
1

PUF-RAKE: A PUF-based Robust and
Lightweight Authentication and Key

Establishment Protocol
Mahmood Azhar Qureshi, Student Member, IEEE, and Arslan Munir, Senior Member, IEEE

Abstract—Physically unclonable functions (PUFs) bind a device’s identity to its physical hardware and thus, can be employed for
device identification, authentication and cryptographic key generation. However, PUFs are susceptible to modeling attacks if a number
of PUFs’ challenge-response pairs (CRPs) are exposed to the adversary. Furthermore, many of the embedded devices requiring
authentication and inter-device communication in a real-time environment/system have stringent resource and low latency
requirements, and thus require a lightweight authentication and key establishment mechanism to quickly realize an authenticated and
secure connection. We propose PUF-RAKE, a PUF-based lightweight, highly reliable authentication and key establishment scheme.
The proposed scheme enhances the reliability of PUF as well as alleviates the resource constraints by employing error correction in
the server instead of the device as well as removing cryptographic hashing required by earlier PUF-based protocols. The proposed
PUF-RAKE is robust against masquerade, brute force, replay, and modeling attacks. In PUF-RAKE, we introduce an inexpensive yet
secure stream authentication scheme inside the device which authenticates the server before the underlying PUF can be invoked. This
prevents an adversary from brute forcing the device’s PUF to acquire CRPs essentially locking out the device from unauthorized model
generation. Additionally, we also introduce a lightweight CRP obfuscation mechanism involving XOR and shuffle operations. The
security of PUF-RAKE has been formally verified. A prototype of the protocol has been implemented on two Xilinx Zynq 7000
system-on-chips with one present on Xilinx zc706 evaluation board and the other present on the Avnet Zedboard. Observations,
security analysis and results verify that the PUF-RAKE is secure against a probabilistic polynomial time adversary under both the
unauthenticated link and authenticated link adversarial models while providing ∼99% reliable authentication. In addition, PUF-RAKE
provides a reduction of 60% and 72% for look-up tables (LUTs) and register count, respectively, in the programmable logic (PL) part of
the Zynq 7000 as compared to a recently proposed approach while providing additional advantages.

Index Terms—Authentication, key establishment, PUFs, security, reliability, lightweight, bit shuffling

F

1 INTRODUCTION

DATA security between embedded communicating de-
vices presents one of the major challenges in de-

signing today’s complex infrastructure and cyber-physical
systems spanning different domains including medical, de-
fense, transportation, agriculture, and automation. The ap-
plications requiring secure data transmission include In-
ternet of things (IoT), in-vehicle network communication
in self-driving cars, vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I) communication, smart grid communi-
cation, and many more. Often devices in a network can
generate massive amounts of data relevant to their status.
This data needs to be secured against an unauthorized entity
as the leakage of this data can have wide reaching conse-
quences including identity theft and fraudulent verification.

Fig. 1 depicts an authentication scenario for various
devices. In essence, communication between two devices in
a network is a two-prong process, the first one being au-
thentication, and the second being secret key establishment.
Traditionally, the tasks of authentication and key exchange
have been handled by public key encryption schemes. The

• M.A. Qureshi and A. Munir are members of Intelligent Systems,
Computer Architecture, Analytics, and Security (ISCAAS) Lab,
Department of Computer Science, Kansas State University, Manhattan,
KS, 66506.

E-mail: mahmood102@ksu.edu, amunir@ksu.edu

two most widely used paradigms for public key encryption
are public key infrastructure (PKI) and identity based en-
cryption (IBE) [1]. Different protocols have been developed
in [2] to address the intellectual property (IP) protection
problem on field-programmable gate arrays (FPGAs) us-
ing physically unclonable functions (PUFs) [3] and PKI-
based public key cryptography. However, traditional PKI
approach has been afflicted by several shortcomings, the
most important being the distribution and handling of
certificates by a trusted third party to potentially billions
of devices. This makes it highly infeasible for resource-
constrained deployments. IBE seems to be a better alterna-
tive than PKI, however, IBE utilizes a public key generator
(PKG) to generate and distribute private keys to nodes over
secure channels. This makes key exchange cumbersome and
difficult to manage when there are billions of devices. More-
over, the nodes need to store some secrets within their non-
volatile secure memories (NVM) which is infeasible for cost
and resource constraint devices. Furthermore, the secrets
stored in NVM of devices can be extracted by an adversary.
To overcome the deficiencies in previous works, we propose
a protocol which uses the hardware secrets generated by
PUFs in a lightweight authentication scheme and realizes
a secure masking function as a message authentication
mechanism using one-time session nonces. This effectively
removes the requirement of PKG because the identity of
the devices is tied to a hardware specific unclonable instance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Fig. 1. Authentication scenario for various devices.

within the device and does not require any on-chip NVM.
Ever since the introduction of PUFs more than one

and a half decade ago, extensive research has been done
in using these uncontrollable manufacturing variations for
enhancing the device’s security. With the advent of ad-
vanced machine learning (ML)-based modeling techniques
[4], strong PUFs (SPUFs), previously considered secure,
now have their security in question. Given a number of
challenge-response pairs (CRPs) of a 64x64 Arbiter PUF [5],
an adversary can build a soft model for the device with a
prediction accuracy of 99.9% [6]. This is due to the fact that
a plain arbiter PUF follows a linear additive delay model [4]
and given enough CRPs, an adversary can very accurately
determine the parameters of the model governing the PUF
circuit. Many approaches have been presented [7], [8] which
add non-linearities into the PUF circuits to thwart model
building attacks. However, as shown in [7], these PUFs are
still susceptible to modelling attacks.

Controlled PUFs (CPUFs) [9] are another class of SPUFs
which enhance the security and resistance against ML-based
modeling. These PUFs thwart model-building attacks by
wrapping the PUF inside a control logic. One approach is to
build the control logic in such a way as to limit the exposure
of CRPs for the adversary [10], [11]. Another approach is to
obfuscate the CRPs in such a way that even if the adversary
can collect a number of obfuscated CRPs, no effective model
can be built since the original CRP relationship is only
known to the device and the verifier [6].

Reliability is another factor which plagues the usage
of PUFs in communicating devices. Because the embed-
ded devices need to operate under varying environmental
conditions, the PUFs within the devices should be reliable
enough. A PUF, for a given n-bit challenge C, is a mapping
α to a particular m-bit response R, that is, α : {0, 1}n →
{0, 1}m. Ideally, this mapping for a particular challenge C
to a fixed response R should always hold under varying
environmental conditions. This type of ideality however, is
not possible in hardware as the response of a PUF to a par-
ticular challenge is dependent on the physical characteristics
of the device. Under varying conditions (e.g., temperature,

voltage etc.), these physical characteristics differ, resulting in
generation of responses with bit flips associated with errors.
Thus, the output response under varying environmental
conditions is R’6= R. Majority voting can help to reduce
the errors but it does not guarantee high reliability under
highly variable conditions. Contemporary approaches like
[9] use error correction codes (ECC) in the device as a
fix for the PUF’s reliability problem. These approaches do
not consider the high hardware area overhead associated
with computationally expensive error correction schemes
in a low cost device. Moreover, ECC requires helper data
to be communicated to the device by the server during an
authentication round. This exposure of helper data provides
another attack vector to the adversary who can use this in-
formation for modeling as well as side-channel analysis [12].
We employ a different approach where the error correction
is not present in the device, rather, the server is responsible
for correcting the noisy responses of the device’s PUF. By
employing this, we not only guarantee a reliability of ∼99%
but also make the device extremely lightweight.

Our main contributions are as follows:
• We develop a novel, lightweight masking function

which serves two main purposes: (i) protecting
the device’s PUF by obfuscating its CRPs, and (ii)
providing a lightweight solution for verifying the
data integrity and message authenticity. Also, no
challenge or response in its original form is ex-
posed on any communication link (i.e., between the
device ⇐⇒ server and server ⇐⇒ database). Un-
like some of the previous approaches, which use
cryptographic hash functions with high hardware
overhead, inside the device for response obfuscation,
our scheme provides an extremely lightweight, low
hardware cost dynamic obfuscation mechanism. It
also acts as a lightweight message authentication
code (HMAC) using dynamic, one time keys instead
of a hard HMAC IP based on traditional, high over-
head hashing schemes using a secured key. We also
formally prove the security of our masking function.

• In the proposed scheme, the access to the underlying
PUF in the device is strictly controlled. No challenge

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

is issued and thus no response is generated unless a
correct input stream is applied to the device, essen-
tially locking the device from unauthorized access.
This scheme is the first that locks out the device
without even invoking the PUF, and thus completely
inhibits any model-building as well as side-channel
analysis attack on the underlying PUF.

• The proposed scheme, unlike all previously intro-
duced schemes, improves the PUF’s response accu-
racy and therefore, the reliability, by employing error
correction in the server instead of the device. The
device sends the noisy, masked responses to the server
which, after unmasking, corrects any underlying bit
errors. This greatly reduces the hardware overhead
of the devices in the system without compromising
the reliability which makes this protocol easily de-
ployable in low cost devices operating in challenging
environmental conditions.

• The proposed protocol extends the authentication
and also includes a secure key establishment phase
which makes it deployable to IoT-based systems.
Unlike traditional PKI, this scheme does not require
any Certificate Authority (CA) for signing and issu-
ing digital certificates nor does it require any PKG
for issuing public/private key pairs. This is due
to the fact that the server/verifier can validate the
authenticity of the device by using its PUF instance.
Thus, the PUF acts as a root-of-trust inside the device.
The device uses the run-time variables in conjunc-
tion with the masking function to authenticate the
public/private key pairs. This not only reduces the
computational complexity involved with hash-based
schemes, but also drastically reduces the space-time
complexity, as no key pairs need explicit storage.

• We implement the entire scheme on hardware and
show the area, latency and communication over-
heads associated with the protocol in the device
hardware. We also show how the proposed protocol
is better than the previously proposed schemes in
terms of device overheads.

It should be noted that this work is an extension of our
previously proposed scheme, presented the first time in [13].
In our previous work, the device had to keep a track of
the masking counters for successive authentication cycles
which introduced a security vulnerability. In this work,
we eliminate that need and the device no longer needs to
keep track of any variable. Assuming that for the jth au-
thentication round, the masking variables are k1, k2, ..., kn,
then for j + 1st authentication round, the masking variables
l1, l2, ...ln have no correlation to k1, k2, ..., kn. Thus, all the
randomly generated variables during one authentication
cycle are destroyed immediately once the authentication
is successfully completed and a different set of randomly
generated variables are used for the next cycle.

2 RELATED WORK
Various schemes have been proposed in the past that imple-
ment a controlled strong PUF for authentication of devices.
Gassend et al. [9] have proposed hashing of the input
challenge and the response. However, this configuration

requires hardware-expensive hashing as well as error cor-
rection logic in the device which makes it highly infeasible
for low cost platforms. Also, the server in [9] needs to send
the raw helper data to the device for stabilizing the noisy
PUF responses. This exposes the PUF to attacks focusing on
side-channel information [14].

