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Abstract Networked embedded systems typically leverage a collection of low-power em-
bedded systems (nodes) to collaboratively execute applications spanning diverse application
domains (e.g., video, image processing, communication, etc.) with diverse application re-
quirements. The individual networked nodes must operate under stringent constraints (e.g.,
energy, memory, etc.) and should be specialized to meet varying applications’ requirements
in order to adhere to these constraints. Phase-based tuning specializes a system’s tunable
parameters to the varying runtime requirements of an application’s different phases of exe-
cution to meet optimization goals. Since the design space for tunable systems can be very
large, one of the major challenges in phase-based tuning is determining the best config-
uration for each phase without incurring significant tuning overhead (e.g., energy and/or
performance) during design space exploration. In this paper, we propose phase distance
mapping, which directly determines the best configuration for a phase, thereby eliminating
design space exploration. Phase distance mapping applies the correlation between a known
phase’s characteristics and best configuration to determine a new phase’s best configuration
based on the new phase’s characteristics. Experimental results verify that our phase distance
mapping approach, when applied to cache tuning, determines cache configurations within
1 % of the optimal configurations on average and yields an energy delay product savings of
27 % on average.
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1 Introduction and motivation

Due to the pervasiveness of embedded systems, much research has focused on optimizations,
such as improved performance and/or reduced energy consumption, to meet stringent design
constraints imposed by physical size, battery capacity, cost, real-time deadlines, consumer
market competition, etc. However, system optimization is challenging due to numerous tun-
able parameters (e.g., cache size, associativity and line size [37], replacement policy [39],
issue width [7], core voltage and frequency [35], etc.), many of which tradeoff design con-
straints, such as size versus performance, resulting in very large design spaces with many
Pareto optimal systems. Thus, evaluating different designs in the design space either stati-
cally or dynamically at runtime to determine the best set of designs that result in optimal
systems (i.e., design space exploration) can be very challenging. The advent of multicore
systems further compounds optimization challenges due to a potential exponential increase
in the design space when considering dynamic core dependencies and interactions [27],
which change during runtime based on the currently co-scheduled tasks. Therefore, in order
to meet these increasing challenges for future systems, optimization methodologies must be
highly scalable to large design spaces and must be dynamic in nature.

Application-based tuning evaluates an application’s characteristics and determines the
best configuration (specific tunable parameter values) for the entire application’s average
execution requirements. However, since applications have varying/dynamic requirements
during execution (i.e., different phases of execution) [16, 26, 32, 33], configurable/tunable
hardware [10, 37, 39] enables dynamic adaptation to these requirements by specializing tun-
able parameters to the changing needs of the application. A phase is a length of execution
where an application’s characteristics, such as cache misses, instructions per cycle (IPC),
branch mispredictions, etc., and therefore application requirements, remain relatively sta-
ble. To identify phases, the application’s execution is broken into fixed or variable length
intervals that are typically measured by the number of instructions executed. Phase clas-
sification [30, 32, 33] groups intervals with similar characteristics to form phases, using
methods such as K-means clustering [20, 32], Markov predictors [33], etc. Phase-based
tuning evaluates the application’s characteristics and determines the best configuration for
each phase of execution to best meet design constraints.

The interval length must be carefully defined in a phase-based tuning approach. Intervals
that are too long tend to have less stable characteristics, thus making it difficult to determine
the phase’s best configuration. Intervals that are too short result in too frequent tuning, thus
imposing significant accumulated tuning overhead in terms of energy and performance that
may intrusively affect system operation/behavior. Since interval length selection is widely
researched [11, 32, 33], and is thus not a focus of our work, we assume variable length
intervals [11], which result in higher optimization potential [11].

A major challenge in phase-based tuning is determining the best configuration for each
phase [16, 26] without incurring significant tuning overhead. Most previous methods [26,
37, 39] physically explore the design space by executing different configurations, record-
ing the configurations’ characteristics, and selecting the best configuration, however, this
method incurs a large cumulative tuning overhead while executing inferior (non-optimal)
configurations. To reduce tuning overhead, heuristics significantly prune the design space
[12, 13, 27], however, since these heuristics still execute inferior configurations and incur
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tuning overhead. Analytical methods/models drastically reduce tuning overhead by directly
determining/calculating/predicting the best configuration based on the design constraints
and application characteristics [9, 14, 25, 26], however, most of these methods are either
computationally complex (thus, adversely impacting performance and energy consumption)
[9, 26] or not dynamic (i.e., not phase-based) [14, 25].

