.52
L2 1.1556 615.36 0.9366 354.04 1.015 506.8
MM 34.22 3174.12 34.22 3174.12 34.22 3174.12

performance perwatt,we provide the example area andpower cal-
culations for 2P-2L1ID-2L2-1M. The area calculations for 2P-2L1ID-
2L2-1M are: total processor core area = 2×0.0325 = 0.065mm2;
total L1-I cache area = 2 × (0.281878 × 0.19619) = 2 × 0.0553
= 0.11 mm2 (CACTI provides cache height × width for individ-
ual caches (e.g., 0.281878 × 0.19619 for the L1-I cache)); total
L1-D cache area = 2 × (0.209723 × 0.23785) = 2 × 0.0499
= 0.0998 mm2; total L2 cache area = 2 × (0.45166 × 0.639594)
= 2×0.2889 = 0.578mm2; total MM area = 8.38777×4.08034
= 34.22 mm2. The power consumption of the caches and MM is
the sum of the dynamic power and the leakage power. Since CACTI
gives dynamic energy and access time, dynamic power is calcu-
lated as the ratio of the dynamic energy to the access time. For ex-
ample, for the L1-I cache, the dynamic power = 0.020362 (nJ)/
0.358448 (ns) = 56.8mWand the leakage power = 10.9229mW,
which gives the L1-I power consumption = 56.8 + 10.9229 =

67.72 mW. For the MM dynamic power calculation, we cal-
culate the average dynamic energy per read and write access
= (1.27955+1.26155)/2 = 1.27055mJ,which gives the dynamic
power = 1.27055 (nJ)/5.45309 (ns) = 233 mW. The total power
consumption for the MM = 233 + 2941.12 = 3174.12mW
(2941.12 mW is the leakage power for the MM). The power con-
sumption calculations for 2P-2L1ID-2L2-1M are: total processor
core power consumption = 2 × 1.008 = 2.016 mW; total L1-I
cache power consumption = 2 × 67.72 = 135.44 mW; total L1-
D cache power consumption = 2 × 39.88 = 79.76 mW; total L2
cache power consumption = 2 × 153.84 = 307.68 mW.

The area and power results for multi-core embedded architec-
tures show that the MM consumes the most area and power con-
sumption followed by L2, L1-I, L1-D, and the processor core. We
observe that the shared L2 caches for 2P-2L1ID-1L2-1M and 4P-
4L1ID-1L2-1M require 14% and 24% less area and consume 21.5%
and 74% less power as compared to the private L2 caches for 2P-
2L1ID-2L2-1M and 4P-4L1ID-4L2-1M, respectively. The hybrid L2
caches for 4P-4L1ID-2L2-1M require 14% less area and consume
21.4% less power as compared to the private L2 caches for 4P-
4L1ID-4L2-1M whereas the shared L2 cache for 4P-4L1ID-1L2-1M
requires 8.7% less area and consumes 43% less power as compared
to the hybrid L2 caches for 4P-4L1ID-2L2-1M. These results indi-
cate that the power-efficiency of shared LLCs improves as the num-
ber of cores increases.

Table 9 shows the area and peak power consumption for dif-
ferent multi-core embedded architectures. Table 9 does not in-
clude the MM area and power consumption, which allows the
results to isolate the area and peak power consumption of the
processor cores and caches. This MM isolation from Table 9 en-
ables deeper insights and a fair comparison for the embedded ar-
chitectures since we assume an off-chip MM that has the same
size and characteristics for all evaluated architectures. To illus-
trate the area and power calculations for multi-core embedded
architectures, we provide area and power consumption calcula-
tions for 2P-2L1ID-2L2-1M as an example. We point out that these
area and power consumption calculations use constituent area and
power consumption calculations for the architectural elements in
amulti-core embedded architecture. For 2P-2L1ID-2L2-1M, the to-
tal cache area = 0.11 + 0.0998 + 0.578 = 0.7878 mm2, which

Table 9
Area and power consumption for multi-core architectures.

Architecture Area (mm2) Power (mW)

2P-2L1ID-2L2-1M 0.8528 524.896
2P-2L1ID-1L2-1M 0.7823 470.5
4P-4L1ID-4L2-1M 1.7064 1049.79
4P-4L1ID-1L2-1M 1.4874 788.472
4P-4L1ID-2L2-1M 1.5658 941.232

gives an overall area (excluding the MM) = 0.065 + 0.7878 =

0.8528 mm2 (0.065 mm2 is the area for the processor cores as
calculated above). For 2P-2L1ID-2L2-1M, the total cache power
consumption = 135.44 + 79.76 + 307.68 = 522.88 mW, which
gives an overall power consumption (excluding the MM) =

2.016+522.88 = 524.896mW (2.016mW is the power consump-
tion for the processor cores).

The overall area and power consumption results for different
multi-core embedded architectures (Table 9) show that 2P-2L1ID-
2L2-1M requires 8.3% more on-chip area and consumes 10.4%
more power as compared to 2P-2L1ID-1L2-1M. 4P-4L1ID-4L2-
1M requires 8.2% and 12.8% more on-chip area and consumes
10.3% and 24.9% more power as compared to 4P-4L1ID-2L2-1M
and 4P-4L1ID-1L2-1M, respectively. These results reveal that the
architectures with shared LLCs become more area and power
efficient as compared to the architectures with private or hybrid
LLCs as the number of cores in the architecture increases.

We discuss performance per watt and performance per unit
area results for multi-core embedded architectures assuming 64-
bit floating point operations. We observe that the performance
per watt and performance per unit area delivered by the proces-
sor cores and the L1-I and L1-D caches for these architectures
are very close (within 7%), however, the L2 cache presents inter-
esting results. Although the MM performance per watt for these
architectures also differs, this difference does not provide mean-
ingful insights for the following two reasons: (1) the MM is typ-
ically off-chip and the performance per watt is more critical for
on-chip architectural components than the off-chip components,
and (2) if more requests are satisfied by the LLC, then fewer
requests are deferred to the MM, which decreases the MM
throughput and hence the performance per watt. Therefore, we
mainly focus on the performance per watt and performance per
unit area calculations for the LLCs for our studied architectures.

