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Abstract —Technological advancements in the silicon industry, as predicted by Moore’s law, have enabled integration of billions of
transistors on a single chip. To exploit this high transistor density for high performance, embedded systems are undergoing a transition
from single-core to multi-core. Although a majority of embedded wireless sensor networks (EWSNSs) consist of single-core embedded
sensor nodes, multi-core embedded sensor nodes are envisioned to burgeon in selected application domains that require complex in-
network processing of the sensed data. In this paper, we propose an architecture for heterogeneous hierarchical multi-core embedded
wireless sensor networks (MCEWSNSs) as well as an architecture for multi-core embedded sensor nodes used in MCEWSNs. We
elaborate several compute-intensive tasks performed by sensor networks and application domains that would especially benefit from
multi-core embedded sensor nodes. This paper also investigates the feasibility of two multi-core architectural paradigms—symmetric
multiprocessors (SMPs) and tiled many-core architectures (TMAs)—for MCEWSNs. We compare and analyze the performance of
an SMP (an Intel-based SMP) and a TMA (Tilera’s TILEPro64) based on a parallelized information fusion application for various
performance metrics (e.g., runtime, speedup, efficiency, cost, and performance per watt). Results reveal that TMAs exploit data locality
effectively and are more suitable for MCEWSN applications that require integer manipulation of sensor data, such as information fusion,
and have little or no communication between the parallelized tasks. To demonstrate the practical relevance of MCEWSNS, this paper
also discusses several state-of-the-art multi-core embedded sensor node prototypes developed in academia and industry. We further
discuss research challenges and future research directions for MCEWSNSs.
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1 INTRODUCTION

His document presents additional details
Tsupplementing our IEEE Transactions on Parallel
and Distributed (TPDS) paper with the title “Multi-core
Embedded Wireless Sensor Networks: Architecture and
Applications”.

Advancements in silicon technology, embedded
systems, sensors, micro-electro-mechanical systems, and
wireless communications have led to the emergence of
embedded wireless sensor networks (EWSNs). EWSNs
consist of sensor nodes with embedded sensors to sense
data about a phenomenon and these sensor nodes
communicate with neighboring sensor nodes over
wireless links (we refer to wireless sensor networks
(WSNs) as EWSNSs since sensor nodes are embedded
in the physical environment/system). EWSNs have
applications in various domains, including surveillance,
environment monitoring, traffic monitoring, volcano
monitoring, and health care.
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of sensed data in emerging applications exceeds the
capabilities of traditional EWSNs. For example, consider
a military EWSN deployed in a battlefield, which
requires various sensors, such as imaging, acoustic, and
electromagnetic sensors. In this application, images are
appropriate for visually monitoring the battlefield, and
electromagnetic and acoustic sensors enable efficient
detection and tracking of targets of interest. Once
a target is detected, high resolution images and/or
video sequences may be required in real-time for
detailed study of the target [1]. This application
presents various challenges for existing EWSNSs since
transmission of high-resolution images and video
streams over bandwidth-limited wireless links from
sensor nodes to the sink node is infeasible. Furthermore,
meaningful processing of multimedia data (acoustic,
image, and video in this example) in real-time exceeds
the capabilities of traditional EWSNs consisting of
single-core embedded sensor nodes [2][3], and requires
more powerful embedded sensor nodes to realize this

application.
Technological advancements in multi-core
architectures have made multi-core processors a

viable and cost-effective choice for increasing the
computational ability of embedded sensor nodes.
Preliminary studies have demonstrated the energy-
efficiency of multi-core embedded sensor nodes as
compared to single-core embedded sensor nodes in an
EWSN. For example, Dogan et al. [4] evaluated single-



and multi-core architectures for biomedical signal
processing in wireless body sensor networks (WBSNs)
where both energy-efficiency and real-time processing
are crucial design objectives. Results revealed that
the multi-core architecture consumed 66% less power
than the single-core architecture for high biosignal
computation workloads (i.e., 50.1 Mega operations per
seconds (MOPS)) whereas the multi-core architecture
consumed 10.4% more power than that of the single-core
architecture for relatively light computation workloads
(i.e., 681 Kilo operations per second (KOPS)).