Yu et al. [10] have proposed an approach that upper
bounds the available number of CRPs to an adversary. Only
the trusted entity or the server can authorize the access of
new CRPs. However, this approach supports only a limited
number of authentication cycles (roughly 10,000) which
makes it infeasible for applications where devices require
long operating lifetimes. Gao et al. [11] have presented a
finite state machine (FSM) locking mechanism at the output
of the PUF circuit. A challenge is applied to the device and
after evaluation, the responses from the PUF are fed to an
FSM which traverses a given set of states till it reaches the
final state. If a wrong input/challenge is applied to the
PUF by an adversary, the response generated will prevent
the FSM from reaching the final state thus not producing
a valid response. The protocol presented in [11] seems to
be sound but under strict ideal conditions (which is not a
realistic assumption) where it is assumed that the device’s
PUF response will have a 0% variation. This is because
[11] hashes the output of the PUF response without error
correction. Even a one bit error in the generated response
during authentication will result in an avalanche effect in
the hashed output and thus, the protocol will fail under
noisy conditions. Also, the inclusion of hash in the device
drastically increases the hardware overhead.

Rostami et al. [15] have introduced Slender PUF, which
uses neither an error-correction logic nor any cryptographic
protocol but it provides an open interface to the adversary.
An adversary can acquire information about CRPs as long
as the device’s interface access is maintained. Moreover,
both [10] and [15] use a PRNG with a fixed feedback
polynomial in all the devices and the server. If even one
of the devices or the server gets attacked and the PRNG
design leaks out, then the security of all the devices gets
compromised. Herrewege et al. [16] have proposed a reverse
fuzzy extractor which enables lightweight mutual authen-
tication for PUF-based RFID tags. This scheme, however,
does not support key establishment and uses hashing inside
the device, which can increase the hardware overhead and
latency. Hussain et al. [17] have proposed a secure hamming
distance-based mutual authentication protocol employing
weak intrinsic PUFs which supports an unlimited number
of authentication cycles. This protocol, however, has a high
latency (∼487ms) on an embedded processor which can
be unsuitable for real time authentication scenarios. The
protocol also does not support key establishment. Various
other works [18], [19], [20], [21], [22], [23], [24] have pro-
posed authentication schemes based on PUFs. However,
most of these schemes face severe shortcomings in terms
of scalability, reliability and/or security as shown in [25].
Furthermore, these schemes are limited to only authenti-
cation and do not include key-exchange mechanism which
renders them undeployable for IoT-based networks where
the devices need to actually communicate with one another.

Chatterjee et al. [26] have proposed a protocol which
uses PUF-based authentication in an Internet of things (IoT)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

scenario and replaces the traditional certificate-based au-
thentication. It is the first work in literature which considers
the server’s database to be breachable and secures it using
keyed hash function. The server in [26] only stores a single
key in its NVM. However, during the authentication phase,
the server sends raw challenges as well as the helper data
associated to the PUF to the device. This exposure of helper
data and challenges can result in side-channel attacks tar-
geted on the device’s PUF as the device’s interface is open to
random queries. Other than that, [26] uses Bose-Chaudhuri-
Hocquenghem (BCH) encoder/decoder based error correc-
tion logic inside the device to correct the noisy response
which results in a high hardware area overhead. [26] also
uses multiple hashing operations inside the device’s soft-
ware during authentication and key exchange phase. This
increases the end-to-end execution time of the protocol to a
great extent. Similarly, the protocols proposed in [24], [27]
and [28] have a huge area overhead which makes them
unsuitable for low cost authentication purposes.

In the proposed protocol, we sequentially tackle all the
problems that render the previous approaches either un-
usable or expensive for deployment in an IoT-based sys-
tem. We, first of all, develop a lightweight, multi-purpose,
invertible MASK function. The main motivation behind
developing this function was to remove the expensive hash-
based obfuscation for PUF’s CRPs. We then extend the usage
of this function to also serve as a message authentication
code. We also address the PUF’s reliability problem by
incorporating a BCH-based error correction scheme. This
error correction however, is performed on the server instead
of the device. This again, is only possible, by masking the
noisy responses at the output of the PUF circuit and sending
them to the server which, after unmasking and correcting,
verifies the authenticity of the device. Finally, we use elliptic
curve cryptography for generation of public/private key
pairs and setting up a communication platform for two (or
more) IoT nodes.

3 PRELIMINARIES
3.1 Notations

Binary vectors (V), that is, V ∈ {0, 1}n, are represented by
lower case, bold alphabets, for example, r, x etc.⊕ is used for
bit-wise XOR, whereas || is used to concatenate two vectors.
Function names are all italic, upper case alphabets and can
accept n number of arguments, that is, MAP(k1,k2,k3,...,kn)
represents a function MAP accepting n arguments. Func-
tions can also accept functions as arguments. In this case,
the argument function is evaluated first and the result is
used in the main function, that is, MAP2(FUN1(l1),FUN2(l2))
evaluates FUN1(l1) and FUN2(l2) first and uses the result to
evaluate MAP2. < . > represents an indexed list. Assuming
c is an n-bit binary vector, then < c > represents a list of m
n-bit binary vectors generated from c, where, m,n ∈ Z+. |r|
represents the length of the binary vector r. HW(r) computes
the hamming weight, that is, the number of ones in the
binary vector r. HW for an n-bit binary string x can be
calculated by the following equation:

HW(x) =
n−1∑
i=0

(x[i]⊕ 0) (1)

3.2 Definitions
3.2.1 Public Key Operations
The proposed scheme uses Elliptic Curve Cryptography
(ECC) for public key operations. ECC uses considerably
smaller key lengths compared to the more common RSA,
while providing the same level of security. For example, a
160-bit ECC provides the same level of security as a 1024-
bit RSA [29]. This smaller key length in ECC makes it an
attractive alternative over the RSA.

An elliptic curve Ep(a,b) is defined over a finite field F
and consists of all the points which satisfy the equation
y2 = x3 + ax + b, where a and b are two constants that
satisfy the condition 4a3 + 27b2 6= 0. The base point P of
Ep(a,b) has a prime order q. The security of ECC relies on
two computationally hard problems.

• Elliptic Curve Discrete Logarithm Problem
(ECDLP): SupposeE is an elliptic curve defined over
a finite field F and it contains a point L : L ∈ E(F).
Suppose a point M is a multiple of L, then by
definition, ∃α|α ∈ F such that M = α.L. ECDLP
is the computation of α given the points M and
L. ECDLP is a computationally hard problem as no
polynomial time algorithm exists that can compute
α.

• Elliptic Curve Diffie-Hellman Problem (ECDHP):
Given an elliptic curve E over a finite field F , a
generator point G ∈ E(F), two points P = β.G and
Q = γ.G, such that β, γ ∈ F ∗ are two unknowns,
then ECDHP involves calculating the point β.γ.G,
which is a computationally hard problem.

3.2.2 Masking Function
Given a binary l length input vector r = [r1, r2, r3, ..., rl],
the MASK function applies a transformation Ω(r) using a
set of l integers, to produce an l length output vector rm,
comprising of a random combination of the elements in r.
Similarly, the MASK function can also be used in a reversible
transformation Ω−1(rm) using the same set of l integers to
produce the original vector r. Both these transformations
can be represented as:

MASK(r,K) : r =⇒ rm (2)

UNMASK(rm,K) : rm =⇒ r (3)

where, K = {k1, k2, k3, ..., kl | k ∈ Z+} is a set of l
positive integers. We will use the above defined masking
function as MASK(r,K), where the length of binary input
vector r is equal to the number of elements in K. Similarly,
the UNMASK function will be used in the same manner
as MASK but with input rm to regenerate r. Details of
the MASK and UNMASK functions will be shown later.
For now, it suffices to say that both the MASK and UN-
MASK functions generate random binary output vectors
which have no correlation to the input vectors. Masking
operation has two main purposes: 1) it effectively hides the
relationship between the challenges and the responses of the
device’s PUF and 2) it provides a verification for the input
to the device. Without validating the input stream, the PUF
is not activated and thus no response is generated by the
device which effectively prevents the device from any brute
force attack.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Fig. 2. Enrollment Phase

3.3 Threat Model
We consider a threat model where the authentication and
key exchange does not take place in a secure environment.
Both the unauthenticated link adversarial model (UM) as
well as the authenticated link adversarial model (AM) are
considered in this scheme. The adversary, in our threat
model, can eavesdrop, manipulate, or replay the traffic
across all the communication links during the authentica-
tion events. These communication links include the channel
between the server and the devices as well as between the
server and the database storing the device’s data. By using
these communication links, the adversary can collect the ex-
changed messages and attempt to find a repetitive pattern.
The adversary can also perform man-in-the-middle as well
as spoofing attacks in order to gain unauthorized access.
The device also has an open interface and the adversary
can brute force query the device with any past or possibly
adaptively chosen current messages/challenges.

4 PROPOSED SCHEME
4.1 Enrollment Phase
Similar to other authentication schemes [6], [9], [10], [11],
[15], [26], this scheme has an enrollment phase and an au-
thentication phase. In addition to these two, it also provides
a key establishment phase where the devices share a secret
key which can be used for secure communication. The en-
rollment phase takes place in a secure environment during
which the server assigns unique identifiers (IDs) to all the
devices in the system. The assigned IDs are represented as
idx where x ∈ Z+. Other than this, the server generates
an exclusive primitive polynomial px for the PRNG1 circuit in
the device x. The configuration file, with the PRNG1 circuit,
is then used to program the device. Afterwards, device
data (e.g., CRPs) is collected. The steps involved during the
enrollment phase, shown in Fig. 2, are as follows:

• The server generates an encryption key Ks by pass-
ing a random challenge Cs through a weak PUF
implemented in the server. The challengeCs is stored
inside the NVM of the server.

• The server then assigns unique IDs to all the devices.
It then generates a primitive polynomial (pt) for one
of the PRNGs (PRNG1) in the design. This primitive
polynomial is unique for all the devices. It should
be noted that, other than the PRNG, the rest of the
design is completely identical.

• The server, after modifying the PRNG design, gen-
erates a configuration file (.bin) and programs the
device to set it up for the collection of CRPs.

• The server then uses its TRNG to generate a set
of k random numbers (RN) (Nk ← TRNG). Each
random number ism-bits long and the total numbers

Algorithm 1 Enrollment of x devices
Input: x devices
Output: Setup of x devices

1: procedure ENROLLMENT
2: Generate a Key Ks

3: for t← 0 to x do
4: Assign IDt to the device t
5: pt ← Unique primitive polynomial
6: Generate PRNG1 with pt
7: Program device t
8: N0, N1, . . . , Nk ← TRNG
9: for i← 0 to k do

10: ci ← PRNG1(Ni)
11: Send ci to the device
12: Receive ri from the device
13: Helpi ← BCH Encode(ri)
14: Enci,x ← EncryptKs< Ni, ri, pt, IDt, Helpi >
15: StoreEnci,x at (i, x)th location in the database
16: end for
17: end for
18: end procedure

generated, depends on the total number of CRPs to
be used for authentication purposes.

• Afterwards, the server uses each RN as a seed to the
PRNG1 to generate an m-bits long challenge ci (ci ←
PRNG1(Ni)). This raw challenge is sent to the device
over a secure channel.