We calculate the performance per watt results for memory-
bound workloads when the L1-I, L1-D, and L2 cache miss rates
are 0.01, 0.13, and 0.3, respectively. The performance per watt val-
ues for the L2 caches are 2.42 MFLOPS/W and 3.1 MFLOPS/W and
the performance per watt for the MM is 0.164 MFLOPS/W and
0.074 MFLOPS/W for 2P-2L1ID-2L2-1M and 2P-2L1ID-1L2-1M, re-
spectively, when pPM = 0.95 and N = 5. Our performance per
watt calculations for 2P-2L1ID-2L2-1M incorporate the aggregate
throughput for the L2 cache, which is the sum of the through-
puts for the two private L2 caches in 2P-2L1ID-2L2-1M. The per-
formance per watt for the L2 caches drops to 2.02 MFLOPS/W
and 2.53 MFLOPS/W whereas the performance per watt for the
MM drops to 0.137 MFLOPS/W and 0.06 MFLOPS/W for 2P-2L1ID-
2L2-1M and 2P-2L1ID-1L2-1M, respectively, when pPM = 0.7



Author's personal copy

1884 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

and N = 5. The performance per watt values for the L2 caches
are 2.21 MFLOPS/W, 4.77 MFLOPS/W, and 3.08 MFLOPS/W for 4P-
4L1ID-4L2-1M, 4P-4L1ID-1L2-1M, and 4P-4L1ID-2L2-1M, respec-
tively,when pPM = 0.95 andN = 10.Weobserve similar trends for
mixed workloads and processor-bound workloads but with com-
paratively lower performance per watt for the LLC caches because
these workloads have comparatively lower pPM as compared to
memory-bound workloads. The performance per watt for caches
drops as pPM decreases because fewer requests are directed to the
LLC caches for a low pPM , which decreases the throughput and
hence the performance per watt. These results indicate that the ar-
chitectures with shared LLCs provide the highest LLC performance
per watt followed by architectures with hybrid LLCs and private
LLCs. The difference in performance per watt for these multi-core
architectures is mainly due to the difference in the LLC power con-
sumption as there is a relatively small difference in the throughput
delivered by these architectures for the sameworkloadswith iden-
tical cache miss rates.

Based on our experimental results for different cachemiss rates
and workloads, we determine the peak performance per watt
for the LLCs for our studied multi-core embedded architectures.
The peak performance per watt values for the L2 caches are 11.8
MFLOPS/W and 14.3 MFLOPS/W for 2P-2L1ID-2L2-1M and 2P-
2L1ID-1L2-1M, respectively, when the L1-I, L1-D, and L2 cache
miss rates are all equal to 0.3, pPM = 0.9, and N = 20. The peak
performance per watt values for the L2 caches are 7.6 MFLOPS/W,
9.2 MFLOPS/W, and 13.8 MFLOPS/W for 4P-4L1ID-4L2-1M, 4P-
4L1ID-2L2-1M, and 4P-4L1ID-1L2-1M, respectively, when the L1-I,
L1-D, and L2 cache miss rates are all equal to 0.2, pPM = 0.9, and
N = 20. Results reveal that these architectures deliver peak LLC
performance per watt for workloads with mid-range cache miss
rates (e.g., miss rates of 0.2 or 0.3) because at higher cache miss
rates, a larger number of requests are directed towards the LLCs,
which causes the LLCs utilization to be close to one, which results
in an increased response time and decreased throughput.

To investigate the effects of cachemiss rates on theperformance
per watt of the LLCs, we calculate the performance for watt for
memory-bound workloads (pPM = 0.9) at high cache miss rates:
L1-1 = 0.5, L1-D = 0.7, and L2 = 0.7, and when N = 10. The
performance per watt values for the L2 caches are 5.4 MFLOPS/W
and 6.55 MFLOPS/W for 2P-2L1ID-2L2-1M and 2P-2L1ID-1L2-1M,
respectively, whereas the performance per watt values are 2.7
MFLOPS/W, 3.28 MFLOPS/W, and 4.69 MFLOPS/W for 4P-4L1ID-
4L2-1M, 4P-4L1ID-2L2-1M, and 4P-4L1ID-2L2-1M, respectively.
The results reveal that at high cache miss rates, the performance
per watt of the LLCs increases because relatively more requests
are directed to the LLCs at higher cache miss rates than lower
cache miss rates, which increases the throughput, and hence the
performance per watt.

We calculate the performance per unit area results formemory-
bound workloads when the L1-I, L1-D, and L2 cache miss
rates are 0.01, 0.13, and 0.3, respectively. The performance per
unit area values for the L2 caches are 1.29 MFLOPS/mm2 and
1.54 MFLOPS/mm2 and the performance per unit area values for
the MM are 15.25 KFLOPS/mm2 and 6.9 KFLOPS/mm2 for 2P-
2L1ID-2L2-1M and 2P-2L1ID-1L2-1M, respectively, when pPM =

0.95 and N = 5. The performance per unit area values for the
L2 caches drop to 1.08 MFLOPS/mm2 and 1.26 MFLOPS/mm2

whereas the performance per unit area values for the MM drop
to 12.68 KFLOPS/mm2 and 5.6 KFLOPS/mm2 for 2P-2L1ID-2L2-
1M and 2P-2L1ID-1L2-1M, respectively, when pPM = 0.7 and
N = 5. The performance per unit area values for the L2 caches
are 1.18MFLOPS/mm2, 1.8MFLOPS/mm2, and 1.54MFLOPS/mm2

for 4P-4L1ID-4L2-1M, 4P-4L1ID-1L2-1M, and 4P-4L1ID-2L2-1M,
respectively, when pPM = 0.95 and N = 10. We observe simi-
lar trends for performance per unit area for mixed and processor-
boundworkloads as for the performance perwatt trends explained

above. These results indicate that the architectures with shared
LLCs provide the highest LLC performance per unit area followed
by architectures with hybrid LLCs and private LLCs. The difference
in performance per unit area for these multi-core architectures is
mainly due to the difference in the LLC throughput as we ensure
that the total LLC area occupied by a multi-core embedded archi-
tecture with a given number of cores remains close enough (a mi-
nor difference in the occupied area of the LLCs occurs for different
multi-core embedded architectures due to practical implementa-
tion and fabrication constraints as determined byCACTI) to provide
a fair comparison.