This supplementary material document is organized
as follows. Section 2 proposes a multi-core embedded
sensor node architecture for multi-core embedded
wireless sensor networks (MCEWSNSs). Section 3
discusses multi-core architectures for multi-core
embedded sensor nodes and parallel computing
metrics that we use to evaluate these architectures.
Section 4 elaborates on several compute-intensive
tasks that motivated the emergence of MCEWSNS.
Section 5 discusses several prototypes of multi-core
embedded sensor nodes. Experimental setup details
for the information fusion application are presented in
Section 6.

2 MuULTI-CORE EMBEDDED SENSOR NODE
ARCHITECTURE

Fig. 1 depicts the architecture of a multi-core embedded
sensor node in our MCEWSN. The multi-core embedded
sensor node consists of a sensing unit, a processing unit,
a storage unit, a communication unit, a power unit, an
optional actuator unit, and an optional location finding
unit (optional units are represented by dotted lines in
Fig. 1) [2].

2.1 Sensing Unit

The sensing wunit senses the phenomenon of
interest and is composed of two subunits: sensors
(e.g., camera/image, audio, and scalar sensors
(e.g., temperature, pressure)) and analog-to-digital
converters (ADCs). Image sensors can either leverage
traditional charge-coupled device (CCD) technology
or complementary metal-oxide-semiconductor (CMOS)
imaging technology. The CCD sensor accumulates the
incident light energy as the charge accumulated on a
pixel, which is then converted into an analog voltage
signal. In CMOS imaging technology, each pixel has its
own charge-to-voltage conversion and other processing
components, such as amplifiers, noise correction, and
digitization circuits. The CMOS imaging technology
enables integration of the lens, an image sensor, and
image compression and processing technology on a
single chip. ADCs convert the analog signals produced
by sensors to digital signals, which serve as input to
the processing unit.

2.2 Processing Unit

The processing unit consists of a multi-core processor
and is responsible for controlling sensors, gathering and
processing sensed data, executing the system software
that coordinates sensing, communication tasks, and
interfacing with the storage unit. The processing unit
for traditional sensor nodes consists of a single-core
processor for general-purpose applications, such as
periodic sensing of scalar data (e.g., temperature,
humidity). High-performance single-core processors
would be infeasible to meet computational requirements
since these single-core processors would require
operation at high processor voltage and frequency. A
processor operating at a high voltage and frequency
consumes an enormous amount of power since power
increases proportionally to the operating processor
frequency and square of the operating processor
voltage. Furthermore, even if these energy issues are
ignored, a single high-performance processor core may
not be able to meet the computational requirements
of emerging applications, such as multimedia sensor
networks, in real-time.

Multi-core processors distribute the computations
across the available cores, which speeds up the
computations as well as conserves energy by allowing
each processor core to operate at a lower processor
voltage and frequency. Multi-core processors are suitable
for streaming and complex, event-based monitoring
applications, such as in smart camera sensor networks,
that require data to be processed and compressed as
well as require extraction of key information features.
For example, the IC3D/Xetal single-instruction multiple-
data (SIMD) processor, which consists of a linear
processor array (LPA) with 320 reduced instruction set
computers (RISC)/processors, is being used in smart
camera sensor networks [5].

2.3 Storage Unit

The storage unit consists of the memory subsystem,
which can be classified as wuser memory and program
memory, and a memory controller, which coordinates
memory accesses between different processor cores.
The user memory stores sensed data when immediate
data transmission is not possible due to hardware
failures, environmental conditions, physical layer
jamming, limited energy reserves, or when the data
requires processing. The program memory is used
for programming the embedded sensor node and
using flash memory for the program memory provides
persistent storage of application code and text segments.
Static random-access memory (SRAM), which does not
need periodic refreshing but is expensive in terms of area
and power consumption, is used as dedicated processor
memory. Synchronous dynamic random-access memory
(SDRAM) is typically used as user memory. For
example, the Imote2 embedded sensor node, which
contains a Marvell PXA271 XScale processor operating



Communication Sensing Unit
Unit Processing Unit Sensors
Transceiver
Onit
Multi-core |<«—»| Operating
- Processor System Ssé?;ls:s
¢ Algorithms &
Communication Protocols i
Protocol Stack |
|
X i |
i b :
! |
| : i Storage Unit
' i d
Power Un|t o0 0—0c—0c—=0—0=—0d __; ......... _1 ....... _> Memory
A
DC-DC Flash
_ Location Actuator -
T Finding Unit
Battery Unit RR—
.................. i Actuators |
GPS
JEmergy £ L i 3
arvesting { | i _____w _____ © Mobilizer !
f Memory
Unit S APS ______ Controller
DC-DC: Direct Current to Direct Current Converter
SDRAM: Synchronous Dynamic Random-Access Memory
SRAM: Static Random-Access Memory
ADC: Analog to Digital Converter ————» Power Wires

GPS: Global Positioning System
APS: Ad hoc Positioning System

<«——» Peripheral Interfaces

Fig. 1: Multi-core embedded sensor node architecture.

between 13 and 416 Mhz, has 256 KB SRAM, 32 MB
Flash, and 32 MB SDRAM [6].