• The device instantiates its PUF, using the challenge
ci it receives, to generate an m-bits long response
ri (ri ← PUF(ci)). This raw response is sent to the
server over a secured channel.

• The server upon receiving the response generates the
helper data associated to that response using a BCH
Encoder (Helpi ← BCH Encoder(ri)).

• The server then encrypts (< Ni, ri, pt, IDt, Helpi >)
using the encryption keyKs and stores the encrypted
output into the portion of the database designated for
the device with IDt.

Steps 3 to 17 in Algorithm 1 are repeated for a total of
x devices by the server. Considering that Nk, rk and pt
are all m-bits long, IDt is q-bits, and Helpx is n bits, the
total space complexity for all the enrolled devices would
be O(((2m + n) × k + m + q) × x). Also, prior to the
authentication, the server and all the devices agree upon
the public domain perimeters {p, a, b,G, n, h} of the elliptic
curve. Where, p defines the finite field over which the elliptic
curve is defined over, a, b are the curve parameters, G is the
generator point, n and h are the order and cofactor of G,
respectively.

4.2 Authentication Phase
After successful enrollment of the device in the system, the
next phase is the authentication and key exchange phase.
This occurs in an insecure environment, where the commu-
nication channels can be monitored by untrusted parties. We
assume that two nodes with A and B want to communicate
with each other. The various steps of the authentication and
key exchange protocol, as shown in Fig. 3, are as follows:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Fig. 3. Authentication and Key Exchange

• The node A initiates a communication request with
the server by sending its own ID (IDA) and the ID of
node B (IDB) to the server. The server validates the
IDs and sends a request to the database for a random
entry pertaining to the node A.

• While the server is busy in the acquisition of data
from the database, the device generates an m-bit ran-
dom number nA using its own TRNG circuit. It then
calculates the hamming weight of nA. For an ideal
TRNG circuit with high bit entropy, P (X) = 0.5,
where X = 0 or X = 1. We define τ1 and τ2 as
the range of values that the function HW (nA) can
take. The choice of τ1 and τ2 will be discussed in the
security analysis.

• The device then performs random masking of nA as:

nAM = MASK(nA, kA1) (4)

where, kA1 is a set of m integers generated by the
PRNG1 as:

kA1 = PRNG1(nA) (5)

The device then sends nA to the server over the
channel while retaining nAM.

• The server upon acquiring the random encrypted
entry EncA from the database, decrypts it using the
key Ks, acquired after passing the secured challenge
Cs from the weak PUF in the server, to produce a
tuple of five values as follows:
< NA, rA, pA, IDA, HelpA > = DecryptKs (EncA)

(6)
• The server then validates the entry by checking the

decrypted IDA. After verification, it configures its
software-based PRNG1 using the feedback polyno-
mial (pA), unique to the node A, it retrieves from the
database.

• The server then repeats the same steps as the device,
that is, it generates its own nS1 from a TRNG, checks
the HW and the proceeds to mask nS1 to generate
nS1M. kA2, in this case, is a set of m integers generated
by the PRNG1 as:

kA2 = PRNG1(nS1) (7)
• Both the server and the device exchange their respec-

tive TRNG outputs, verify that the HW threshold is
met and then perform the MASK operation. In this
way, at the end of this phase, both the device and the
server has a set of 4 m-bit random numbers which
are nA, nAM, nS1 , and nS1M. It should be noted that
only nA and nS1 have been exchanged on the insecure
channel and no information about nAM and nS1M is
visible outside the device and the server because of
the random MASK function.

• The server now uses the first element NA of the
decrypted tuple as a seed to PRNG1 to generate the
challenge cA. It then masks NA and cA to generate
NAM and cAM by using kA3 where,

kA3 = PRNG1(nAM) (8)

It then sends the masked, concatenated NAM ||cAM to
the device.

• The device upon receiving NAM ||cAM unmasks both
of them using kA3 to generate NA and cA. Since this
kA3 is the same as that of the server, both of the
values generated in the device and the server are the
same. The device then uses it’s own copy of PRNG1
to generate c’ and verifies the identity of the server.

• If the server is verified, the device unlocks the PUF
circuit and generates sub-challenges < c > using cA.
A response rnoisy is generated, XORed with nS1M and
masked using kA4 where,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

kA4 = PRNG1(nS1M) (9)

to produce rmask. This is sent to the server for verifi-
cation.

• The server upon receiving rmask, XORs and unmasks
it with nS1M and kA4, respectively, to regenerate
rnoisy. This rnoisy is then corrected using HelpA to
generate rcorrected. This is compared with rA to val-
idate the device. Both the server and the device at
this point have mutually authenticated each other.
This is also true for Node B who’s authentication is
done in parallel by the server in a separate instance
following the same steps.

4.3 Key-Establishment Phase
The next phase of operation is the key establishment phase
which is done using ECDHP.

• The device generates a private key α. This can be
done using the TRNG circuit designed in hardware
or through software based random number gener-
ator. It then uses elliptic curve point operations to
generate a public keyApub and then masks the public
key by kA5 to generate Apub∗ where,

kA5 = PRNG1(rnoisy) (10)

It should be noted that the ∗ in Apub∗ is just a nota-
tion and does not represent the kleene star operation.
Thus, by eq. (10), the public key of node A is tied to
the noisy response generated by its PUF. It should be
noted that rnoisy is never exposed outside the device
and only a valid server can retrieve it from rmask.
The server then verifies Apub by unmasking Apub∗.
The same process is repeated for Bpub for node B. It
should be noted that only the server can retrieve the
unique rnoisy from both nodes A and B and these
two nodes do not know each other’s rnoisy because
of the PUF’s uniqueness property.

• In the final step, the server masks the public key of
node B using the rnoisy of node A and vice versa. It
then sends the masked public key (BSM) and the
original public key (Bpub) of Node B to Node A.
The Node A then unmasks the masked public key
and compares it against the original public key. If
the comparison is successful, Node A accepts the
public key of Node B and generates the shared secret
(P = α.Bpub). Similarly, Node B validates the public
key of Node A using its own rnoisy and generates the
shared secret (P = β.Apub).

This concludes the key establishment phase between the
two nodes A and B. The server and the nodes may discard
all the private variables associated to this authentication and
key establishment cycle. The nodes can use any encryption
scheme to encrypt the messages using the shared secret P.
The exact details of the encryption are not covered in this
work, but for the sake of completeness, we can present one
most commonly used method. The two nodes can use the
x-coordinate of the shared secret P as a key and discard the
y-coordinate. To prevent usage of a biased key, the nodes
may hash the x-coordinate and use the hashed output as a
key to an AES-based symmetric encryption scheme.

Fig. 4. Range Transformations

4.4 Input Stream Verification via Masking
We defined the usage of MASK function in the earlier
sections. In this section, we will elaborate MASK more
thoroughly and present the operations which are under-
taken when a call to this function is made. Since MASK is
frequently used and plays a pivotal role in the proposed
scheme, we will also do a formal security verification of
masking.

The MASK function takes two input arguments; an m-
bit binary vector x to be masked and an integer set K.
As shown before, K is generated using PRNG1 as (K ←
PRNG1(y)), where y is an n-bit binary vector. Thus, by
definition, we can also write masking function as MASK(x,y)
which takes two binary vectors; an m-bit x and an n-bit y,
as inputs and outputs an m-bit binary vector xm which is a
random combination of the elements(bits) in x. We will use
combination and permutation interchangeably in this text.
The three main operations carried out during masking are
as follows:
4.4.1 Integer Set Generation
: The binary vector y is used as a seed to a PRNG circuit
(PRNG1) to generate a set of positive integers {k | k ∈ Z+}.
The number of elements in the set are equal to m. All the
integers in the integer set K are treated as n-bit positive
numbers, where the maximum value that any integer can
have is 2n − 1.
4.4.2 Range Transformation
We define a function RANGE as a linear mapping transfor-
mation which, given an m-bit integer, k ∈ K, with the value
in the range [0, 2m − 1], generates a new set Q {q | q ∈ Z+}
of l-bit integers in the range [0, 2l − 1], where l ≤ m. The
linear range mapping is governed by the equation:

Nnew =

⌊
(Nold −NoldMin)× (NnewMax −NnewMin)

(NoldMax −NoldMin)

⌋
(11)

where, Nold ∈ K is an input to the RANGE function.
NoldMin is the minimum and NoldMax is the maximum
value in the old range [0, 2m − 1], which in this case are
0 and 2m − 1, respectively. NnewMax and NnewMin are the
maximum and minimum values in the new range [0, 2l−1].
In our case, the NnewMin remains a constant 0, whereas
NnewMax can vary and is provided as the second input to
the RANGE function. Thus, by incorporating these changes,
the updated range equation becomes:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Nnew =
(Nold ×NnewMax)

NoldMax
(12)

Because NoldMax is in powers of 2, the equation can be
further reduced by performing a simple right shift operation
instead of division to conserve the hardware resources. The
final equation becomes:

Nnew = (Nold ×NnewMax) >> m (13)

Fig. 4 shows some of the linear range transformations
governed by (13).

4.4.3 Bit Shuffling
The final step of the MASK function is bit shuffling. The
shuffling algorithm used in the proposed scheme is based
on Durstenfeld version of Fisher-Yates Shuffler [30]. For a
list of n distinct elements, the Durstenfeld shuffler produces
n! permutations, all of whom are equally likely. We will for-
mally prove the security of the shuffler in the next section.

We are now in the position to summarize the MASK
function in terms of an algorithm. Algorithm 2 shows the
entire masking process involving integer set generation,
range adjustment and bit shuffling. It can be seen from the
Algorithm 2 that the Durstenfeld shuffler shuffles the data
in-place, this means that the m-bit binary vector x can also
be used as output at the end of the algorithm execution.
For the sake of simplicity, we use the m-bit binary vector
xm as output. It is also evident from the algorithm that the
output xm can be unmasked and transformed back to x by
performing UNMASK(xm,y). That is,

x = UNMASK(MASK(x, y), y) (14)

For the case of UNMASK, the same integer set
{k1, k2, ..., km} is used, however, the loop is iterated in
reverse, that is, from m to 1.

Algorithm 2 Masking Process
Input: (x,y): m-bit binary vector x, n-bit binary vector y
Output: xm: m-bit binary vector

1: procedure MASK(x,y)
2: Integer Set K: {k1, k2, ..., km} ← PRNG1(y)
3: for i← 1 to m do
4: Nnew ← RANGE(ki,m+ 1− i)
5: x← SWAP(xNnew , xm-i+1)
6: xm ← x
7: end for
8: end procedure

Illustrative Example of Shuffling and Deshuffling
Fig. 5 shows the process of masking and unmasking on a 6-
bit binary test vector, x = [1, 0, 0, 1, 0, 1], by applying Algo-
rithm 2. Thus, in this case, m = 6. The binary vector y is the
same as x, that is, we are applying masking as MASK(x,x).
Note that this is just a test case and the actual input should
be much wider (≥ 64 bits) for providing any reasonable
security. We assume that by inputting x to a PRNG1 circuit,
we get the integer set K = {43, 32, 60, 54, 12, 28}. The
algorithm masks the input x as follows:

• During the first iteration, that is, i = 1, Nold = 43,
NnewMax = 6, the value of Nnew, as calculated by (13),

Fig. 5. Masking and Unmasking. (a) MASK operation (b) UNMASK
Operation

comes out to be 4. We update x by SWAP-ing the 4th

and 6th element. The new value of x is copied to xm.
The arrows in Fig. 5 indicate the elements which are
swapped.