In this paper, we focus on reducing the computational complexity and tuning overhead of
dynamic phase-based tuning by directly determining the phases’ best configurations, with
no design space exploration, using the correlations between a phase’s characteristics and
the phase’s best configuration. We introduce phase distance mapping (PDM), which lever-
ages these characteristic-to-configuration correlations to determine the best configurations
for new phases based on the new phase’s characteristics. PDM automatically analyzes ap-
plications, the applications’ phases, and the phases’ characteristics to determine the best
configurations for the phases, thereby eliminating a priori designer effort while maintaining
computational simplicity.

We define the phase distance as the difference between the characteristics of a character-
ized phase—a phase with a known best configuration—and an uncharacterized phase, and
is used to estimate the uncharacterized phases’ best configurations. PDM compares a single
previously characterized phase—the base phase—with a new phase to determine the phase
distance, and uses the phase distance to calculate the configuration distance, which is the
difference between the tunable parameter values between two configurations. We also in-
troduce distance windows, which define phase distance ranges and corresponding tunable
parameter values. The distance window that the phase distance falls within (i.e., maps to)
defines the tunable parameter values for the uncharacterized phase.

Using extensive analysis of sample phases from workloads representative of real-world
embedded system applications (e.g., image processing, networking, etc.), we show that
given two phases, there is a strong correlation between the phases’ phase and configura-
tion distances. PDM uses the phase distance to calculate the configuration distance, and thus
directly determines the uncharacterized phase’s best configuration using configuration esti-
mation. The configuration estimation results corroborates the correlation between the phase
distance and configuration distance, revealing overall system energy delay product (EDP)
savings of 24 %, as compared to using a base/default configuration throughout execution,
and configurations within 4 % of the optimal.

However, our configuration estimation analysis and experiments revealed that phase cor-
relation could be application-dependent (i.e., the phase correlation from one application
may not be applicable to a different application). As a result of this non-uniformity and
unpredictable phase correlation, accurately extracting phase correlation, if any, requires the
designer to expend considerable design-time pre-analyzing effort on the applications and
application phase characteristics to provide information for runtime configuration estima-
tion decisions. To address these limitations, we also present DynaPDM, which uses com-
putationally simple algorithms to facilitate and improve PDM’s runtime phase correlation,
eliminates the designer’s a priori phase analysis, and produces more efficient results in terms
of EDP savings, time to market, and is completely transparent to the designer.

We exemplify and evaluate PDM and DynaPDM using cache tuning for separate level
one instruction and data caches, since caches constitute a large percentage of a micropro-
cessor’s energy budget and adapting cache configurations to application characteristics can
significantly reduce the average memory access energy [13]. In order to optimize the energy
without significantly adversely impacting the execution time, we use the overall system
EDP as our evaluation metric (Sect. 5.1). Our evaluated cache tuning method determines
the best cache configuration in terms of total size, line size, and associativity for reduced
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EDP [13, 16, 37]. Our experimental results using a variety of benchmarks indicate that us-
ing DynaPDM for cache tuning consistently improves EDP with respect to the base/default
configuration. Results reveal that DynaPDM can determine configurations within 1 % of the
optimal configurations and achieves average EDP savings of 27 %—an 8 % improvement
over PDM.

2 Background and related work

Phase distance mapping leverages fundamentals of phase classification, and simplifies
phase-based tuning by directly determining a phase’s best configuration without time con-
suming design space exploration. In this section, we describe work related to phase-based
tuning, cache tuning, design space exploration, and phase classification.

2.1 Phase-based tuning and design space exploration

Much previous work focuses on tuning configurable hardware to the best configuration for a
particular application for reduced energy consumption and/or improved performance. How-
ever, this tuning typically imposes tuning overheads in terms of design exploration tuning
time, and energy and performance overheads while evaluating inferior configurations.