Based on our queueing theoretic models’ results and area
calculations, we determine the peak performance per unit area
for the LLCs for our studied multi-core embedded architectures.
The peak performance per unit area values for the L2 caches are
6.27 MFLOPS/mm2 and 7.14 MFLOPS/mm2 for 2P-2L1ID-2L2-1M
and 2P-2L1ID-1L2-1M, respectively, when the L1-I, L1-D, and L2
cache miss rates are all equal to 0.3, pPM = 0.9, and N = 20.
The peak performance per unit area values for the L2 caches are
4.04 MFLOPS/mm2, 4.6 MFLOPS/mm2, and 5.22 MFLOPS/mm2

for 4P-4L1ID-4L2-1M, 4P-4L1ID-2L2-1M, and 4P-4L1ID-1L2-1M,
respectively, when the L1-I, L1-D, and L2 cache miss rates are all
equal to 0.2, pPM = 0.9, and N = 20. Other results for peak
performance per unit area reveal similar trends as for the peak
performance per watt trends and therefore omit these discussions
for brevity.

6. Conclusions and future work

In this paper, we developed closed product-form queueing net-
work models for performance evaluation of multi-core embedded
architectures for differentworkload characteristics. The simulation
results for the SPLASH-2 benchmarks executing on the SESC sim-
ulator (an architecture-level cycle-accurate simulator) verified the
architectural evaluation insights obtained from our queueing the-
oretic models. Results revealed that our queueing theoretic model
qualitatively evaluatedmulti-core architectures accuratelywith an
average difference of 5.6% as compared to the architectures’ eval-
uations from the SESC simulator. The performance evaluation re-
sults indicated that the architectures with shared LLCs provided
better cache response time and MFLOPS/W than the private LLCs
for all cachemiss rates especially as the number of cores increases.
The results also revealed the disadvantage of shared LLCs indicat-
ing that the shared LLCs are more likely to cause a main memory
response time bottleneck for larger cache miss rates as compared
to the private LLCs. The memory bottleneck caused by shared LLCs
may lead to increased response time for processor cores because
of stalling or idle waiting. However, the results indicated that the
main memory bottleneck created by shared LLCs can be mitigated
by using a hybrid of private and shared LLCs (i.e., sharing LLCs by a
fewer number of cores) though hybrid LLCs consume more power
than the shared LLCs and deliver comparatively less MFLOPS/W.
The performance per watt and performance per unit area results
for themulti-core embedded architectures revealed that themulti-
core architectures with shared LLCs become more area and power
efficient as compared to the architectures with private LLCs as the
number of processor cores in the architecture increases.

In our future work, we plan to enhance our queueing theoretic
models for performance evaluation of heterogeneous multi-core
embedded architectures.

Acknowledgments

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the National Science
Foundation (NSF) (CNS-0953447 and CNS-0905308), and theOffice



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1885

of Naval Research (ONR R16480). Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
NSERC, the NSF, and the ONR. Furthermore, the views expressed
are those of the author(s) and do not reflect the official policy or
position of the Department of Defense or the US Government.

Appendix A. Queueing network model setup in SHARPE

Our queueing network model setup in SHARPE requires several
steps, as depicted in the flow chart (Fig. 4). This section presents
code snippets for implementing the flow chart for our queue-
ing network model in SHARPE. To set up our queueing network
model simulation in SHARPE, we first specify the probabilities
for a synthesized workload for a given multi-core architecture.
For example, for 2P-2L1ID-2L2-1M for memory-bound workloads
(processor-to-processor probability pPP = 0.1, processor-to-
memory probability pPM = 0.9) assuming that the L1-I, L1-D, and
L2 cache miss rates are 25%, 50%, and 30%, respectively, and L1-I
and L1-D access ratios are 0.8 and 0.2, respectively, the probabili-
ties are set as: pc1P1P1

= 0.1, pc1P1L1I
= 0.72, pc1P1L1D

= 0.18, pc1L1IP1
= 0.75, pc1L1DP1

= 0.5, pc1L1IL2
= 0.25, pc1L1DL2

= 0.5, pc1L2P1
= 0.7,

pc1L2M
= 0.3, pc1MP1

= 1 (different probabilities can be assigned
for processor-bound ormixedworkloads). The code snippet for as-
signing these probabilities in SHARPE for the two chains is:

bind
pr1P1P1 0.1
pr1P1L1I 0.72
pr1L1IP1 0.75
pr1L1IL2 0.25
pr1P1L1D 0.18
pr1L1DP1 0.5
pr1L1DL2 0.5
pr1L2P1 0.7
pr1L2M 0.3

pr2P2P2 0.1
pr2P2L1I 0.72
pr2L1IP2 0.75
pr2L1IL2 0.25
pr2P2L1D 0.18
pr2L1DP2 0.5
pr2L1DL2 0.5
pr2L2P2 0.7
pr2L2M 0.7

Next, we assign the service rates for the architectural elements
(processor cores, caches, and MM) in Mbps.