• During the second iteration, that is, i = 2, the value
of Nnew comes out to be 2. We swap the 2nd and 5th

element and copy updated x to xm.
• We use the same procedure for all future iterations,

that is, from i = 3 to i = m = 6. The final output xm,
after the completion of mask operation, comes to be
xm = [1, 1, 0, 0, 0, 1]. This is shown in Fig. 5. It should
also be noted that since the bit indexing is done from
1 to m, if at any stage, Nnew comes out to be 0, we
update it to 1 for the proper indexing of the swap
operation.

We follow the same process as above for unmasking the
masked output, xm, as UNMASK(xm,x). The same integer
set K = {43, 32, 60, 54, 12, 28} is used during unmasking
operation.

• During the first iteration, that is, i = m = 6, Nold =
28, NnewMax = 1, the value of Nnew comes out to be 0,
which is adjusted to 1. We update xm by SWAP-ing
the 1st bit by itself which produces no change.

• During the second iteration, that is, i = 5, the value
of Nnew comes out to be 1. We swap the 1st and 2nd

bit and copy updated xm to x.
• We repeat this process for the rest of the iterations,

that is, from i = 4 to i = 1 and subsequently update
xm and x. For the first iteration, that is, i = 1, the
value of Nnew comes out to be 4. We update xm by
swapping the 4th and 6th element. It can be seen that
the final output of unmasking operation is equal to
the input of the masking operation.

4.4.4 Security of the Shuffler
In this section, we will formally prove the security of the bit
shuffler. The shuffling process is described in Algorithm 2
from lines 2 to 7. Our main assumption while proving the
security of the shuffler is that the shuffler receives highly
random values from the random number generator (line 2
of Algorithm 2) and uses those values for shuffling the m-bit

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Fig. 6. Permutations vs. HW as a function of input size

input. Under this assumption, we will show that it is highly
improbable to determine the m-bit output vector produced
by the shuffler given the input. It can also be seen from
Algorithm 2 that the security of the masking operation is
contingent upon the security of the shuffler. This is because
the shuffler adds randomness into the input binary vector
by generating an output vector which is a random permuta-
tion of the input vector, where, every permutation is equally
likely.

Since the m-bit input vector x is binary, that is, x ∈
{0, 1}m, the total unique permutations of x are given by:

Permutations =
mPm

τ1!×(m− τ1)!
(15)

where,
mPm =

m!
(m-m)!

= m! (16)

In equation (15), τ1 is the hamming weight, that is, the
number of 1s and (m − τ1) represents the number of 0s in
x. Fig. 5 shows the total number of permutations against τ1,
for different values ofm. It can be observed that for different
values of m, the maximum number of unique permutations
occur when τ1 = m

2 . Similarly, the minimum occur when
τ1 = m or τ1 = 1. This provides the reasoning as to why,
in Fig. 3, after the generation of nA and nS1 , both the server
and the device check the HW of their respective nonces. If
the nonce has a HW which does not satisfy the lower bound,
τ1, that nonce is discarded and a new one is generated. It
should be noted that τ2 is just the number of zeros and
is equal to (1 − τ1). The number of permutations given
by equation (15) will still remain the same regardless of
whether τ1 or τ2 is used but for convenience we use HW,
that is, τ1. Also, after the server and the device transmit
their respective nonces, HW is again checked. This is critical
because, as shown in Fig. 6, as the HW is decreased to 12.5%
of m = 128, the total number of random permutations the
shuffler could produce, are only 1019. Decreasing the HW
further would even lower the total number of permutations
produce-able by the shuffler. An adversary can modify the
nonce during transit and decrease the HW substantially
(e.g., 5 1’s and 123 0’s for m = 128), the consequence of
which is the decrease in the number of unique permutations
(only ≈ 108) that the shuffler can produce. The adversary
can then just permute through all the possible number of
permutations to find the correct shuffled versions of nA or
ns1 , produced by the shuffler. Thus, as long as the HW lies

within the specified boundary of τ1 and τ2 (as defined by the
protocol), the nonce will be accepted regardless of whether
it was modified by the adversary during transit. This is
because, as shown in Figure 6, the total number of unique
permutations producible by the shuffler, is a function of
input size m and hamming weight τ and not of the specific
shape of the input.

All of the above discussion assumes that given an m-
bit binary vector x, the shuffler produces an m-bit output
y which can be any of the m! /(τ1!×(m − τ1)!) permu-
tations, where every permutation has equal probability of
occurrence. For the case, when the vector x has distinct
elements, the total number of permutations, by definition,
will be m!. For simplicity, we will prove the case that when
x has unique elements, the shuffler can produces any of
the m! permutations, with each permutation having equal
probability of occurrence, that is, 1

m! . This can then be
extended for the case when x has binary elements with
repetitions.

Theorem 1. The m-length output vector Y
{y[1], y[2], ..., y[m]}, produced at the end of the
shuffling algorithm, by an m-length input vector X with
distinct elements, can be any of the m! permutations
with the same probability.

Proof 1. We will proof the above theorem by induction on
m.
Base Case: For the case of m = 1, the proof is trivial.
Induction Hypothesis: We assume that the theorem holds
for m = j, that is, {y[1], y[2], ..., y[j]} produced at the
output can be any of the j! permutations with the same
probability.
Induction Step: We will show now that the theorem holds
for m = j + 1. We assume that Y is the intermediate list
({y[1], y[2], ..., y[j]}) produced before processing y[j+ 1]
and Y ′ is the list ({y[1], y[2], ..., y[j], y[j + 1]}) produced
after processing y[j + 1]. Let q be the random number
used to process Y ′, then it is obvious that Y ′ is a function
of (Y, q). Here, q has (j+1) possible choices. Since Y had
j! possible choices before processing y[j+1], so Y ′, using
q, will have (j+1)! possible choices. In other words, there
are (j+1)! distinct pairs of (Y, q). Now we will prove two
lemmas that will inadvertently prove the correctness of
the theorem.
Lemma 1. The probability of occurrence of every pair of
(Y, q) in the algorithm is the same.
Proof. By our induction hypothesis for m = j, we can
see that there will be a total of j! unique permutations
with each permutation having the same probability of
occurrence, that is, 1/j!. For the case of m = j + 1, the
value of q can be anywhere between 1 and j+1, inclusive
and hence, for q generated from a reasonably random
source, every value of q in this interval will have the
probability of occurrence ≈ 1/(j + 1). Thus every pair
(Y, q) occurs with the probability 1/(j + 1)!.
Lemma 2. Every pair (Y, q) produces a distinct Y ′.
Proof. Let (Y1, q1) and (Y2, q2) be any two distinct pairs.
Then, at least one of the following conditions hold, that
is, Y1 6= Y2, q1 6= q2. We assume that Y ′1 and Y ′2 are
produced from the first and second pair, respectively. We
will show that Y ′1 6= Y ′2 . There are two cases:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

• Case 1: For the case when Y1 6= Y2. Let i be the
smallest number such that the ith element of Y1
differs from Y2. If q1 6= q2 or q1 = q2 6= i, then Y ′1
differs from Y ′2 at the ith element. If q1 = q2 = i, then
Y ′1 is still different from Y ′2 on the (i+ 1)st element.

• Case 2: For the case when Y1 = Y2 and q1 6= q2, Y ′1 is
still different than Y ′2 on the (j+1)st element because
of the the algorithm works. Hence, Y ′1 6= Y ′2 .

This proves the correctness of Theorem 1. We can ex-
tend this proof for any m-bit binary vector x and
show that the shuffler produces m! /(τ1!×(m − τ1)!)
unique permutations, where each permutation is equally
likely and has the probability of occurrence equal to
(τ1!×(m− τ1)!)/m!.

Input Re-Appearance: Another important consideration while
evaluating the security of the shuffler is finding out the
probability that the output produced by the shuffler is equal
to the input. It is evident that this probability needs to
be extremely low. Intuitively, from Theorem 1, we can see
that this probability (P), is the same as the probability of
occurrence of any other random permutation, that is:

P =
τ1!×(m− τ1)!

m!
(17)

However, for quantitative analysis and better understand-
ing, we implement an algorithm which can calculate the
exact probability of input re-appearance.

Algorithm 3 Probability of Input Re-appearance
Input: x: m-bit binary input vector x = {x[1], x[2], ..., x[m]}
Output: Pr(Shuffle(x)=x): Probability that the shuffler
outputs the same vector as the input

1: procedure Probable(x)
2: for i← m to 1 do
3: if (x[i] == 1) then
4: for j ← i to 1 do
5: if (x[j] == 1) then
6: count1++
7: end if
8: end for
9: Pr = Pr × count1

i
10: else
11: for j ← i to 1 do
12: if (x[j] == 0) then
13: count0++
14: end if
15: end for
16: Pr = Pr × count0

i
17: end if
18: end for
19: end procedure

Algorithm 3 follows the shuffling process and iterates
through the entire string. It calculates the probability that
the value (0 or 1), at a particular index, will be replaced by
the same value by counting the number of similar values
in the remaining string. Fig. 7 shows the result of running
Algorithm 3 on random m-bit binary strings with different
HW s. It follows that as the size m of the input string
is increased and HW ≈ m

2 , the probability of input re-
appearance decreases drastically.

Fig. 7. P variation with input size

Input Independence: Another attractive property of this shuf-
fling scheme is its input independence. This is a direct
consequence of Theorem 1. The shuffling scheme treats any
m-bit input as a random permutation of an m-bit string and
generates another random permutation. Thus, even if the
adversary modifies the input string, while preserving the
HW to prevent discardment of the string by the protocol,
the total unique permutations that the shuffler can produce
will still be given by (15) and all the permutations will be
equally likely as indicated by Theorem 1.

We will now present a theorem that quantifies the secu-
rity level provided by the shuffler and thus compares the
security of the shuffler against the security of commonly
used block ciphers.
Theorem 2. A shuffler of length m bits provides a security

level of m − log2 rs bits, where rs is the search space
ratio of the search space of a symmetric cipher with a
key length of m bits to the search space furnished by the
shuffler.

Proof 2. The search space imparted by a symmetric cipher of
key lengthm bits is equal to 2m whereas the search space
(i.e., the number of possible permutations) provided by
the shuffler of length m and hamming weight τ is equal
to m! /(τ !×(m− τ)!) (follows from Eq. (15)). The search
space ratio rs, that is, the ratio of the search space of
symmetric cipher with key length of m bits to the search
space furnished by the shuffler can be given as

rs =
2m × τ !×(m− τ)!

m!
(18)

The rs quantifies how much more search space explo-
rations are required to break a symmetric cipher of key
length m as compared to a shuffler of length m. The
number of bits that accounts for these additional search
space explorations imparted by a block cipher of key
length m can be given as log2 rs. Hence, a symmetric
block cipher with a key length of m − log2 rs bits pro-
vides an equal search space as that of the shuffler with
length m. Alternatively, the equivalent key length (EKL),
that is, the key length of the symmetric cipher which will
impart an equivalent level of security as the shuffler is
equal to m − log2 rs bits. Conversely, the security level
offered by a shuffler of length m is equal to m − log2 rs
bits. �

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Lemma 3. The maximum security level provided by a
shuffler of length m bits and hamming weight τ is for
τ = m/2.