To reduce tuning time, several heuristic methods have been developed for searching the
design space. Zhang et al. [37] proposed a configurable cache architecture that determined
the Pareto optimal cache configurations trading off energy consumption and performance.
The proposed heuristic searched the cache parameters in the parameters’ order of impact on
energy consumption, first determining the best cache size, followed by the best line size, and
finally the best associativity. This method incurred tuning overhead by physically exploring
the design space (i.e., the application executed in each configuration for a period of time
to evaluate the configuration). L. Chen et al. [5] introduced a configuration management
algorithm that searched the cache design space for the best configuration, which leveraged
Zhang et al.’s [37] energy-impact parameter search ordering, and incurred similar tuning
overheads.

To reduce tuning overhead, several methods eliminated design space exploration, thus
eliminating any tuning overhead due to executing inferior configurations. Gordon-Ross et al.
[14] proposed a one-shot approach to cache configuration using a cache tuner that non-
intrusively predicted the best cache configuration using an oracle-based approach [18]. This
method monitored an application’s memory access pattern and analytically predicted the
best cache configuration based on these patterns. However, the oracle hardware introduced
significant tuning overhead when active. Ghosh et al. [9] proposed an analytical model to
directly determine the cache configuration based on the designer’s performance constraints
and application characteristics, however, the model’s computational complexity incurred en-
ergy and performance overheads. Even though these methods reduced the tuning overhead,
these methods were not phase-based.

Phase-based tuning, as opposed to application-based tuning, evaluates an application’s
characteristics and determines the best configuration that satisfies design constraints for each
application phase. To adhere to an application’s changing execution requirements, Hajimir
et al. [16] used a cache model for phase-based tuning that used changes in application char-
acteristics to determine when to change the cache configuration and presented a dynamic
programming-based algorithm to find the optimal cache configuration. The cache model
evaluated the energy consumption and performance for every possible cache configuration
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for each phase and selected the lowest-energy configuration for the different phases during
runtime. Albonesi et al. [1] presented a method that adaptively changed the cache associa-
tivity by analyzing the application’s software at compile time or using dynamic profiling
to determine the application’s associativity requirements. This method disabled cache ways
during periods where full cache functionality was not required while limiting the perfor-
mance degradation to within an allowable threshold based on design constraints. Gulati
et al. [15] proposed a scheduling scheme that exploited varying application characteristics
by using an efficiency threshold for dynamic task-to-core allocation in flexible-core chip
multiprocessors, wherein this flexibility enabled small cores to be aggregated to form larger
logical cores. The proposed scheme focused on improving throughput by scheduling tasks
to processors based on how efficiently the processor executed the tasks—tasks that achieved
higher efficiency than the threshold were given higher priority in terms of number of cores
allocated to that task. Peng et al. [26] proposed a phase-based tuning algorithm that managed
a configurable cache on a per-phase basis and attempted to reduce performance loss due to
unnecessary reconfigurations. The algorithm monitored cache performance (i.e., cache miss
rates) during execution and modified the configuration based on the observed performance.

Chaver et al. [4] presented a phase-based adaptive instruction fetch mechanism that used
an offline profiling step to statically divide applications into phases, and determined sys-
tem resource requirements (e.g., trace cache size, branch target buffer size, etc.) based on
the phases’ characteristics. Gordon-Ross et al. [10] investigated the benefits of phase-based
tuning over application-based tuning with respect to energy consumption and performance,
and showed that the tuning overhead due to cache flushing and write backs was minimal.
Results showed that phase-based tuning yielded improvements of up to 37 % in perfor-
mance and 20 % in energy over application-based tuning, however, to maximize phase-based
tuning savings, phase changes must be quickly detected and phases accurately character-
ized/classified.

2.2 Phase classification

Phase classification can be done dynamically at runtime (online) or statically (offline) and is
a widely studied research area. Much research has substantiated that dynamically leveraging
phase characteristics reveals a finer grained optimization potential by specializing the con-
figurations to the different phases of execution. Sherwood et al. [29] studied the time vary-
ing behavior of applications using the SPEC 95 benchmarks and showed that applications
have periodic patterns and phase-based characteristics with respect to several hardware met-
rics (e.g., cache size, branch prediction, value prediction, IPC, etc.). The authors observed
that the metrics with the largest impact on energy consumption and performance tended to
change simultaneously, thus denoting phase change occurrences (i.e., when the application
transitions from one phase to another).