2.4 Communication Unit

The communication unit interfaces the embedded
sensor node to the wireless network and consists
of a transceiver unit (transceiver and antenna) and
the communication unit software. The communication
unit software mainly consists of the communication
protocol stack, and the physical layer software in the
case of software defined radio (SDR). The transceiver
unit consists of either a wireless local area network
(WLAN) card, such as an IEEE 802.11b compliant
card, or an IEEE 802.154 compatible card, such
as a Texas Instrument/Chipcon CC2420 chipset. The
choice of a transceiver unit card depends on the
application requirements such as desired range and
allowable power. The maximum transmit power of
IEEE 802.11b cards is higher as compared to IEEE
802.15.4 cards, which results in a higher communication
range but consumes more power. For example, the Intel
PRO/Wireless 2011 card has a data rate of 11 Mbps and
a typical transmit power of 18 dBm, but draws 300 mA

and 170 mA for sending and receiving, respectively. The
CC2420 802.15.4 radio has a maximum data rate of 250
kbps and a transmit power of 0 dBm, but draws 17.4 mA
and 19.7 mA for sending and receiving, respectively.

2.5 Power Unit

The power unit supplies power to various
components/units on the embedded sensor node
and dictates the sensor node’s lifetime. The power
unit consists of a battery and a DC-DC converter. The
DC-DC converter provides a constant supply voltage to
the sensor node. The power unit may be augmented by
an optional energy-harvesting unit that derives energy
from external sources, such as solar cells. Although
multi-core embedded sensor nodes are more power
efficient as compared to single-core embedded sensor
nodes, energy-harvesting units in multi-core cluster
heads and the sink node would prolong the MCEWSN's
lifetime. Energy-harvesting units are more suitable
for cluster heads and the sink node as these nodes
perform more computations as compared to the single-
core leaf sensor nodes. Furthermore, incorporating
energy-harvesting units in only a few embedded sensor



nodes (i.e., cluster heads and sink nodes) would not
substantially increase the cost of EWSN deployment.
Without an energy-harvesting unit, MCEWSNs would
only be suitable for applications with relatively small
lifetime requirements.

2.6 Actuator Unit

The optional actuator unit consists of actuators (e.g.,
motors, servos, linear actuators, air muscles, muscle
wire, camera pan tilt, etc.) and an optional mobilizer unit
for sensor node mobility. Actuators enhance the sensing
task by opening/closing a switch/relay to control
functions, such as a camera or antenna orientation and
repositioning sensors. Actuators, in contrast to sensors
that only sense a phenomenon, typically affect the
operating environment by opening a valve, emitting
sound, or physically moving the sensor node.

2.7 Location Finding Unit

The optional location finding wunit determines a
sensor node’s location. Depending on the application
requirements and available resources, the location
finding unit can either be global positioning system
(GPS)-based or ad hoc positioning system (APS)-
based. Even though GPS is highly accurate, the GPS
components are expensive and require direct line of
sight between the sensor node and satellites. APS
determines a sensor node’s position with respect to
defined landmarks, which may be other GPS-based sensor
nodes [7]. A sensor node estimates the distance from
itself to the landmark based on direct communication
and the received communication signal strength. A
sensor node that is two hops away from a landmark
estimates its distance based on the distance estimate
of a sensor node one hop away from a landmark via
the message propagation. A sensor node with distance
estimates to three or more landmarks can compute its
own position via triangulation.

3 MULTI-CORE ARCHITECTURES AND
PARALLEL COMPUTING METRICS

In this section, we describe the multi-core architectures
that we evaluate in our study as well as parallel
computing metrics that we leverage for this evaluation.