Proof. The search space ratio rs in Eq. (18) is minimized
when τ = m/2. The maximum values of rs is obtained
for the extreme cases, viz., τ = 0 and τ = m both of
which gives the value of rs = 2m. The value of rs de-
creases as τ approaches m/2 and reaches the minimum
value at τ = m/2, that is, limτ→m/2 rs(τ) = rsmin =
(2m+1×(m/2)!)/m!, where rsmin denotes the minimum
value of rs. The maximum security level is offered by a
shuffler of length m when rs is minimized, that is, the
maximum security level corresponds to m − log2 rsmin .
Since rsmin is attained when τ = m/w, this implies that
the maximum security level that can be provided by a
shuffler of length m bits and hamming weight τ is when
τ = m/2.

Example: Consider a shuffler with m = 128 and τ = 50% of
m. The total unique permutations that can be generated by
the shuffler in this case is equal to 2 × 1037 ≈ 2124 (follows
form Eq. (15) and Fig. 6). Also, for a 128-bit block cipher,
the search space is 2128. The rs in this case comes out to
be ≈ 24, which gives an EKL of 128 − log2 24 = 128 − 4 =
124. Thus, the shuffler will provide a security equivalent to
a block cipher with key size ≈ 124 bits.

4.4.5 PRNG Design
We use linear feedback shift register (LFSR) based PRNGs
because of their low hardware overhead and nearly uniform
statistical outputs. Some important properties of PRNGs to
look for during the design phase are linearity, circularity
and predictability. We use two LFSR-based PRNGs in this
protocol. PRNG1 is used in both the MASK operation as well
as the cA generation. PRNG2 is used for < c > generation.
Both of the LFSRs are maximum-length LFSRs, having state
s. The feedback polynomial, extended over the finite field
GF (2), is primitive. The LFSR is initialized with a given
seed s0 and it cycles through 2|s0| − 1 states. Lock-up state,
that is, all-zeros state is avoided by design for an XOR-based
LFSR and all-ones state is avoided for an XNOR-based LFSR.
We will specifically talk about PRNG1 as it is unique for
every node and as is more critical because of it’s usage in
the MASK function.

For an m-bit minimum length LFSR and a prime power
n, the total number of primitive polynomials, tq(m), over
GF(q) are given by:

tq(m) =
φ(qm − 1)

m
(19)

where,

φ(m) =
n∏
i=1

(P eii − P
ei−1
i) (20)

is the Euler’s totient function. We assume that m has
a canonical factorization such that m = pe11 .p

e2
2 ...p

en
n for

a prime p and n ∈ Z+. Fig. 8 shows the growth in the
total number of primitive polynomials as the length of
PRNG1 increases from m = 1 to m = 64. By referring to
Fig. 8, we can conclude that by choosing a PRNG1 of length
m = 64, there are ≈ 1018 unique polynomials, the direct
consequence of which is that more than a quadrillion devices

Fig. 8. Number of unique primitive polynomials against LFSR length (m)

can be enrolled in the system with each having a unique
polynomial hardwired inside of it. The server also does
not need to store any polynomial information as it extracts
the said information from the database and configures its
software-based PRNG1 during an authentication run.

The seed value or iv for PRNG1 during the process of
masking is defined as s0 = iv||n’x. Thus, equations (5), (7),
(8), (9) and (10) are expanded as PRNG1(nx) = LFSR(iv||n’x).
Here, |s0|= m, where m is the length of the binary vector
nx, inputted to the MASK function. Thus, both the iv and
n’x are m/2 in length. Choice of n’x is made during the
design phase. Any m/2 bits can be chosen from nx during
an authentication cycle and used as a part of the seed to
the LFSR. It should be noted, however, that both the server
and the device should agree upon a common choice of n’x,
otherwise the masked outputs will be different.

We will now establish some design rules for PRNG1,
specifically for the generation of integer set K, used dur-
ing the MASK operation. From Algorithm 2, we can see
that the output of PRNG1 is used by the RANGE function
which generates integers with a decreasing range. If m
integers are generated by the PRNG, that is, {k1, k2, ..., km},
then, during the first iteration, the range is between (1,m),
inclusive. During the second iteration, the range is from
(1,m− 1), inclusive and so on. This implies that during the
first iteration, every number in the range (1,m) is equally
probable and has the probability 1/m. Similarly, for the
second iteration, with range (1,m−1), every number has the
probability 1/(m − 1) and so on. Keeping this observation
in mind, we can develop an m ×m Probability Matrix (PM)
which is a mapping of the range adjusted PRNG outputs
to their exact probability of occurrences for all successive
iterations of the MASK algorithm.


1 2 3 . . . m
1 2 3 . . . m
1 2 3 . . . m
...

. . .
1 2 3 . . . m

 =⇒ PM (21)

where,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

PM =



1/m 1/m . . . 1/m 1/m
1/(m− 1) 1/(m− 1) . . . 1/(m− 1) 0
1/(m− 2) 1/(m− 2) . . . 0 0

...
. . .

...
1/2 1/2 . . . 0 0
1 0 . . . 0 0


(22)

Here, (21) represents the mapping of the range-adjusted
PRNG outputs {k1, k2, ..., km}. k1 is any number in the
range (1,m) represented by the first row in NR. All the
numbers in the first row are equally probable by nature of
the algorithm and thus, mapped to the probability 1/m in
PM. Thus, first row of NR and PM represents the first iteration
of Algorithm (2). During the second iteration, the range is
(1,m−1), and thus, all the elements, other than the mth are
equally probable with the probability 1/(m− 1). In the last
iteration, since the range is (1, 1), thus, 1 has the probability
of 1 and all other numbers in NR have a 0 probability of
occurrence.

Assuming that the Algorithm 2 runs k times, each time
with m iterations, the probability matrix (PM) can be used to
calculate the expected outcome matrix (EM) as:

EM = k× PM (23)
Here, EM maps the numbers in NR to their expected

occurrence. For m = 10 and k = 100, every number from
(1,m) should ideally occur k/m = 10 times during the first
run of the algorithm. Similarly, every number from (1,m−1)
should occur k/(m − 1) ≈ 11 times in the second iteration
and so on. A PRNG design which produces an Actual
Outcome Matrix (AM), close to EM, after running k iterations,
will provide highly unbiased inputs to the shuffler in the
MASK function. We say close because, if the PRNG produces
AM exactly like EM, that is, there is no deviation between the
expected and the observed values then one might question
the randomness of the PRNG.

As a design example, we generate a 64-bit PRNG with
m = 64. We run the PRNG several times to come up
with a choice of iv that gives the most random PRNG
outputs. We then run the Algorithm 2 a total of k = 10, 000
times and generate both the EM as well as the AM matrix.
To test the goodness of fit between AM and EM, we use
two-sided Chi-Square Goodness of Fit test with 63 degrees
of freedom and 95% confidence interval with two critical
values, α = 0.025 and α = 0.975, for the left and the
right side, respectively. Our test statistic χ2 comes out to
be ≈ 65. Comparing against a standard Chi-Square Table, our
test software concluded that the null hypothesis, that is, H0:
The PRNG design is well suited for the shuffler, to be TRUE.

4.4.6 Correctness Proof of the Protocol
Now that we have presented all the necessary details of
the various operations during the protocol execution, we
can prove the correctness of the scheme. We assume a
scenario where two communicating parties, that is, Node A
and Server S are authenticating each other. Both the parties
generate their respective outputs after every authentication
stage. We assume that both S and A are running protocol γ
shown in Fig. 3. We define the correctness of protocol γ as
follows:

Definition 3. (Correctness of Protocol) The protocol
γ will be correct if the output generated by node A,
OutputA,γ(ns1 ,NAM||cAM), and the one generated by the
server S, OutputS,γ(nA,EncKs(NA,HelpA,rA)), can only differ ε
times after d authentication cycles.

It should be noted that the quantity ε should be ex-
tremely small whereas d should be sufficiently large. The
above definition can be written as:

Pr[OutputA,γ(ns1 ,NAM||cAM) 6=
OutputS,γ(nA,EncKs(NA,HelpA,rA))] ≤ε

Representing MASK and UNMASK functions asM and
U , respectively, it can be observed that:

OutputA,γ = (BCHDecoder(U (rmask ⊕ns1m, kA4),HelpA)) =

DecryptKS (NA,HelpA,rA) = OutputS,γ

where,

rmask =M(PUF(PRNG(U(cAM , kA3))))

The above equations show that the outputs of the node
A and the server S will be equal when the authentication
criteria is met, that is, rcorrected = rA. This is only possible
when both the node A and the server S are honest and the
communication channel is unhindered and lossless.

5 RESILIENCE AGAINST ATTACK SCENARIOS IN
THE THREAT MODEL
In this section, we analyze different attack scenarios by
which the adversary can attempt to break the protocol.
Similar to [26], the proposed scheme considers two major
adversarial models.

• The Unauthenticated Link Adversarial Model
(UM): Here a probabilistic polynomial time (PPT) ad-
versary Adv can actively attack the communication
channels between two parties. The adversary Adv
may read, modify or delete the messages exchanged.
In addition, Adv may also obtain some sort of secret
information hidden in the communicating parties’
internal memories.

• The Authenticated link Adversarial Model (AM): In
the AM model, the adversaryAdv has limited control
over the communicating parties and the information
exchanged between them. Adv may choose to not
deliver the messages generated by the parties but if
delivered, Adv can not alter the messages.

It is apparent that the UM model is more realistic in
nature given the bulk of computing power available to the
Adv. Thus, if a protocol is protected against a UM model, it
is, by definition, protected against the AM model. We show
that the proposed protocol γ is secure against UM adversary
Adv under the following assumptions:

• PUF Uniqueness Problem (PUP): Our first security
assumption relies on the premise that a PPT Adv
can not replicate the behaviour of the device’s PUF
even if Adv copies the entire design of the PUF. This
assumption is based on the mathematical and phys-
ical unclonability of PUF structures. Two structurally
similar PUF instances, PUFA and PUFB, on different

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

silicon chips, provided the same n-bit challenge C:
{0, 1}n will produce two m-bit response strings, R1:
{0, 1}m and R2: {0, 1}m, where the probability of R1
and R2 being the same is negligible. That is:
P[PUFA(C : {0, 1}n) = PUFB(C : {0, 1}n)] = ε

(24)
It has been shown in literature [31] that the basic Ar-
biter PUF and many of its variants, e.g., the XOR PUF
have very low uniqueness properties. These PUFs
make the protocols, employing them, vulnerable to
impersonation attacks, where the adversary copies the
publicly available PUF structure and impersonates
as a legitimate entity. To circumvent these issues, an
APUF variant called m-nDAPUF has been proposed
in [32]. This PUF has high uniqueness properties and
is a good candidate for authentication protocols. [26]
also uses a variant of the DAPUF. Even though the
DAPUF provides good resilience against imperson-
ation attacks, which rely on low uniqueness, it is still
vulnerable to software based modeling where the
PUF’s CRPs, over the channel, are recorded and used
to generate a software model which can predict the
response to an unseen challenge. Infact, [33] recently
proposed a deep neural network-based attack which
can accurately predict the response of a DAPUF to
unseen challenges with probability of 88.4% which
makes the protocol proposed in [26] vulnerable by
software modelling. [26] also reveals the raw helper
data for error correction on the insecure channel. This
exposure of helper data provides another attack vec-
tor for the adversary. Our protocol is secure against
such ML-based modelling attacks because we do not
explicitly reveal any raw challenge or the generated
response directly on the channel and instead only
reveal masked challenges and responses. Other than
that, our raw helper data is never sent on the insecure
communication channel as the server is responsible
for implementing the error corrector (BCH decoder).