P1rate 480
P2rate 480
L1Irate 477.86
L1Drate 358.4
L2rate 330.83
// Main memory service rate for chain 1
sMrate1 74.15
// Main memory service rate for chain 2
sMrate2 74.15

After assigning the service rates, we specify the architectural
elements in each chain of the multi-chain product form queueing
network with associated transition probabilities between the ar-
chitectural elements. The queueing network performs calculations
for a given number of jobs NumJobs.

mpfqn embarch1(NumJobs)

chain 1
P1 1L1I pr1P1L1I

1L1I 1L2 pr1L1IL2
1L1I P1 pr1L1IP1
P1 1L1D pr1P1L1D
1L1D 1L2 pr1L1DL2
1L1D P1 pr1L1DP1
1L2 P1 pr1L2P1
1L2 M pr1L2M
M P1 1
end

chain 2
P2 2L1I pr2P2L1I
2L1I 2L2 pr2L1IL2
2L1I P2 pr2L1IP2
P2 2L1D pr2P2L1D
2L1D 2L2 pr2L1DL2
2L1D P2 pr2L1DP2
2L2 P2 pr2L2P2
2L2 M pr2L2M
M P2 1
end

end

In the next step, the scheduling discipline is specified for the
architectural elements along with the associated service rates for
these elements. For example, FCFS scheduling for the processor
core, L1-I, L1-D, and L2, and PS for MM.

P1 fcfs P1rate
end
P2 fcfs P2rate
end

1L1I fcfs L1Irate
end
1L1D fcfs L1Drate
end
2L1I fcfs L1Irate
end
2L1D fcfs L1Drate
end
1L2 fcfs L2rate
end
2L2 fcfs L2rate
end

M ps
1 sMrate1
2 sMrate2
end

Next we specify the number of jobs for each chain. For a bal-
anced workload, the number of jobs should be divided equally be-
tween the two chains.

1 NumJobs/2
2 NumJobs/2
end

Finally, we compute statistics (e.g., queue length, throughput,
utilization, response time) from the queueing network model for a
given number of jobs for the architectural elements. The SHARPE
code snippet belowcalculates these statistics for the processor core
in chain 1. The code loops through the number of jobs varying from
five to twenty, incrementing by five jobs in each iteration.

loop NumJobs,5,20,5
expr mqlength(embarch1,P1;NumJobs)
expr mtput(embarch1,P1;NumJobs)
expr mutil(embarch1,P1;NumJobs)
expr mrtime(embarch1,P1;NumJobs)

end



Author's personal copy

1886 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Appendix B. The effects of cache miss rates on performance

In this subsection, we present the results describing the ef-
fects of different L1-I, L1-D, and L2 cache miss rates on the ar-
chitecture response time and throughput performance metrics for
mixed, processor-bound, and memory-bound workloads. Consid-
ering the effects of different cachemiss rates is an important aspect
of performance evaluation of multi-core embedded architectures
with shared resources because cache miss rates give an indication
whether the threads (corresponding to tasks) are likely to expe-
rience cache contention. Threads with higher LLC miss rates are
more likely to have large working sets since each miss results in
the allocation of a new cache line. These working sets may suffer
from contention because threads may repeatedly evict the other
threads’ data (i.e., cache thrashing) [12]. We obtained the results
for cache miss rates of 0.0001, 0.05, and 0.2, up to 0.5, 0.7, and 0.7
for the L1-I, L1-D, and L2 caches, respectively. These cachemiss rate
ranges represent typical multi-core embedded systems for a wide
diversity of workloads [26,9,19].

Fig. 5 depicts the effects of cache miss rate on response time
for mixed workloads (pPP = 0.5, pPM = 0.5) for 2P-2L1ID-2L2-
1M as the number of jobs N varies. We observe that the MM
response time increases by 314% as miss rates for the L1-1, L1-
D, and L2 caches increases from 0.0001, 0.05, and 0.2, to 0.5, 0.7,
and 0.7, respectively, when N = 5. This response time increase
is explained by the fact that as the cache miss rate increases, the
number of accesses to MM increases, which increases the queue
length and MM utilization, which causes an increase in the MM
response time. The L1-I and L1-D response times decrease by 14%
and 18%, respectively, as the miss rates for the L1-1 and L1-D
caches increase from 0.0001 and 0.05, respectively, to 0.5 and 0.7,
respectively, when N = 5. This decrease in response time occurs
because increased miss rates decrease the L1-1 and L1-D queue
lengths and utilizations. The L2 cache response time increases by
12% as the miss rates for the L1-1 and L1-D caches increase from
0.0001 and 0.05, respectively, to 0.5 and 0.7, respectively, when
N = 5 (even though the L2 cache miss rate also increases from 0.2
to 0.7 but increased L1-I and L1-D miss rates effectively increase
the number of L2 cache references, which increases the L2 cache
queue length and utilization and thus L2 cache response time).

We observed that for mixed workloads (pPP = 0.5, pPM = 0.5),
the response times for the processor core, L1-I, L1-D, and MM
for 2P-2L1ID-1L2-1M are very close to the response times for 2P-
2L1ID-2L2-1M, however, the L2 response time presents interesting
differences. The L2 response time for 2P-2L1ID-1L2-1M is 22.3%
less than the L2 response time for 2P-2L1ID-2L2-1Mwhen the L1-1,
L1-D, and L2 cachemiss rates are 0.0001, 0.05, and0.2, respectively,
andN = 5 (similar percentage differenceswere observed for other
values of N) whereas the L2 response time for 2P-2L1ID-1L2-1M
is only 6.5% less than the L2 response time when the L1-1, L1-
D, and L2 cache miss rates are 0.5, 0.7, and 0.7, respectively. This
result shows that the shared L2 cache (of comparable area as the
sum of the private L2 caches) performs better than the private
L2 caches in terms of response time for small cache miss rates,
however, the performance improvement decreases as the cache
miss rate increases. Similar trends were observed for processor-
bound (pPP = 0.9, pPM = 0.1) and memory-bound workloads
(pPP = 0.1, pPM = 0.9).