3.1 Multi-core Architectures

In this subsection, we give an overview of the two multi-
core architectures that can be used as processing units
in multi-core embedded sensor nodes (Fig. 1). We note
that the operating frequency of the studied multi-core
architectures is much higher than the ones that can be
used for multi-core embedded sensor nodes. However,
our purpose in this paper is to evaluate the architectural
paradigms’ feasibility for multi-core embedded sensor
nodes and a lower operating frequency of the studied

architectures in real multi-core embedded sensor nodes
would only scale down the presented results without
any significant changes to the performance trends.
Hence, leveraging high computing power SMPs and
TMAs will not affect the feasibility insights obtained
from benchmark-driven cross-architectural evaluation,
which is the intent of this work.

3.1.1 Symmetric Multiprocessors (SMPs)

In the parallel architecture domain, SMPs are the most
pervasive and prevalent type, and are therefore an ideal
processor candidate for MCEWSNs. SMPs offer a global
physical address space, provide symmetric access to
main memory, and have private caches. The processors
and memory modules communicate over a shared
interconnect, the most common being a shared bus [8].
We evaluate an eight-core Intel-based SMP consisting of
two Intel Xeon E5430 quad-core processors fabricated
at 45nm CMOS lithography [9] with a maximum clock
frequency of 2.66 GHz. Each core contains 32 KB of
level one instruction (L1-I) cache, 32 KB of level one
data (L1-D) cache, and 12 MB of level two (L2) unified
cache. Intel’s enhanced front-side bus (FSB) running at
1333 MHz provides enhanced inter-core communication
throughput [10]. For conciseness, we will refer to this
SMP as SMP>QuadXeon i the remainder of this paper.

3.1.2 Tiled Many-Core Architectures (TMAS)

TMAs are constructed using modular elements—tiles—
which provides easy scalability to any arbitrary number
of tiles. For intra-tile communication, each tile connects
to a switch (communication router) within a high-
performance interconnection network and each switch
connects to a neighboring switch, which constrains the
interconnection wire length to be no longer than the
tile width. Examples of TMAs include the Intel’s Tera-
Scale research processor, the Raw processor, and Tilera’s
TILEPro64 and TILE-Gx processor family [11][12]. Fig. 2
depicts our evaluated TMA, which is Tilera’s TILEPro64
processor, fabricated at 90nm CMOS lithography and
consists of 64 tiles (cores) in an 8x 8 grid. Each tile has a
three-way very long instruction word (VLIW) pipelined
processor, which can execute up to three instructions
per cycle (IPC). The switches are non-blocking, which
provides a power-efficient on-chip interconnection mesh
network operating at 31 Tbps. Each tile has 8 KB of
L1-I cache, 8 KB of L1-D cache, and 64 KB of L2
cache, collectively providing 5 MB of on-chip cache with
Tilera’s dynamic distributed cache (DDC) technology. An
operating system (OS) can be run independently on each
tile or the tiles can be grouped to run a multi-processing
OS (e.g., SMP Linux [13]). The TILEPro processor family
is suitable for a variety of application domains, such as
advanced networking, wireless infrastructure, telecom,
digital multimedia, and cloud computing. Our prior
work [14] provides further details on TMAs.
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Fig. 2: Tilera’s TILEPro64 processor (adapted from [15]).

3.2 Parallel Computing Device Metrics

In this section, we define the metrics used to
quantitatively compare our investigated multi-core
architectures.

Run Time: The serial run time T, of a program is the
time required to execute the program on a sequential
computer. The parallel run time T, is the time elapsed
from the start of a program to the moment the last
processor finishes execution.

Speedup: The speedup S measures the performance gain
achieved via application parallelization as compared to
the execution time of the best sequential implementation
of the application. S is defined as the ratio of the serial
run time T to the parallel run time T}, to solve the same
problem (ie., S =1T,/T}).

Efficiency: The fraction of time a processor is actively
executing an application is the system’s efficiency E. E
is computed as the ratio of the speedup S to the number
of processors p (ie., E = S/p).

Cost: The collective processor time required to execute
an application in a parallel system is the system’s cost C.
C on a parallel system is computed as the product of the
parallel run time 7}, and the number of processors p (i.e.,
C =T,-p). A parallel system is cost optimal if the parallel
system’s cost is proportional to the execution time of the

best known sequential algorithm on a single processor
[16].

Scalability: A parallel system’s scalability evaluates
the efficiency of application parallelization as the
number of processors increases, wherein an optimally-
scalable parallel system maintains a speedup increase
proportional to the increase in the number of processors
and the problem size [16].