In order to detect these periodic patterns and determine the patterns’ durations, Sher-
wood et al. [30] proposed using basic block distribution analysis as an automated approach
for finding the periodic and phase-based characteristics of applications for phase classifi-
cation. The basic block distribution represents the entire application’s behavior and can be
obtained using a basic block profiler, which measures the number of times each basic block
is executed, thus obviating the need for cycle accurate simulations. The authors also showed
that basic block distribution analysis is highly correlated with architecture-dependent appli-
cation characteristics (e.g., cache miss rates, branch miss rates, etc.). Due to prohibitively
long cycle-accurate simulation times in computer architecture research, a small set of phases
that provide an accurate and efficient representation of an application’s execution need to be
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identified. To identify these phases, the authors created SimPoint [31]. SimPoint used ma-
chine learning techniques to identify the application’s phases by analyzing basic block vec-
tors that contained the frequency of executed code and used clustering algorithms to choose
the phases that represented the application’s complete execution. In [32], the authors further
showed that phase characteristics could be collected using basic block vector profiles for
offline classification or through dynamic branch profiling for online classification, which
provides more accurate phase classification.

For generalized applicability, these phase classification methods used basic block vec-
tors, which are architecture-independent, to classify phases. Later research showed that
architecture-dependent characteristics could also effectively classify phases. Balasubramo-
nian et al. [2] used cache miss rates, cycles per instruction (CPI), and branch frequency
characteristics to detect changes in application characteristics for cache tuning, and found
that these characteristics were effective for phase classification. Shen et al. [28] showed that
data locality was well suited for phase classification by using a method that combined data
locality profiling and runtime prediction to predict recurring application phases. Dhodapkar
et al. [6] proposed a method to determine phase changes by examining the application’s
working set (i.e., address access locality). The authors found a relationship between phases
and an interval’s working set, and concluded that phase changes could be detected by de-
tecting changes in the working set.

3 Key terminology and architectures

In this section, we present key terminology used in describing PDM, and the major ar-
chitectural components needed for implementing PDM, including the configurable cache
architecture and the phase tuning architecture.

3.1 Key terminology

The phase distance is the difference between the characteristics of a characterized phase—
phase with a known best configuration—and an uncharacterized phase and is used to es-
timate the uncharacterized phase’s best configuration. PDM compared a single previously
characterized phase—the base phase—with a new phase to determine the phase distance.
For example, for cache tuning, PDM used the instruction and data cache miss rates to char-
acterize the phases and normalized the uncharacterized phases’ cache miss rates to the base
phase’s cache miss rates to determine the phase distance. PDM used the phase distance to
calculate the configuration distance—the difference between the tunable parameter values
of two configurations. Given two phases I and J , I ’s best configuration may be the base
phase’s associativity increased by a power of two, while J ’s best configuration may be the
base phase’s associativity reduced by a power of two. These parameter value changes repre-
sent I and J ’s configuration distances from the base phase. Finally, distance windows define
phase distance ranges and corresponding tunable parameter values. Each distance window
that the phase distance falls within (i.e., maps to) contains a configuration distance from the
base phase’s best configuration, and this configuration distance defines the tunable parame-
ter values (i.e., best configuration) for the uncharacterized phase.

3.2 Configurable cache architecture and design space

Prior work has developed various configurable cache architectures and dynamic tuning
methods to search the configuration design space, which consists of all the different con-
figurations/combinations of the tunable parameter values. Motorola’s M∗CORE processor
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Fig. 1 Configurable cache
architecture

[22] provided per-way configuration using way management, which allowed ways to be
shut down or designated as instruction only, data only, or unified. Modarressi et al. [24]
developed a cache architecture that was partitioned and resized dynamically to improve the
performance of object-oriented embedded systems.

Our memory hierarchy consists of configurable, private, separate level one (L1) instruc-
tion and data caches. Typical modern day microprocessors also usually include a shared
L2 cache; however, since we only tune the L1 cache in this study, we ignore the L2 cache
in our discussions. The configurable caches are based on Zhang et al.’s [37] highly con-
figurable cache, which provides runtime-configurable total size, associativity, and line size
using a small bit-width configuration register. Zhang’s configurable cache does not increase
cache access time since the cache imposes no overhead to the critical path. The configurable
cache has served as the basis for several newer architectures [11, 13, 36] and can be easily
extended to state of the art, more complex architectures, such as heterogeneous multicore
systems [27].