For mixed workloads, the response time for the processor core,
L1-I, L1-D, and MM for 4P-4L1ID-1L2-1M is 1.2×, 1×, 1.1×, and
2.4× greater than the corresponding architectural elements for 4P-
4L1ID-4L2-1Mwhereas the L2 response time for 4P-4L1ID-1L2-1M
is 1.1× less than the L2 response time for 4P-4L1ID-4L2-1M when
the L1-1, L1-D, and L2 cache miss rates are 0.5, 0.7, and 0.7, re-
spectively, and N = 5. This observation, in conjunction with our
other experiments’ results, reveals that the architectures with pri-
vate LLCs provide improved response time for processor cores and

L1 caches as compared to the architectures with shared LLCs, how-
ever, the response time of the LLC alone can be slightly better for
architectures with shared LLCs because of the larger effective size
for each core. The results also indicate that the MM response time
could become a bottleneck for architectures with shared LLCs, es-
pecially when the cache miss rates become high. Another interest-
ing observation is that shared LLCs could lead to increased response
time for processor cores as compared to the private LLCs because
of stalling or idle waiting of processor cores for bottlenecks caused
by MM. Similar trends were observed for processor- and memory-
bound workloads.

For mixed workloads, the L2 response time for 4P-4L1ID-2L2-
1M is 1.2× less than 4P-4L1ID-4L2-1M and 1.1× greater than 4P-
4L1ID-1L2-1M when the L1-1, L1-D, and L2 cache miss rates are
0.0001, 0.05, and 0.2, respectively, and N = 5. MM response time
for 4P-4L1ID-2L2-1M is 2.3× less than 4P-4L1ID-1L2-1M whereas
MM response time for 4P-4L1ID-2L2-1M and 4P-4L1ID-4L2-1M is
the same when the L1-1, L1-D, and L2 cache miss rates are 0.5,
0.7, and 0.7, respectively, and N = 5. The response times for the
processor core and L1-I/D are comparable for the three archi-
tectures (4P-4L1ID-4L2-1M, 4P-4L1ID-2L2-1M, and 4P-4L1ID-1L2-
1M). These results, in conjunction with our other experiments’
results, show that having LLCs shared by fewer cores (e.g., the
L2 cache shared by two cores in our considered architecture) do
not introduce MM as a response time bottleneck whereas the MM
becomes the bottleneck as more cores share the LLCs, especially
for large cache miss rates. Similar trends were observed for the
processor- and memory-bound workloads.

We observe the effects of cache miss rates on throughput for
various multi-core embedded architectures. For mixed workloads,
the throughput for the processor core, L1-I, L1-D, and MM for
2P-2L1ID-1L2-1M is very close to the throughput for 2P-2L1ID-
2L2-1M, however, L2 throughput for 2P-2L1ID-1L2-1M is 100%
greater on average than the L2 throughput for 2P-2L1ID-2L2-1M
for different miss rates for the L1-1, L1-D, and L2 and N = 5.
However, the combined throughput of the two private L2 caches
in 2P-2L1ID-2L2-1M is comparable to the L2 throughput for 2P-
2L1ID-1L2-1M. This shows that the shared and private L2 caches
provide comparable net throughputs for the two architectures. The
throughput for the processor core, L1-I, L1-D, and L2 for 4P-4L1ID-
4L2-1M is 2.1× less on average than the corresponding 2P-2L1ID-
2L2-1M architectural elements whereas the throughput for the
processor core, L1-1, L1-D, and L2 for the two architectures is the
same when the miss rates for the L1-1, L1-D, and L2 caches are
0.5, 0.7, and 0.7, respectively, and N = 5. This indicates that the
throughput for the individual architectural elements (except MM
since MM is shared for both the architectures) decreases for the
architecturewithmore cores since theworkload remains the same.
The throughput for the processor core, L1-I, L1-D, L2, and MM for
4P-4L1ID-2L2-1M is 1.5×, 1.5×, 1.5×, 2.5×, and 1.3× less than the
throughput for the corresponding 4P-4L1ID-1L2-1M architectural
elements when the miss rates for the L1-1, L1-D, and L2 caches are
0.0001, 0.05, and 0.2, respectively, and N = 5. These observations
reveal that changing the L2 cache from private to shared can also
impact the throughput for other architectural elements because of
the interactions between these elements.

We evaluate the effects of cache miss rates on throughput for
processor-bound workloads (pPP = 0.9, pPM = 0.1) for 2P-2L1ID-
2L2-1M as N varies. Results reveal that there is no appreciable in-
crease in the processor core throughput as N increases from 5 to
20 because the processors continue to operate at utilization close
to 1 when the L1-1, L1-D, and L2 cache miss rates are 0.3, 0.3, and
0.3, respectively (similar trendswere observed for other cachemiss
rates). The MM throughput increases by 4.67% (4.67% − 1.64% =

3.03% greater than the mixed workloads) as N increases from 5
to 20 when L1-1, L1-D, and L2 cache miss rates are 0.5, 0.7, and



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1887

5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

Core
L1–I
L1–D
L2
M

L1–I Miss Rate: 0.0001
L1–D Miss Rate: 0.05
L2 Miss Rate: 0.2

2P–2L1ID–2L2–1M

5 10 15 20
0

5

10

15

20

25

30

35

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

Core
L1–I
L1–D
L2
M

2P–2L1ID–2L2–1ML1–I Miss Rate: 0.3
L1–D Miss Rate: 0.3
L2 Miss Rate: 0.3

Fig. 5. The effects of cache miss rate on response time (ms) for mixed workloads for 2P-2L1ID-2L2-1M for a varying number of jobs N .

0.7, respectively. In this case, the MM percentage throughput in-
crease is greater for processor-bound workloads as compared to
mixed workloads because the MM is underutilized for processor-
bound workloads (e.g., a utilization of 0.519 for processor-bound
workloads as compared to a utilization of 0.985 for mixed work-
loads when N = 5). However, the MM absolute throughput for
processor-bound workloads is less than the mixed workloads
(e.g., an MM throughput of 38.5 Mbps for processor-bound work-
loads as compared to an MM throughput of 73 Mbps for mixed
workloads when N = 5). For the processor-bound workloads,
the throughput for the processor core, L1-I, L1-D, and MM for 2P-
2L1ID-1L2-1M is similar to the throughput for 2P-2L1ID-2L2-1M,
however, the L2 throughput for 2P-2L1ID-1L2-1M is 100% greater
than the L2 throughput for 2P-2L1ID-2L2-1M for all cache miss
rates on average and N = 5. Similar trends were observed for the

memory-bound and mixed workloads for the architectures with
two or four cores with private and shared LLCs (these throughput
trends would continue as the number of cores increases).