• Server Encryption Key (KS): Our second security
assumption is that the challenge Cs, which generates
the server encryption key Ks, is not revealed to the
Adv. This means that even if the Adv reads the en-
crypted messages exchanged between the server and
the database, it cannot decrypt those messages. The
Adv can, however, modify or replay the previously
sent encrypted messages.

• Masking PRNG Polynomial: Our final security
assumption is that the LFSR-based PRNG circuit,
used in the MASK function, has a characteristic
polynomial which is not publicly available. This is
because every device in the system has a unique
PRNG1 structure. Making the PRNG1 structure pub-
licly known makes little sense as there could be
millions of devices in the system with each one
having it’s own structure. This assumption, however,
certainly does not limit the capabilities of Adv, as
Adv can attempt to extract this information from the
device through brute force or device de-encapsulation.

We will now present different attack scenarios through
which the adversary Adv can attempt to break the protocol
γ.

Case-1: Impersonation of Node A:

• We assume that the PPT Adv monitors Node A ever
since it’s enrollment into the system and stores the
data, associated to all the previous authentication
cycles d, between the server S and A and between
S and the database D.

• After d authentication cycles, A hands over it’s entire
design to Adv including the details of PUF, the
TRNG etc.Adv, however, does not have the informa-
tion about PRNG1. We will represent this fake node,
controlled by Adv, as AF.

• AF initiates the d+ 1st authentication cycle with S. It
sends a previously used valid device nonce nA to S.

• The server, upon receiving the nonce, performs its
own set of initial operations which include, extract-
ing the encrypted data from D, setting up its PRNG1
and generating the nonce ns. S and AF, after the first
few operations, will both have a set of four random
numbers. AF will have {nA,nAM’,nS1 ,nS1M’} and S
will have {nA,nAM,nS1 ,nS1M}. Here, we can see that
since AF does not have the characteristic polynomial
of the MASK PRNG, thus nAM 6= nAM’ and nS1M 6=
nS1M’.

• The server S will send NAM||cAM to AF both of whom
are masked using nAM. AF will attempt to unmask
them using nAM’ but will fail because of the random
permutation property of the MASK function.

• AF will attempt spoofing attack by re-sending the
rmask associated to the authentication in which the
valid node A sent the nonce nA. This will fail how-
ever, because rmask is generated by XOR-ing the
noisy response, rnoisy, with the current nS1M and then
masked using nS1M. Therefore, the server will fail to
authenticate the fake node AF.

Case-2: Impersonation of Server S:

• We assume that the PPT adversary Adv corrupts the
server and takes control of it with the exception of
Cs used to generate the encryption key KS. We will
call this fake server as SF . The main goal of SF is to
validate itself to two IoT nodes A and B, establish a
fake key-exchange between the two and then, listen
to the communication and data exchanged between
the two.

• Upon receiving a query from a valid node A, SF
generates nS1F and sends it to node A. It also receives
encrypted data from D.

• Since SF does not have the encryption key KS , it
can not decrypt the data obtained and thus, can not
extract the PRNG1 design. It resorts to using some
random PRNG design instead. The probability of
this PRNG design being the same as a valid design,
designated for this node, is the reciprocal of tq(m)
given in (19). For m = 64, this probability comes out
to be ≈ 10−18.

• The node A will send its own nA to SF . Both A
and SF will mask theirs and each others respective
nonces to produce a set of four random numbers.
Node A will have {nA,nAM,nS1F,nS1FM} and SF will
have {nA,nAM’,nS1F,nS1FM’}. Similar to the previous
case, in this case, nAM’ 6= nAM and nS1FM 6= nS1FM’.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

• Now, again, because the corrupted server SF does
not have access to Cs because of which it can not
generate Ks, it can not decrypt the acquired en-
crypted data, it received from the database to pro-
duce NAM’||cAM’. Therefore, it will resort to sending
some previously sent NAM||cAM to the node A.

• Node A upon receiving NAM||cAM will unmask it
with the current set of private variables and will
immediately recognize that cA 6= cA’. Thus, it will
reject the corrupted server SF and will not unlock its
PUF to produce any response.

Case-3: Man-in-the-Middle Attack:

• We consider another protocol level attack known
as Man-in-the-Middle (MITM) attack which is the
extension of Cases 1 and 2. In this attack, the ad-
versary secretly monitors the messages exchanged
between legitimate communicating parties. The ad-
versary can delay, alter, or eavesdrop the messages
over an insecure network. The MITM is prevented
by employing mutual authentication, where both par-
ties mutually authenticate each other’s messages. In
the proposed protocol, masking/unmasking is used
as a lightweight message authentication scheme to
prevent the MITM attack.

• The first target of the MITM attack for theAdv, in this
case, is the message NAM||cAM, sent from the server
to the device; however, as seen from Fig. 3, NAM||cAM
is masked by the server and subsequently unmasked
by the device. If the unmasking process in the device
does not generate a valid cA, the protocol aborts.
Because of the nature of the masking and the un-
masking function, as explained in the previous cases,
only a valid NAM||cAM will produce a correct cA. Any
manipulation of NAM||cAM will produce an incorrect
cA which will be rejected by the device. Thus, we can
see that message authentication is performed at the
device side which thwarts the MITM attack.

• The second attack point of an MITM attack is the
rmask sent from the device to the server, as shown in
Fig. 3. Here too, the device masks the noisy response
generated from the PUF. The server unmasks the
response and generates the error-corrected response
rcorrected. Only a valid masking/unmasking pair will
generate the correct response at the server side, and
subsequently authenticate the device. Thus, message
authentication is also performed at the server side
and any manipulation in the exchanged messages
will result in the abortion of the protocol.

Case-4: Leakage of PRNG Feedback Polynomial:

• We consider the final case where we assume that
the entire internal design of the device includ-
ing the masking PRNG feedback polynomial has
been revealed to the adversary Adv by device de-
encapsulation. The Adv, using this design, recon-
structs another Node A′.

• Upon initiating the protocol γ with the server S, both
A′ as well S generate the same set of the private
variables {nAM,nS1M}.

Fig. 9. 3-1 DAPUF

• A′ upon receiving NAM||cAM from S correctly un-
masks the two parameters to generate cA and cA’
such that cA = cA’.

• A′ unlocks its PUF circuit and provides cA as input
to the circuit and generates rnoisy. From this rnoisy, A′

generates rmask and sends it to S.
• S upon receiving rmask, unmasks it to retrieve rnoisy

and uses HELPA of the original node A to correct
rnoisy. However, because of the PUP, the corrected
response rcorrected does not match with rA and S fails
to authenticate A′.

Thus, the security of protocol γ, for Case-4, relies on
the inability of Adv to solve the PUF uniqueness problem
(PUP).

The only way the Adv can successfully break the pro-
tocol is by using side-channel analysis attack to extract
the PRNG design from the device without destroying the
device’s structure. Even then, the security of the network of
devices will not be broken since only one device will be com-
promised and can easily be un-enrolled from the database
without affecting the security of any other device. Moreover,
side-channel attacks require expensive equipment and are
generally not feasible. Also, many techniques have been pro-
posed [34], [35] which can provide strong countermeasures
against side-channel analysis and can be easily implemented
without increasing the hardware overhead dramatically.
6 EXPERIMENTAL SETUP AND IMPLEMENTATION
We use Xilinx Zynq-7000 zc706 evaluation board, as the
device, for the implementation of the proposed scheme.
The programmable logic (PL) part of the Zynq board im-
plements a finite state machine (FSM) which goes through
all the stages of the device presented in Fig. 3. The FSM
calls all the major routines including the TRNG/PUF circuit,
the MASK function and the PRNGs. The processing system
(PS) part of the Zynq board is responsible for the elliptic
curve point operations as well as the communication with a
desktop/server running MATLAB R2018b via TCP/IP using
lightweight IP stack (LwIP).
6.1 PUF
Figure 9 shows a standard 3-1 DAPUF consisting of 3
programmable delay lines (PDL) [36] and six D type flip

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15
TABLE 1

3-1 DAPUF Evaluation Metrics

Property Ideal 3-1 APUF 3-1 DAPUF

Uniqueness (%) 50 6.34 51.7
Reliability (%) 100 97.8 87.5

Randomness (%) 50 54.33 53.2

flops. The D, clock input (C) and the output (Q) connections
are also shown in Figure 9. The working and structure
of 3-1 DAPUF was first shown in [37]. We use the same
structure in this work. Table 1 shows a comparison of the
various evaluation metrics of a 3-1 DAPUF and a basic 3-1
XOR APUF. The table is taken by averaging out the values
generated after the analysis performed by [32].

6.1.1 Uniqueness

Uniqueness (U) tells the amount of variation in PUF re-
sponses among different chips/instances. Since one of the
security assumptions of this protocol is high uniqueness of
the PUF circuit, thus, during the design phase, care must
be taken to choose a PUF which provides good uniqueness
measures. For two chip instances, x and y (x 6= y), having
m-bit responses, Rx and Ry , respectively for a challenge C,
the average inter-chip hamming distance (HD) or U among
q chips is given by:

U =
2

q(q − 1)

q−1∑
x=1

q∑
y=x+1

HD (Rx, Ry)

m
× 100%, (25)

As shown in Table 1, the uniqueness of a basic 3-1 XOR
APUF is very low which makes it unsuitable for this and
many other authentication protocols which rely on the PUF
uniqueness. In comparison, the 3-1 DAPUF has a unique-
ness much closer to the ideal value which makes it much
more suitable for the authentication purposes.