To evaluate phase distance mapping, we define a base cache configuration for com-
parison purposes. The base cache configuration, which is an average configuration repre-
senting typical embedded microprocessors [37] that might execute our experimental ap-
plications (Sect. 5), is an 8 Kbyte cache composed of four configurable banks, each of
which can operate as a separate way (i.e., the base cache is a 4-way set associative cache),
and a logical line size of 64 bytes. Figure 1 depicts the configurable cache architecture.
The configuration register provides configurable associativity by logically concatenating
the ways, offering an 8 Kbyte direct-mapped or 2-way set associative cache, and/or shut-
ting down ways, offering a 4 Kbyte direct-mapped or 2-way set associative cache or a
2 Kbyte direct-mapped cache. All cache sizes offer a configurable line size of 16, 32, or
64 bytes by using a base, physical line size of 16 bytes and fetching additional physi-
cal cache lines for larger, logical line sizes. Due to the bank layout for way shut down,
2 Kbyte 2-way or 4-way set associative and 4 Kbyte 4-way set associative caches are
not feasible using this configurable hardware, thus both the instruction and data caches
each have eighteen possible cache configurations, resulting in a large design space that
necessitates an efficient method for determining the best configurations for dynamic tun-
ing.

3.3 Phase tuning architecture

Figure 2 depicts our phase tuning architecture for a sample dual-core system, which can be
extended to any n-core system. On-chip components include the processing cores that are
connected to private, separate L1 instruction and data caches and the phase characterization
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Fig. 2 Phase tuning architecture for a sample dual-core system

hardware. Without loss of generalization, the level one caches are directly connected to off-
chip main memory, and since this hierarchy implies that there is no dependence between the
caches, the caches can be tuned independently. Phase characterization hardware includes a
tuner, a phase classification module that classifies an application’s phases, a PDM module,
which includes a distance window table, which stores the distance windows and serves as
a lookup table for the configuration distances when phases are characterized, and a phase
history table.

The tuner orchestrates the phase characterization process (Sect. 4.1), which includes im-
plementing PDM, by executing the phase in each potential configuration for one tuning in-
terval, gathering cache statistics, and calculating the EDP. The PDM module implements the
algorithms presented in this work (Sect. 4.2) for determining a phase’s best configuration.
After PDM determines a phase’s best configuration, the phase is designated as a character-
ized phase and is added to the phase history table, along with the phase’s best configuration.
We note that in the case of our studied cache hierarchy, the best configuration stored in the
phase history table represents both the best instruction and data cache configurations. The
distance window table’s structure is similar to the phase history table’s structure [32], and
can be easily implemented as a software- or hardware-based lookup table. The number of
distinct phases and distance windows dictates the number of entries in the phase history and
distance window tables, respectively. The maximum number of distance window entries is
constrained by the total number of distinct phases across all applications running on the sys-
tem, thus, the distance window table’s size should be less than or equal to the phase history
table’s size. To minimize the hardware or memory overhead from these tables, the number of
entries can be constrained, and the least recently used entries can be evicted when necessary.
However, the actual table sizes are determined by the design constraints of the embedded
system.

Prior research using similar table structures showed that these structures have very lit-
tle or no effect on overall system area, performance, and/or energy consumption [32, 33],
and the work proposed herein to incorporate phase distance mapping will not significantly
increase/impact these overheads.
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4 Phase distance mapping

Phase distance mapping reduces tuning overhead by directly determining a phase’s best
configuration by evaluating the correlation between the phase distance and the configuration
distance. In this section, we elaborate on how this correlation is leveraged to determine
a phase’s best configuration and present our algorithm for configuration estimation using
phase distance mapping. Even though we exemplify phase distance mapping using cache
tuning, we generalize our discussions for any tunable hardware and include cache tuning
specifics when necessary.

4.1 PDM overview

Phase classification groups intervals that show similar characteristics into phases such that a
phase’s characteristics are relatively stable during the phase’s execution. As a result of this
relative stability, the same configuration can be used for the phase’s duration. Therefore,
our foundation for phase distance mapping is the hypothesis that the more disparate two
phases’ characteristics are, the more disparate the phases’ best configurations are likely to
be, enabling the mapping of the distance between phases to the distance between the best
configurations.