Appendix C. The effects of workloads on performance

Fig. 6 depicts the effects of varying computing requirements
for processor-bound workloads on response time for 2P-2L1ID-
2L2-1M as N varies where the L1-I, L1-D, and L2 cache miss rates
are 0.01, 0.13, and 0.3, respectively. The figure depicts that as N
increases, the response time for the processor core, L1-I, L1-D,
L2, and MM increases for all values of pPP and pPM . The figure
shows that as pPP increases, the response time of the processor
increases whereas the response times of L1-I, L1-D, L2, and MM
show negligible effects due to the processor-bound nature of the



Author's personal copy

1888 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

5 10 15 20
0

5

10

15

20

25

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

Core
L1–I
L1–D
L2
M

2P–2L1ID–2L2–1M Proc. to proc. prob.: 0.7
Proc. to memory prob.: 0.3

5 10 15 20
0

5

10

15

20

25

Number of Jobs

R
es

po
ns

e 
T

im
e 

(m
s)

Core
L1–I
L1–D
L2
M

2P–2L1ID–2L2–1MProc. to proc. prob.: 0.95
Proc. to memory prob.: 0.05

Fig. 6. The effects of processor-boundworkloads on response time (ms) for 2P-2L1ID-2L2-1M for a varying number of jobsN for cachemiss rates: L1-I = 0.01, L1-D = 0.13,
and L2 = 0.3.

workloads. For example, the processor response time increases by
19.8% as pPP increases from 0.7 to 0.95 when N = 5. The response
times of L1-I, L1-D, L2, andMM decrease by 10.8%, 14.2%, 2.2%, and
15.2%, respectively, as pPP increases from 0.7 to 0.95 when N = 5
because an increase in pPP results in a decrease inmemory requests,
which decreases the response time for the caches and MM.

For memory-bound workloads, 2P-2L1ID-1L2-1M provides a
16.7% improvement in L2 response time and a 31.5% improvement
in MM response time as compared to 2P-2L1ID-2L2-1M when
pPM = 0.95 and N = 5. 2P-2L1ID-1L2-1M provides an 18.2%
improvement in L2 response time and a 25.8% improvement in
MM response time over 2P-2L1ID-2L2-1M when pPM = 0.7 and
N = 5. 4P-4L1ID-2L2-1M provides a 19.8% improvement in L2 re-

sponse time and a 20.2% improvement inMM response time on av-
erage over 4P-4L1ID-4L2-1M for both pPM = 0.95 and pPM = 0.7
and N = 5. 4P-4L1ID-1L2-1M provides a 2.4% improvement in L2
response time with a 15% degradation in MM response time as
compared to 4P-4L1ID-2L2-1M when pPM = 0.95 and N = 5.
4P-4L1ID-1L2-1M provides no improvement in L2 response time,
with an 11.5% degradation in MM response time as compared to
4P-4L1ID-2L2-1M when pPM = 0.7 and N = 5. These results indi-
cate that the shared LLCs provide a larger improvement in L2 and
MM response time as compared to private LLCs formemory-bound
workloads. Furthermore, the hybrid LLCs are more amenable in
terms of response time as compared to the shared and private LLCs
for memory-bound workloads. Similar trends were observed for



Author's personal copy

A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890 1889

the mixed workloads for architectures with two or four cores con-
taining private, shared, or hybrid LLCs.

We observe the effects of varying computing requirements for
processor-bound workloads on throughput for 2P-2L1ID-2L2-1M
as N varies. As N increases, the throughputs for the processor
core, L1-I, L1-D, L2, and MM increase for all values of pPP and
pPM . Furthermore, as pPP increases, the throughput of the processor
core increases whereas the throughputs of L1-I, L1-D, L2, and MM
decrease because of relatively fewer memory requests. For
memory-bound workloads, L1-I and L1-D throughputs for 2P-
2L1ID-2L2-1M and 2P-2L1ID-1L2-1M are comparable, however,
2P-2L1ID-1L2-1M improves the L2 throughput by 106.5% and 111%
(due to larger combined L2 cache) whereas the MM throughput
decreases by 126% and 121.2% when pPM is 0.7 and 0.95, respec-
tively. For memory-bound workloads, 2P-2L1ID-1L2-1M provides
a 5.3% and 3.4% improvement in the processor core throughput
over 2P-2L1ID-2L2-1M when pPM = 0.95 and pPM = 0.7, respec-
tively, and N = 5. For processor-bound workloads, the proces-
sor core throughputs for 2P-2L1ID-2L2-1M and 2P-2L1ID-1L2-1M
are comparable. Similar trendswere observed for the architectures
with four cores containing private, shared, or hybrid LLCs since
the processor cores operate close to saturation (at high utilization)
for processor-boundworkloads, andmemory stalls due tomemory
subsystem response time have a negligible effect on the processor
core performance as memory accesses are completely overlapped
with computation.

References

[1] ARM7TDMI, ATMEL Embedded RISC Microcontroller Core: ARM7TDMI,
November 2010. [Online]. Available: http://www.atmel.com/.

[2] ARM7TDMI, ARM7TDMI Data Sheet, November 2010. [Online]. Available:
http://www.atmel.com/.

[3] ARM, ARM7 Thumb Family, January 2011. [Online]. Available:
http://saluc.engr.uconn.edu/refs/processors/arm/arm7_family.pdf.