Power: A processor’s total (system-level) power
consumption comprises both the dynamic and static
power consumptions. The dynamic power consumption
depends on the supply voltage, clock frequency,
capacitance, and the signal activity whereas the static
power consumption mainly depends on the supply
voltage, temperature, and capacitance [17]. Our system-
level power model estimates a multi-core system’s
power consumption, and considers both the active
and the idle mode power consumptions. Our power
estimation model can be used to estimate the system’s
performance per watt. The power consumption of a
system with N processor cores and p active processor
cores is:

active Pidle
PP — . tmax (N Zmaz 1
pr—y—t (N =-p) =y )
where Péctive and Pidle denote the system’s maximum



active and idle mode power consumptions, respectively.
Pactive IN and Pl /N give the active and idle mode
power consumptions per core (and the associated
switching and interconnection network circuitry),
respectively. We consider state-of-the-art power saving
mechanisms, such as instructions to switch idle cores
and associated circuitry (switches, clock, interconnection
network) into a low-power idle state (e.g., Tilera’s NAP
instruction puts a tile into a low-power | DLE mode

[18]).

Performance per Watt: Performance per watt evaluates a
device’s delivered/attainable performance while taking
the device’s power consumption into consideration. We
report performance with respect to MOPS or Mega
floating point operations per second (MFLOPS), and
performance per watt with respect to MOPS per watt
(MOPS/W) or MFLOPS per watt (MFLOPS/W).

4 COMPUTE-INTENSIVE TASKS MOTIVATING
THE EMERGENCE OF MCEWSNS

Many applications require embedded sensor nodes to
perform various compute-intensive tasks that often
exceeds the computing capability of traditional single-
core sensor nodes. These tasks include information
fusion, encryption, network coding, software defined
radio, etc., and motivate the emergence of MCEWSNSs.
In this section, we discuss these compute-intensive tasks
requiring multi-core support in an embedded sensor
node.

4.1

A critical processing task in EWSNSs is information
fusion, which can benefit from a multi-core processor
in an embedded sensor node. EWSNs produce a large
amount of data that must be processed, delivered,
and assessed according to application objectives. Since
the transmission bandwidth is limited, information
fusion condenses the sensed data and transmits only
the selected fused information to the sink node.
Additionally, the data received from neighboring sensor
nodes is often redundant and highly correlated, which
warrants fusing the sensed data. Formally, information
fusion encompasses theory, techniques, and tools created
and applied to exploit the synergy in the information
acquired from multiple sources (sensors, databases,
etc.) such that the resulting fused data/information
is considered qualitatively or quantitatively better in
terms of accuracy or robustness than the acquired data
from any single data source [19]. Data aggregation is
an instance of information fusion in which the data
from various sources is aggregated using summarization
functions (e.g., minimum, maximum, and average)
that reduce the volume of data being manipulated.
Information fusion can reduce the amount of data traffic,
filter noisy measurements, and make predictions and
inferences about a monitored entity.

Information Fusion

Information fusion can be computationally expensive,
especially for video sensing applications. Unlike
scalar data, which can be combined using relatively
simple mathematical manipulations such as average
and summation, video data is vectorial and requires
complex computations to fuse (e.g., edge detection,
histogram formation, compression, filtering, etc.).
Reducing transmission overhead via information fusion
in video sensor networks requires a substantial increase
in intermediate processing, which warrants the use
of multi-core cluster heads in MCEWSNs. Multi-core
cluster heads fuse data received from multiple sensor
nodes to eliminate redundant transmission and provide
fused information to the sink node with minimum data
latency. Data latency is the sum of the delay involved in
data transmission, routing, and information fusion/data
aggregation [20]. Data latency is important in many
applications, especially real-time applications, where
freshness of data is an important factor. Multi-core
cluster heads can fuse data much faster than single-core
sensor nodes, which justifies the use of multi-core
cluster heads in MCEWSNs with complex real-time
computing requirements.