We calculate the phase distance based on the phase space, which is the set of all of an
application’s distinct phases. Since phase classification is not the focus of this study, we
assume that phase classification has already been applied to the application (using any arbi-
trary method, such as offline phase classification [30] or online runtime phase tracking and
prediction [33]), which produces the application’s different phases and the phases’ charac-
teristics. Since we study cache tuning and previous work showed that cache miss rates can
accurately determine a phase’s characteristics [27, 32], we classify the different phases using
the phases’ cache miss rates. Since comparative cache evaluation is most effective when the
caches have the same configuration, we gathered the phases’ cache miss rates for the base
cache configuration (Sect. 3).

Figure 3 illustrates phase characterization using configuration estimation, which takes
as input the classified phases and the phases’ characteristics, which are output from phase
classification. One phase is designated as the base phase Pb . The base phase is the phase
to which subsequent phases are compared to calculate the phase distance, thus, to maxi-
mize EDP savings, the base phase should reflect the systems prominent application domain
(e.g., image processing, networking). For a small, application-domain specialized system
with a small phase space, designating the base phase can be easily done manually at design
time, however, this method is infeasible for large, general-purpose systems with large phase
spaces. For large systems, designers can use cluster analysis (e.g., k-means clustering [19],
graph-based models [38]) to partition the phase space into different domains, and a phase
that most closely represents the largest cluster (most prominent domain) is designated as the
base phase.

In order to designate and characterize the base phase at design time, the designer requires
a priori knowledge of the system’s intended application domain(s), and the design space
must be small enough or the designer must have an efficient design exploration method to
afford quick design-time tuning. After designating the base phase, the designer can then use
any tuning method (e.g., [37]) to determine the base phase’s best configuration.

However, for general-purpose systems, where the application domain(s) are not known
a priori, to maximize EDP savings, the base phase should be dynamically designated at
runtime. Using a dynamic base phase requires the phase classification module to cluster ex-
ecuting phases by application domain, monitor the domains’ numbers of phases, designate a
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Fig. 3 Phase characterization using configuration estimation

base phase from the prominent domain, and re-designate new base phases when the promi-
nent domain changes. The prominent domain is the application domain with the largest
number of phases. When a new phase executes, this phase is added to the appropriate cluster
of phases belonging to the same application domain as the executing phase (e.g., network-
ing, image processing, etc.). If no phases have been previously executed that belong to the
same domain as the executing phase, a new cluster is formed for that application domain.
A counter tracks the number of phases in each application domain, and the domain with the
largest number of phases is designated as the prominent domain, from which the base phase
is then arbitrarily selected.

When a phase Pi is executed, the first step in phase characterization is to search the
phase history table for Pi . If Pi is in the phase history table, Pi has already been executed
and the best configuration Config(Pi) has already been determined. The hardware is con-
figured to Config(Pi) and phase Pi executes in Config(Pi). If Pi is not in the phase history
table, Pi is a new phase and the difference between Pi ’s characteristics and the base phase’s
characteristics d(Pb,Pi) (i.e., the phase distance) is calculated.

The phase distance can be calculated using either a single phase characteristic or multi-
ple phase characteristics. In this work, we use a single phase characteristic, the cache miss
rate, to calculate d(Pb,Pi), by normalizing Pi ’s instruction and data cache miss rates to Pb’s
instruction and data cache miss rates. This normalization enables quick comparisons of dis-
parate configurations’ miss rates. This single-characteristic method is suitable for tuning sin-

Author's personal copy



Phase distance mapping: a phase-based cache tuning methodology

gle components, such as private instruction and data caches that do not have dependencies.
In systems with multiple tunable hardware or tunable component dependencies, a multi-
characteristic method, such as one that evaluates the cache miss rates and IPC, provides a
more holistic view of the phase characteristics and is the focus of our future work.

After the phase distance is calculated, the phase distance is used as input to configuration
estimation.

4.2 Configuration estimation

As an initial step to ascertaining the correlation between the phase distance and configura-
tion distance, we statically evaluated the cache characteristics of a set of applications, and
studied the correlation between the phase distances and the best configurations for each
phase (determined by exhaustive search). Using the results of our studies, we developed a
configuration estimation algorithm that leverages the correlation between the phase distance
and configuration distance to determine the best configuration for a phase.