[4] J. Balfour, Efficient embedded computing, Ph.D. Dissertation, Department of
Electrical Engineering, Stanford University, May 2010.

[5] D. Benítez, J. Moure, D. Rexachs, E. Luque, Adaptive L2 cache for chip
multiprocessors, in: Proc. of ACM International European Conference on
Parallel and Distributed Computing, Euro-Par, Rennes, France, August 2007.

[6] CACTI, An Integrated Cache and Memory Access Time, Cycle Time, Area,
Leakage, and Dynamic Power Model, November 2010. [Online]. Available:
http://www.hpl.hp.com/research/cacti/.

[7] D. Chandra, F. Guo, S. Kim, Y. Solihin, Predicting inter-thread cache contention
on a chip multi-processor architecture, in: Proc. of the 11th International
Symposium on High-Performance Computer Architecture, HPCA-11, San
Francisco, California, February 2005.

[8] X.E. Chen, T.M. Aamodt, Modeling cache contention and throughput of
multiprogrammed manycore processors, IEEE Trans. Comput. (99) (2011).

[9] Y. Chen, E. Li, J. Li, Y. Zhang, Accelerating video feature extractions in CBVIR on
multi-core systems, Intel Technol. J. 11 (4) (2007) 349–360.

[10] CHREC, NSF Center for High-Performance Reconfigurable Computing, Septem-
ber 2011. [Online]. Available: http://www.chrec.org/.

[11] D. Culler, J. Singh, A. Gupta, Parallel Computer Architecture: A Hard-
ware/Software Approach, Morgan Kaufmann Publishers, Inc., 1999.

[12] A. Fedorova, S. Blagodurov, S. Zhuravlev, Managing contention for shared
resources on multicore processors, Commun. ACM 53 (2) (2010) 49–57.

[13] M.J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design,
Jones & Bartlett Learning, 1995.

[14] Freescale, Cache Latencies of the PowerPC MPC7451, January 2011. [Online].
Available: http://cache.freescale.com/files/32bit/doc/app_note/AN2180.pdf.

[15] Intel, Dual-Core Intel Xeon Processors LV and ULV for Embedded Computing,
March 2011. [Online]. Available:
ftp://download.intel.com/design/intarch/prodbref/31578602.pdf.

[16] E. Ïpek, S.A. McKee, B. Supinski, M. Schulz, R. Caruana, Efficiently exploring
architectural design spaces via predictive modeling, in: Proc. of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS-XII, San Jose, California, October
2006.

[17] ITRS, International Technology Roadmap for Semiconductors, January 2011.
[Online]. Available: http://www.itrs.net/.

[18] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, Wiley, 1991.

[19] P. Jain, Software-assisted cache mechanisms for embedded systems, Ph.D.
Dissertation, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, February 2008.

[20] T.S. Karkhanis, J.E. Smith, A first-order superscalar processormodel, in: Proc. of
the 31st Annual International Symposium on Computer Architecture, ISCA’04,
Munchen, Germany, June 2004.

[21] L. Kleinrock, Queueing Systems, Volume II: Computer Applications, Wiley-
Interscience, 1976.

[22] R. Kumar, D. Tullsen, N. Jouppi, P. Ranganathan, Heterogeneous chip
multiprocessors, IEEE Comput. 38 (11) (2005) 32–38.

[23] O. Kwon, H. Bahn, K. Koh, FARS: a page replacement algorithm for NAND flash
memory based embedded systems, in: Proc. of IEEE CIT, Sydney, Australia, July
2008.

[24] V.Mainkar, K. Trivedi, Performancemodeling using SHARPE, in: Proc. of the 8th
Symposium on Reliability in Electronics, RELECTRONIC, Budapest, Hungary,
August 1991.

[25] J. Medhi, Stochastic Models in Queueing Theory, Academic Press, 2003. An
imprint of Elsevier Science.

[26] R. Min, W.-B. Jone, Y. Hu, Location cache: a low-power L2 cache system, in:
Proc. of ACM International Symposium on Low Power Electronics and Design
(ISLPED), Newport Beach, California, August 2004.

[27] S. Nussbaum, J.E. Smith, Modeling superscalar processors via statistical
simulation, in: Proc. of the 2001 International Conference on Parallel
Architectures and Compilation Techniques, PACT, Barcelona, Spain, September
2001.

[28] M. Reiser, S. Lavenberg, Mean value analysis of closed multi-chain queueing
networks, J. ACM 27 (2) (1980) 313–322.

[29] J. Ruggiero, Measuring cache and memory latency and CPU to memory
bandwidth, Intel White Paper, December 2008, pp. 1–14.

[30] M. Sabry, M. Ruggiero, P. Valle, Performance and energy trade-offs analysis of
L2 On-chip cache architectures for embedded MPSoCs, in: Proc. of IEEE/ACM
Great Lakes Symposium on VLSI, GLSVLSI, Providence, Rhode Island, USA, May
2010.

[31] R. Sahner, K. Trivedi, A. Puliafito, Performance and Reliability Analysis of
Computer Systems: An Example-Based Approach Using the SHARPE Software
Package, Kluwer Academic Publishers, 1996.

[32] N. Samari, G. Schneider, A queueing theory-based analytic model of a
distributed computer network, IEEE Trans. Comput. C-29 (11) (1980)
994–1001.

[33] J. Savage, M. Zubair, A unified model for multicore architectures, in:
Proc. of ACM International Forum on Next-generation Multicore/Manycore
Technologies, IFMT, Cairo, Egypt, November 2008.

[34] SESC, SESC: SuperESCalar Simulator, September 2011. [Online]. Available:
http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/.

[35] K. Sevcik, I. Mitrani, The distribution of queueing network states at input and
output instants, J. ACM 28 (2) (1981) 358–371.

[36] L. Shi, et al. Write activity reduction on flash main memory via smart victim
cache, in: Proc. of ACM GLSVLSI, Providence, Rhode Island, USA, May 2010.