Omnibus Model for Information Fusion: The Omnibus
model [21] guides information fusion for sensor-based
devices. Fig. 3 illustrates the Omnibus model with
respect to our MCEWSN architecture and we exemplify
the model’s usage by considering a surveillance
application performing target tracking based on acoustic
sensors [19]. The Observe stage, which can be carried
out at single-core sensor nodes and/or multi-core cluster
heads, uses a filter (e.g., moving average filter) to
reduce noise (Signal Processing) from acoustic sensor
data provided by the embedded sensor nodes (Sensing).
The Orientate stage, which is carried out at multi-core
cluster heads, uses the filtered acoustic data for range
estimation (Feature Extraction) and estimates the target’s
location and trajectory (Pattern Processing). The Decide
stage, which is carried out at multi-core cluster heads
and/or multi-core sink nodes, classifies the sensed target
(Context Processing) and determines whether the target
represents a threat (Decision Making). If the target is a
threat, the Act stage, which is carried out at the control
and analysis center (CAC), intercepts the target (Control)
(e.g., with a missile) and activates available armaments
(Resource Tasking).

4.2 Encryption

Security is an important issue in many sensor
networking applications since sensors are deployed in
open environments and are susceptible to malicious
attacks. The sensed and/or aggregated data must be
encrypted for secure transmission to the sink node. The
two main practical issues involved in encryption are
the size of the encrypted message and the encryption
execution time. Privacy homomorphisms (PHs) are
encryption functions suitable for MCEWSNSss that allow
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a set of operations to be performed on encrypted data
without knowing the decryption functions [20]. PHs use
a positive integer d > 2 for computing the secret key
for encryption such that the size of the encrypted data
increases by a factor of d as compared to the original
data. The security of the encrypted data increases with
d as well as the execution time for encryption. For
example, the execution time for encryption of one byte
of data is 3,481 clock cycles on a MICA2 mote when
d = 2 and increases to 4,277 clock cycles when d =
4. MICA2 motes cannot handle the computations for
d > 4 [20], hence, applications requiring greater security
require multi-core sensor nodes and/or cluster heads to
perform these computations.

4.3 Network Coding

Network coding is a coding technique to enhance
network throughput in multi-nodal environments, such
as EWSNs. Despite the effectiveness of network coding
for EWSNs, excessive decoding cost associated with
network coding hinders the technique’s adoption
in traditional EWSNs with constrained computing
power [22]. Future MCEWSNs will enable adoption of
sophisticated coding techniques, such as network coding
to increase network throughput.

4.4 Software Defined Radio (SDR)

SDR is a radio in which some or all of the physical
layer functions execute as software. The radio in existing
EWSNs is hardware-based, which results in higher
production costs and minimal flexibility in supporting
multiple waveform standards [23]. MCEWSNs can
realize SDR-based radio by enabling fast, parallel
computation of signal processing operations needed
in SDR (e.g., fast Fourier transform (FFT)). SDR-based
MCEWSNs would enable multi-mode, multi-band, and
multi-functional radios that can be enhanced using
software upgrades.

5 MULTI-CORE EMBEDDED SENSOR NODES

Several initiatives towards multi-core embedded sensor
nodes have been undertaken by academia and industry
for various real-time applications. In this section, we
describe several state-of-the-art multi-core embedded
sensor node prototypes.
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InstraNode is a dual-core sensor node for real-time
health monitoring of civil structures, such as highway
bridges and skyscrapers. InstraNode is equipped with
a 4000 mAh lithium-ion battery, three accelerometers,
a gyroscope, and an IEEE 802.11b (Wi-Fi) card for
communication with other nodes. One low-power
processor core in InstraNode runs at 3 V and 4
MHz and is dedicated to sampling data from sensors
whereas the other faster, high-power processor core
runs at 43 V and 40 MHz and is responsible for
networking tasks, such as transmission/reception of
data and execution of a routing algorithm. Furthermore,
InstraNode possesses multi-modal operation capabilities
such as wired/wireless and battery-powered/AC-
adaptor powered options. Experiments indicate that
the InstraNode outperforms single-core sensor nodes in
terms of power-efficiency and network performance [24].

InstraNode

5.2 Mars Rover Prototype Mote

Etchison et al. [25] have proposed a high-performance
EWSN for the Mars Rover, which consists of dual-core
mobile sensor nodes and a wireless cluster consisting
of multiple processors to process image data gathered
from the sensor nodes and to make decisions based on
gathered information. The prototype mote consists of
a Micro ATX motherboard with Intel’s dual-core Atom
processor, 2 GB of RAM, and is powered by a 12 V/5
A DC power supply for lab testing. Each mote performs
data acquisition, processing, and transmission.