6.1.2 Reliability

For reliability testing, the PUF circuit is evaluated under
varying conditions (e.g., voltage and temperature) and HD
is calculated between the ideal and the obtained responses.
Ideally, the same PUF instance should output the same re-
sponse given a particular challenge. However, this is usually
not the case and the generated responses have bit flips. To
calculate the reliability (R) of a chip x, an input challenge
C is provided to the PUF at normal operating condition
and an m-bit reference response Rx is recorded. The device x
is subjected to different operating conditions (temperature
and voltage), the same challenge C is applied and the m-
bit response R′x is recorded. A total of t samples of R′x are
recorded. The reliability (R) of the chip x is given as:

R = 100%− 1

t

t∑
i=1

HD
(
Rx, R

′
x,j

)
m

× 100%, (26)

where R′x,j is the jth sample of the response string R′x.
In case of 3-1 DAPUF, the reliability is, on average, 13%
less then the ideal value and can go further down by, as
high as, 15% [32]. This is a very high error rate and can
significantly impact the authentication reliability. Without
error correction, the server and the device will have to
restart the protocol in case of errors in the PUF response
which can significantly increase the execution time. Imple-
menting error correction in the device, as was the case for

Fig. 10. TRNG Feedback Loop

all previous approaches employing error correction, signifi-
cantly increases the area overhead. Furthermore, since error
correction requires a particular b number of syndrome/helper
bits, to be communicated to the device, an adversary can
get b bits about the PUF delay circuit. Since, the proposed
scheme provides the flexibility to implement error correc-
tion at the server end, in addition to not exposing the
raw helper bits on any communication link, a good error
correction scheme can be implemented in software on the
server without increasing the device’s area overhead. As a
test case, we implement BCH encoder/decoder in software
using MATLAB R2018b using the bchenc/bchdec function.
The implemented BCH decoder has the capability to correct
up-to 20% error rate. This accounts to a practical reliability
of ∼99% in addition to a ∼60% decrease in the area over-
head of the device.
6.1.3 Randomness
The final evaluation metric of a PUF is it’s randomness.
Randomness refers to the ratio of 0’s and 1’s in the PUF
responses. Ideally, a PUF response should comprise of equal
number of 0’s and 1’s. As shown in Table 1, the 3-1 DAPUF
has, on average, a randomness of 53% which is close to the
ideal value.

6.2 TRNG
As mentioned before, the nonce from the device, is gener-
ated using the left most chain of the 3-1 DAPUF circuit,
as shown in Fig. 9. The main FSM controls whether the
PUF needs to be used for CRP-based authentication or
for generation of the random nonce. We use the approach
presented in [38] for generation of nonces in the PL of
the Zynq-7000. The operation of this TRNG is governed by
enforcing a metastable state on a flip-flop through a closed
loop feedback control as shown in Fig. 10. A metastable
condition on a D-flip flop occurs when the setup/hold time
of the flip flop is violated. The data captured by the flip-flop
in this state is unpredictable and this unpredictability serves
as a source of randomness for the nonce generation.

After implementing the basic controller design, we val-
idate the findings in [38] that the nonces generated by
a simple feedback loop were too biased and failed most
of the tests of the NIST design suite. To circumvent this
problem, we added a Von Neumann post processing filter,
as indicated by [38], for unbiasing the TRNG output. In our
design, the filter waits for the TRNG to produce two bits.
If the two bit pattern is 01, the filter outputs a 0. If the bit
pattern is 10, the filter outputs a bit 1. For the other two
cases, when the input is 00 or 11, the filter discards them
and waits for a new pattern. A counter is maintained which
adjusts the feedback loop based on the number of 1’s. If the
number of 1’s in the final m-bit nonce are greater than a
threshold specified by the design variable τ1, the nonce is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

discarded and the process is repeated again. Because of the
unbiasing done by the Von Neumann corrector, the random
nonces generated, satisfied all the NIST randomness tests
as indicated in [38]. Other than providing good randomness
properties, the hardware footprint of this TRNG is extremely
low since the PUF chain is multiplexed.

6.3 MASK Function
The masking operation requires three main components:
PRNG, range adjuster and a bit shuffler. The PRNG circuit
uses an m-bit register and the total number of LUTs equal
to the number of feedback taps representing the primitive
polynomial. The range adjuster requires one multiplier.
The bit shuffler is implemented using a dual port BRAM
primitive in the FPGA. The BRAM has independent read-
write address ports. The input data, to be shuffled, is first
written into the BRAM in binary. Thus, the space complexity
of BRAM for an m-bit input data is only O(m). The output
from the range adjuster is used as the read address and
a decrementing counter is used as the write address of the
BRAM. This way, the for loop in Algorithm 2 is implemented
in hardware. Bit swapping is done during each clock cycle
till the decrementing counter goes from m to 0.

6.4 Hardware Footprint and Latency Overhead
For the implementation, our system parameters are given
in Table 3. The hardware footprint and the latency of the
modules in the PL of Zynq, based on the system parameters
in Table 3, are shown in Table 2. The PL of Zynq implements
all the modules given in Table 2 whereas, the PS of Zynq
implements the ECC operations. We use the same ECC
curve given in [26] in this work.

All the operations required by the server including er-
ror correction, PRNGs, masking function and elliptic curve
operations are implemented on MATLAB running on In-
tel Xeon E5-1620@3.50GHz. The data is communicated to
the device using MATLAB’s TCP/IP API. The security of
the scheme is evaluated by acquiring Ethernet packets ex-
changed between the device and the server using Wireshark.
Based on these packets, impersonation attacks, explained
in section 5, were carried out but none of the attacks were
successful even after acquiring data from more than 50,000
valid authentication cycles.

6.5 Comparison With Other PUF-Based Protocols
Tables 4 and 5 show the comparison of various properties
and hardware overhead, respectively, between PUF-RAKE
and the past approaches.

6.5.1 Scalability
PUF-RAKE, similar to the past approaches, is scalable.
Devices can easily be added into the PUF-RAKE network
without any burden on the existing devices and the server.
The memory requirement of the cloud storage will increase
very slightly. We assume that the new device has a total of
10,000 CRPs with each challenge and response being 64 bits
in length. The ID length of the device is also 64 bits as is
the PRNG polynomial length. The helper data associated to
one challenge is 256 bits. Thus, the total data bits associated
with one authentication cycle of a particular device are
64 + 64 + 64 + 64 + 256 = 512 bits. This data is encrypted

using AES galois counter mode (GCM) of authenticated
encryption with the encrypted output being 512 bits in
length and the authentication tag being 128 bits long. Thus,
the total memory requirement for one device will only be
10, 000 × (512 + 128) = 6.4 Mb or 0.8 MB. Assuming that
we have a total of 1 million devices in a particular network,
this would only correspond to a memory requirement of
approximately 0.8 TB which is very meager considering tons
of terabytes of memory available in commercial cloud-based
services.

6.5.2 Mutual Authentication
PUF-RAKE supports full mutual authentication which
means that both the device and the server mutually authen-
ticate each other during an authentication run. The protocols
[9] and [15] only support authentication on the device end
and thus, these protocols can be broken by replay attacks on
the server.

6.5.3 Cryptographic Algorithm in the Device
PUF-RAKE does not contain any cryptographic hashing
scheme in the device. This makes it suitable for low cost,
resource constraint platforms. Many PUF-based protocols
proposed in the past including [9], [11], [26] include hashing
inside the device which significantly increases the latency
and area overhead in the device as shown in Table 4.

6.5.4 Error Correction and Exposure of Helper Data
As already shown, PUF-RAKE is unique when compared
against the previous protocols in a way that it does not
include error correction in the device. This significantly
decreases the hardware overhead of the device. It also
ensures that no helper data is exposed on the channel which
can potentially make the device vulnerable to side-channel
attacks.

6.5.5 Server-Database Link
PUF-RAKE assumes that the link between the server and
the database is open and the adversary has full access to this
link. This makes the protocol realizable in practical scenarios
where the device data can be offloaded to a cloud-based
storage. Without opening the link between the server and
the database, as is the case for [9], [10], [11], [15], the server
will need a secure memory to store the data for all the
devices in the network which can prove to be very costly.

6.5.6 Open Device Interface
PUF-RAKE, because of its construction, assures that the
devices’ interface is not open to random queries. If the
adversary tries to perform brute force attack on the device
by sending random messages, the device will not respond
and thus, no data can be gathered by the adversary. This
property is present because of the presence of the MASK
function. Many protocols, including the recently proposed
[26] has an open device interface which makes them vulner-
able to attacks focusing on brute force.
6.5.7 Key Establishment
PUF-RAKE supports key establishment between two de-
vices in a network. This makes it deployable in various
real world scenarios including IoT device network, home
automation, automotive communication and many more.
Some recently proposed PUF-based protocols including [24],
[26], [27], [28] support key establishment but all of them

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17
TABLE 2

Hardware and Latency Overhead

Module LUT count FF count BRAM No. of Operations Latency

3-1 DAPUF 387 6 0 1 ≈ 250µs
TRNG Shared with PUF 12 4K 1 ≈ 46µs

MASK / UNMASK 150 128 4K 7 ≈ 98× 7 = 686µs
PRNG1 2 66 0 1 ≈ 2µs

main FSM 97 380 0 1 ≈ 5µs
Total 636 592 8K 11 ≈1ms

TABLE 3
System Parameters

Parameter Value

Clock Freq. (MHz) 50
nonce length (m) 64

HW(τ1) range 25 ≤ τ1 ≤ 39
Length of PUF chains 64

Challenge Length 64
Response Length 64

TABLE 4
Hardware Overhead Comparison

Protocols LUT count FF count

[9] not reported not reported
[10] not reported not reported
[11] 960 1500
[26] 1591 1933
[24] 9207 2921
[27] 6034 1724
[28] 3543 1275

PUF-RAKE 636 592

suffer from large overhead and high latency problems as
shown in Table 4.

Overall, it can be seen that the PUF-RAKE not only
retains the cumulative advantages of all the previous ap-
proaches while circumventing their limitations, it also re-
duces the hardware overhead to a great extent without
compromising the security and reliability. [26] provides
advantages somewhat similar to PUF-RAKE but PUF-RAKE
has ∼60% and ∼72% reduction in LUT and FF count, re-
spectively. Also, PUF-RAKE closes the open device interface
which [26] does not. [24], [27], [28] have a huge area over-
head, as shown in Table 4, which makes them unsuitable for
low cost platforms.

7 CONCLUSIONS
In this paper, we have proposed PUF-RAKE, a controlled
PUF-based, authentication and secret key establishment
protocol, which (i) closes the open interface between the
input and the PUF by implementing a strong control logic
that denies the PUF’s access to the adversaries, (ii) makes
the scheme highly reliable by incorporating error correc-
tion in the server thereby not revealing any helper data
on insecure channels, (iii) reduces the hardware overhead
drastically by incorporating a lightweight CRP obfuscation
mechanism employing bit shuffling and XOR operations,
and (iv) performs key establishment between two or more
nodes in a network, thereby enabling communication be-
tween the devices. The security of the shuffling scheme
of PUF-RAKE has been formally verified. Many different
adversarial test cases have been considered and it has been
shown that PUF-RAKE is secure against all of the consid-
ered adversarial attacks. Results also reveal that PUF-RAKE
is highly reliable and provides 99% reliable authentication
in addition to being extremely lightweight. It provides a
reduction of 60% and 72% for look-up tables (LUTs) and
register count, respectively, in FPGA as compared to a re-
cently proposed approach while furnishing many additional

TABLE 5
Comparison against Previous Protocols

Property [15] [10] [11] [16] [21] [26] This

Scalable X X X X X X X
Mutual Auth. 7 X X X X X X
Crypto Algo. 7 7 X X 7 X 7

Error Correction. 7 7 7 7 7 X 7
Help Data Exposed 7 7 7 X 7 X 7

Auth. Rounds ∞ d ∞ ∞ ∞ ∞ ∞
S-D Link open 7 7 7 X 7 X X

Open Device Interface X 7 7 X X X 7
Key Establishment 7 7 7 7 7 X X

advantages. Our future goal is to incorporate PUF-RAKE
into application-specific networking applications including
IoT and automotive and evaluate its performance over tra-
ditional approaches used in these applications. We also plan
to evaluate the security of PUF-RAKE against side-channel
attacks.