[37] D.J. Sorin, V.S. Pai, S.V. Adve, M.K. Vernon, D.A. Wood, Analytic evaluation
of shared-memory systems with ILP processors, in: Proc. of the 25th Annual
International Symposium on Computer Architecture, ISCA’98, Barcelona,
Spain, June 1998.

[38] TILERA, Tile Processor Architecture Overview, in: TILERA Official Documenta-
tion, Copyright 2006–2009 Tilera Corporation, November 2009.

[39] D.L. Willick, D.L. Eager, An analytic model of multistage interconnection
networks, in: Proc. of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boulder, Colorado, May 1990.

[40] S. Woo, M. Ohara, E. Torrie, J. Singh, A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, in: Proc. of ACM ISCA,
Santa Margherita Ligure, Italy, June 1995.

[41] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, J.C. Hoe, SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling, in: Proc. of the
30th Annual International Symposium on Computer Architecture, ISCA, San
Diego, California, June 2003.

[42] L. Yang, R. Dick, H. Lekatsas, S. Chakradhar, Online memory compression for
embedded systems, ACM Trans. Embedded Comput. Syst. (TECS) 9 (3) (2010)
27:1–27:30.

Arslan Munir received his B.S. in Electrical Engineering
from the University of Engineering and Technology (UET),
Lahore, Pakistan, in 2004, and his M.A.Sc. degree in Elec-
trical and Computer Engineering (ECE) from the Univer-
sity of British Columbia (UBC), Vancouver, Canada, in 2007.
He received his Ph.D. degree in ECE from the University of
Florida (UF), Gainesville, Florida, USA, in 2012. He is cur-
rently a postdoctoral research associate in the ECE depart-
ment at Rice University, Houston, Texas, USA. From 2007
to 2008, he worked as a software development engineer
at Mentor Graphics in the Embedded Systems Division. He

was the recipient of many academic awards including the Gold Medals for the best
performance in Electrical Engineering, academic Roll of Honor, and doctoral fellow-
ship fromNatural Sciences and Engineering Research Council of Canada (NSERC). He
received a Best Paper award at the IARIA International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies (UBICOMM) in 2010.His cur-
rent research interests include embedded systems, cyber-physical/transportation
systems, low-power design, computer architecture, multi-core platforms, parallel
computing, dynamic optimizations, fault-tolerance, and computer networks.



Author's personal copy

1890 A. Munir et al. / J. Parallel Distrib. Comput. 74 (2014) 1872–1890

Ann Gordon-Ross received her B.S and Ph.D. degrees in
Computer Science and Engineering from the University of
California, Riverside (USA) in 2000 and 2007, respectively.
She is currently an Assistant Professor of Electrical and
Computer Engineering at the University of Florida (USA)
and is a member of the NSF Center for High Performance
Reconfigurable Computing (CHREC) at the University of
Florida. She is also the faculty advisor for the Women in
Electrical and Computer Engineering (WECE) and the Phi
Sigma RhoNational Society forWomen in Engineering and
Engineering Technology. She received her CAREER award

from the National Science Foundation in 2010 and Best Paper awards at the Great
Lakes SymposiumonVLSI (GLSVLSI) in 2010 and the IARIA International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM)
in 2010. Her research interests include embedded systems, computer architecture,
low-power design, reconfigurable computing, dynamic optimizations, hardware
design, real-time systems, and multi-core platforms.

Sanjay Ranka is a Professor in the Department of Com-
puter and Information Science and Engineering at the
University of Florida, Gainesville, Florida, USA. His cur-
rent research interests are energy-efficient computing,
high-performance computing, data mining and informat-
ics. Most recently he was the Chief Technology Officer
at Paramark where he developed real-time optimization
software for optimizing marketing campaigns. Sanjay has
also held positions as a tenured faculty positions at Syra-
cuse University and as a researcher/visitor at IBM T.J. Wat-
son Research Labs and Hitachi America Limited.

Sanjay earned his Ph.D. (Computer Science) from the University of Minnesota
and a B. Tech. in Computer Science from IIT, Kanpur, India. He has coauthored
two books: Elements of Neural Networks (MIT Press) and Hypercube Algorithms

(Springer Verlag), 75 journal articles and 125 refereed conference articles. His
recent work has received a student best paper award at ACM-BCB 2010, best paper
runner up award at KDD-2009, a nomination for the Robbins Prize for the best paper
in the journal of Physics in Medicine and Biology for 2008, and a best paper award
at ICN 2007.

He is a fellow of the IEEE and AAAS, and amember of IFIP Committee on System
Modeling and Optimization. He is the associate Editor-in-Chief of the Journal of
Parallel and Distributed Computing and an associate editor for IEEE Transactions on
Parallel and Distributed Computing, IEEE Transactions on Computers, Sustainable
Computing: Systems and Informatics, Knowledge and Information Systems, and
International Journal of Computing.

Farinaz Koushanfar (S’99M’06) received the Ph.D. degree
in electrical engineering and computer science and the
M.A. degree in statistics, both fromUniversity of California
Berkeley, in 2005, and the M.S. degree in electrical engi-
neering from the University of California Los Angeles. She
is currently an Associate Professor with the Department
of Electrical and Computer Engineering, Rice University,
Houston, TX, where she directs the Texas Instruments DSP
Leadership University Program. Her research interests in-
clude adaptive and low power embedded systems design,
hardware security, and design intellectual property pro-

tection.
Prof. Koushanfar is a recipient of the Presidential Early Career Award for

Scientists and Engineers (PECASE), the ACMSIGDAOutstandingNewFaculty Award,
the National Academy of Science Kavli Foundation fellowship, the Army Research
Office (ARO) Young Investigator ProgramAward, the Office of Naval Research (ONR)
Young Investigator ProgramAward, the Defense Advanced Project Research Agency
(DARPA) Young Faculty Award, the National Science Foundation CAREER Award,
MIT TechnologyReviewTR-35, an Intel OpenCollaborative Research fellowship, and
a best paper award at Mobicom.