5.3 Satellite-Based Sensor Node (SBSN)

Vladimirova et al. [26] have developed a system-on-
chip (SoC) satellite-based sensor node (SBSN). The
SBSN prototype contains a SPARC V8 LEON3 soft
processor core, which allows configuration in an SMP
architecture [27]. The LEON3 processor core runs
software applications and interfaces with the upper
layers of the communication stack using the IEEE
802.11 protocol. The SBSN prototype uses a number
of intellectual property (IP) cores, such as a hardware
accelerated Wi-Fi MAC, a transceiver core, and a Java
co-processor. The Java co-processor enables distributed
computing and Internet protocol (IP)-based networking
functions in SBWSNSs. The inter-satellite communication
module (ISCM) in the SBSN prototype adheres to IEEE
802.11 and CubeSat design specifications. The ISCM
supports ground communication links and inter-satellite
links (ISLs) at variable data rates and configurable
waveforms to adapt to channel conditions. The ISCM
incorporates S-band (2.4 GHz) and a 434/144 MHz radio
frontend interfaced to a single reconfigurable modem.
The ISCM uses a high-end AD9861 ADC/digital-to-
analog converter (DAC) for the 2.4 GHz radio frontend
for a Maxim 2830 radio and a low-end ADZ7731
for the 434/144 MHz frontend for an Alinco DJC-
7E radio. Additionally, ISCM incorporates current and
temperature sensors and a 16-bit microcontroller for
housekeeping purposes.

5.4 Multi-CPU-based Sensor Node Prototype

Ohara et al. [28] have developed a prototype for
an embedded sensor node using three PIC18 central
processing units (CPUs). The prototype is supplied
by a configurable voltage stabilized power supply,
but the same voltage is supplied to all CPUs. The
prototype allowed each CPU’s frequency to be statically
changed by changing a corresponding ceramic resonator.
Experiments revealed that the multi-CPU sensor node
prototype consumed 76% less power as compared
to a single-core sensor node for benchmarks that
involved sampling, root mean square calculation, and
pre-processing samples for transmission.

5.5 Smart Camera Mote

Kleihorst et al. [29] developed a smart camera mote,
which consists of four basic components: color image
sensors, an IC3D SIMD processor (a member of the
Philips” Xetal family of SIMD processors) for low-
level image processing, a general purpose processor
for intermediate and high-level processing and control,
and a communication module. Both of the processors
are coupled with a dual-port random-access memory
(RAM) that enables these processors to work in a shared
workspace. The IC3D SIMD processor consists of a
linear array of 320 RISC processors. The peak pixel
performance of the IC3D processor is approximately

50 Giga operations per second (GOPS). Despite high
pixel performance, the IC3D processor is an inherently
low-power processor, which makes the processor
suitable for multi-core embedded sensor nodes. The
power consumption of the IC3D processor for typical
applications, such as feature finding or face detection, is
below 100 mW in active processing modes.

6 RESULTS

In this section, we describe the information fusion
application experimental setup details.!

We consider a hierarchical MCEWSN for information
fusion such that each cluster head receives sensing

measurements from ten single-core sensor nodes
equipped with temperature, pressure, humidity,
acoustic, magnetometer, accelerometer, gyroscope,

proximity, and orientation sensors [30]. To reduce the
random white noise from sensor measurements, a
moving average filter, which computes the arithmetic
mean of a number of input measurements to produce
each output measurement, is executed on the cluster
head. Given an input sensor measurement vector
x = (2(1),z(2),...), the moving average filter estimates
the true sensor measurement vector after noise removal

Yy = (g(l)v 1](2)7 x ) as:
1 M-1
gk) = 57 D wlk—i), ¥k>M @
=0

where the filter window size M indicates the number
of fused input sensor measurements. Given sensor
measurements with random white noise, the moving
average filter reduces the noise variance by a factor
of VM. M should be chosen such that M is the
smallest value that reduces the noise in accordance
with the application’s requirements. After calculating
the cluster’s nodes’ filtered sensor measurements (i.e.,
after applying moving average filter) for each of the
sensor node in the cluster, the cluster head determines
the sensed measurements minimum, maximum, and
average values. This information fusion requires 100 -
N(3 + M) operations with a runtime complexity of
O(N M) where N is the number of sensor measurements.
Our results evaluate a parallelized information fusion
application using our parallel performance metrics
(Section 3.2) to illustrate the advantages for leveraging
multi-core as compared to single core architectures for
cluster heads.
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