Mahmood Azhar Qureshi is currently a Ph.D.
Candidate in the Department of Computer Sci-
ence (CS) at Kansas State University (K-State).
He received his B.S. in Electrical Engineering
from National University of Science and Technol-
ogy (NUST), Pakistan in 2013 and M.S. in Elec-
trical Engineering from the University of Engi-
neering and Technology (UET), Taxila, Pakistan
in 2018. He worked as a Senior Design Engineer
at Center for Advanced Research in Engineering
(CARE) Pvt. Ltd, Islamabad, Pakistan from 2014

to 2018. His research interests include hardware security, computer
architecture, and design validation.

Arslan Munir (M’09, SM’17) is currently an As-
sistant Professor in the Department of Com-
puter Science (CS) at Kansas State University
(K-State). He holds a Michelle Munson-Serban
Simu Keystone Research Faculty Scholarship
from the College of Engineering. He was a
postdoctoral research associate in the Electrical
and Computer Engineering (ECE) department at
Rice University, Houston, Texas, USA from May
2012 to June 2014. He received his M.A.Sc.
in ECE from the University of British Columbia

(UBC), Vancouver, Canada, in 2007 and his Ph.D. in ECE from the
University of Florida (UF), Gainesville, Florida, USA, in 2012. From
2007 to 2008, he worked as a software development engineer at Mentor
Graphics Corporation in the Embedded Systems Division.

Munir’s current research interests include embedded and cyber-
physical systems, secure and trustworthy systems, hardware-based
security, computer architecture, parallel computing, reconfigurable com-
puting, artificial intelligence (AI) safety and security, and fault tolerance.
Munir received many academic awards including the doctoral fellowship
from Natural Sciences and Engineering Research Council (NSERC)
of Canada. He earned gold medals for best performance in electrical
engineering, gold medals and academic roll of honor for securing rank
one in pre-engineering provincial examinations (out of approximately
300,000 candidates). He is a Senior Member of IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

REFERENCES

[1] Dan Boneh and Matt Franklin. Identity-based encryption from the
weil pairing. In Annual international cryptology conference, pages
213–229. Springer, 2001.

[2] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim
Tuyls. Physical unclonable functions and public-key crypto for
FPGA IP protection. In 2007 International Conference on Field
Programmable Logic and Applications, pages 189–195. IEEE, 2007.

[3] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Silicon physical random functions. In Proc. of the 9th
ACM Conference on Computer and Communications Security (CCS),
pages 148–160, New York, NY, USA, 2002.

[4] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas
Devadas, and Jürgen Schmidhuber. Modeling attacks on physical
unclonable functions. In Proc. of the 17th ACM Conference on Com-
puter and Communications Security (CCS), pages 237–249, Chicago,
IL, USA, 2010.

[5] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak.
Techniques for design and implementation of secure reconfig-
urable PUFs. ACM Trans. on Reconfigurable Technology and Systems
(TRETS), 2(1):5, 2009.

[6] Jiliang Zhang, Lu Wan, Qiang Wu, and Gang Qu. DMOS-PUF:
Dynamic multi-key-selection obfuscation for strong PUFs against
machine learning attacks. arXiv preprint arXiv:1806.02011, 2018.

[7] M. S. Alkatheiri and Y. Zhuang. Towards fast and accurate
machine learning attacks of feed-forward arbiter PUFs. In IEEE
Conference on Dependable and Secure Computing, Aug 2017.

[8] C. Zhou, K. K. Parhi, and C. H. Kim. Secure and reliable xor arbiter
puf design: An experimental study based on 1 trillion challenge
response pair measurements. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, June 2017.

[9] Blaise Gassend, Marten Van Dijk, Dwaine Clarke, Emina Torlak,
Srinivas Devadas, and Pim Tuyls. Controlled physical random
functions and applications. ACM Trans. on Information and System
Security (TISSEC), 10(4):3, 2008.

[10] Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sow-
ell, Srinivas Devadas, and Ingrid Verbauwhede. A lockdown
technique to prevent machine learning on PUFs for lightweight
authentication. IEEE Trans. on Multi-Scale Computing Systems
(TMSCS), 2(3):146–159, 2016.

[11] Yansong Gao, Hua Ma, Said F Al-Sarawi, Derek Abbott, and
Damith C Ranasinghe. PUF-FSM: A controlled strong PUF. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 37(5):1104–1108, 2018.

[12] Lars Tebelmann, Michael Pehl, and Georg Sigl. EM Side-Channel
Analysis of BCH-based Error Correction for PUF-based Key Gen-
eration. In Proceedings of the 2017 Workshop on Attacks and Solutions
in Hardware Security, ASHES ’17, New York, NY, USA, 2017. ACM.

[13] Mahmood Azhar Qureshi and Arslan Munir. PUF-RLA: A PUF-
based Reliable and Lightweight Authentication Protocol employ-
ing Binary String Shuffling. In Proc. of IEEE International Conference
on Computer Design (ICCD), Abu Dhabi, U.A.E., November 2019.

[14] Georg T Becker. On the pitfalls of using arbiter-PUFs as building
blocks. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 34(8):1295–1307, 2015.

[15] M Rostami, M Majzoobi, Farinaz Koushanfar, Dan S Wallach,
and Srinivas Devadas. Slender PUF protocol: A lightweight,
robust, and secure authentication by substring matching. In IEEE
Symposium on Security and Privacy Workshops, pages 33–44, San
Francisco, CA, USA, 2012.

[16] Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel
Peeters, Ahmad-Reza Sadeghi, Ingrid Verbauwhede, and Chris-
tian Wachsmann. Reverse Fuzzy Extractors: Enabling Lightweight
Mutual Authentication for PUF-Enabled RFIDs. In Angelos D.
Keromytis, editor, Financial Cryptography and Data Security, pages
374–389, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[17] Siam Umar Hussain, M. Sadegh Riazi, and Farinaz Koushanfar.
SHAIP: Secure Hamming Distance for Authentication of Intrinsic
PUFs. ACM Trans. Des. Autom. Electron. Syst., 23(6), December ’18.

[18] Erdinç Öztürk, Ghaith Hammouri, and Berk Sunar. Towards
robust low cost authentication for pervasive devices. In 2008 Sixth
Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 170–178. IEEE, 2008.

[19] M. A. Qureshi and A. Munir. PUF-IPA: A PUF-based Identity
Preserving Protocol for Internet of Things Authentication. In 2020
IEEE 17th Annual Consumer Communications Networking Conference
(CCNC), pages 1–7, 2020.

[20] Stefan Katzenbeisser, Ünal Kocabaş, Vincent Van Der Leest,
Ahmad-Reza Sadeghi, Geert-Jan Schrijen, and Christian Wachs-
mann. Recyclable PUFs: Logically reconfigurable PUFs. Journal of
Cryptographic Engineering, 1(3):177, 2011.

[21] S. S. Zalivaka, A. A. Ivaniuk, and C. Chang. Reliable and Modeling
Attack Resistant Authentication of Arbiter PUF in FPGA Imple-
mentation with Trinary Quadruple Response. IEEE Transactions on
Information Forensics and Security, 14(4):1109–1123, 2019.

[22] Ünal Kocabaş, Andreas Peter, Stefan Katzenbeisser, and Ahmad-
Reza Sadeghi. Converse PUF-based authentication. In International
Conference on Trust and Trustworthy Computing. Springer, 2012.

[23] Marten van Dijk and Ulrich Rührmair. Physical unclonable func-
tions in cryptographic protocols: Security proofs and impossibility
results. 2012.

[24] J. Kong, F. Koushanfar, P. K. Pendyala, A. Sadeghi, and C. Wachs-
mann. PUFatt: Embedded platform attestation based on novel
processor-based PUFs. In 51st ACM/IEEE Design Automation Con-
ference (DAC), pages 1–6, San Francisco, CA, USA, June 2014.

[25] Jeroen Delvaux, Dawu Gu, Dries Schellekens, and Ingrid Ver-
bauwhede. Secure lightweight entity authentication with strong
PUFs: Mission impossible? In International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2014.

[26] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay,
R. S. Chakraborty, D. Mahata, and M. M. Prabhu. Building PUF
based authentication and key exchange protocol for IoT without
explicit CRPs in verifier database. IEEE Transactions on Dependable
and Secure Computing, pages 1–1, 2018.

[27] Wenjie Che, Mitchell Martin, Goutham Pocklassery, Venkata K.
Kajuluri, Fareena Saqib, and James F. Plusquellic. A privacy-
preserving, mutual PUF-based authentication protocol. Cryptog-
raphy, 1:3, 2016.

[28] Aydin Aysu, Ege Gulcan, Daisuke Moriyama, Patrick Schaumont,
and Moti Yung. End-to-end design of a PUF-based privacy
preserving authentication protocol. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems
(CHES), pages 556–576. Springer Berlin Heidelberg, 2015.

[29] Christof Paar and Jan Pelzl. Understanding cryptography: for students
and practitioners. Springer Science & Business Media, 2009.

[30] Tapan Kumar Hazra, Rumela Ghosh, Sayam Kumar, Sagnik Dutta,
and Ajoy Kumar Chakraborty. File encryption using Fisher-
Yates shuffle. In International Conference and Workshop on Comput-
ing and Communication (IEMCON), pages 1–7, Vancouver, British
Columbia, Canada, 2015.

[31] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. A
systematic method to evaluate and compare the performance of
physical unclonable functions. In Embedded systems design with
FPGAs, pages 245–267. Springer, 2013.

[32] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama. Imple-
mentation of double arbiter PUF and its performance evaluation
on FPGA. In The 20th Asia and South Pacific Design Automation
Conference, pages 6–7, Jan 2015.

[33] H. Awano, T. Iizuka, and M. Ikeda. PUFNet: A deep neural net-
work based modeling attack for physically unclonable function. In
2019 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4, May 2019.

[34] Eric Peeters, François-Xavier Standaert, Nicolas Donckers, and
Jean-Jacques Quisquater. Improved higher-order side-channel
attacks with FPGA experiments. In International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2005.

[35] M. Nassar, Y. Souissi, S. Guilley, and J. Danger. RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-
order zero-offset SCAs. In 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1173–1178, March 2012.

[36] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA PUF using
programmable delay lines. In IEEE Int. Workshop on Information
Forensics and Security, pages 1–6, Seattle, WA, USA, Dec 2010.

[37] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama. A new
mode of operation for arbiter puf to improve uniqueness on fpga.
In 2014 Federated Conference on Computer Science and Information
Systems, pages 871–878, 2014.

[38] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas.
FPGA-based true random number generation using circuit
metastability with adaptive feedback control. In Proceedings of
the 13th International Conference on Cryptographic Hardware and
Embedded Systems (CHES), pages 17–32, Berlin, Heidelberg, 2011.
Springer-Verlag.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2021.3059454

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