We empirically developed and refined the configuration estimation algorithm by studying
the impact that the different configurations have on the phases’ characteristics. Since most
embedded systems run single applications or a set of applications within the same domain,
configuration estimation can be application domain-specialized with respect to the underly-
ing tunable hardware. However, we point out that even though our configuration estimation
is domain-specialized, the algorithm is generalized and can be easily adapted to different
domains and tunable hardware. We generalized our configuration estimation algorithm to
a variety of common embedded systems application domains, such as networking, image
processing, cryptography, and data compression. However, since the majority of our studied
applications involved image rotation (application details are presented in Sect. 5), we spe-
cialized the configuration estimation algorithm to an image processing domain by using a
base phase from an image rotation application.

Configuration estimation leverages the underlying tunable hardware by considering the
impact of the different parameter values on the energy consumption and performance [17,
36, 37]. For example, direct-mapped caches consume less power per access than 4-way
set associative caches since only one data array and one tag are read per access, rather
than four data arrays and four tags. However, direct-mapped caches can have higher cache
miss rates than set associative caches, resulting in more total energy consumption when
considering the miss penalties in terms of stall time and power to access the next memory
level(s). Even though increasing the cache associativity increases the power per access, the
cache miss rate may decrease enough to result in an overall decrease in energy consumption.
However, this concept suffers from diminishing returns as increasing the reduction in miss
rate (i.e., increasing the set associativity) will eventually not outweigh the increase in power
per access. Since this well-known trend is not isolated to cache parameters, configuration
estimation must consider diminishing returns for all tunable parameters with similar trends.
Our configuration estimation algorithm considers diminishing returns using threshold values
for each tunable parameter. A threshold value is the specific parameter value at which further
increases in the parameter value may result in increased energy consumption or reduced
performance.

Algorithm 1 depicts the configuration estimation algorithm, which defines the correlation
between the phase distance and configuration distance. The algorithm’s inputs are: the base
phase’s best configuration in terms of cache size Cb , associativity Ab , and line size Lb; the
configurable cache’s minimum and maximum sizes Cmin and Cmax, associativities Amin and
Amax, and line sizes Lmin and Lmax, respectively; size, associativity, and line size threshold

Author's personal copy



T. Adegbija et al.

Algorithm 1 Configuration estimation
Inputs: Cb,Ab,Lb,Cmin,Cmax,Amin,Amax,Lmin,Lmax,CTHR,ATHR,LTHR,R1,R2,R3,R4,

R5,R6,R7,D = d(Pb,Pi)

Outputs: Ci,Ai,Li //output best cache size, associativity, and line size

1 Ci ← Cb,Ai ← Ab,Li ← Lb //initialize Ci,Ai , and Li

2 //determine which distance window the phase distance maps to \
3 //and determine the best configuration
4 Switch (D)
5 case R1,R2,R7:
6 Ci ← CTHR

7 break
8 case R3:
9 if Cb == Cmin then
10 Ci ← Cb ∗ 2
11 else
12 Ci ← CTHR

13 end
14 if Ab = Amin then
15 Ai ← Ab ∗ 2
16 end
17 break
18 case R4:
19 Ci ← CTHR

20 if Ab! = Amax then
21 Ai ← Ab ∗ 2
22 end
23 if Lb! = Lmin then
24 Li ← Lb/2
25 end
26 break
27 case R5:
28 Ci ← CTHR

29 if Ab = 1 then
30 Ai ← ATHR

31 end
32 break
33 case R6:
34 if Cb! = Cmax then
35 Ci ← Cmax/2
36 end
37 break
38 end

values CTHR,ATHR, and LTHR, respectively; distance windows R1, through R7; and the phase
distance D. The algorithm outputs phase Pi ’s determined best cache size, Ci , associativity
Ai , and line size Li .
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Fig. 4 Associativity threshold
value determination using
diminishing return effects on the
energy delay product for varying
data cache associativities

We empirically determined the threshold cache size, associativity, and line size values as
8 Kbyte, 2-way, and 64 byte, respectively. For example, Fig. 4 illustrates how we determine
the associativity threshold value in terms of EDP (Joule seconds) for three image rotation
phases from our studied applications (Sect. 5 details the EDP calculation and application
phases). In these results, the instruction cache configuration is arbitrarily fixed at the base
configuration and the data cache associativity is varied while holding the data cache’s size
and line size fixed at the base configurations. Since increasing the associativity from 1-way
to 2-way results in a decrease in EDP and further increasing the associativity to 4-way re-
sults in an increase in EDP, the associativity threshold value is 2. We similarly determined
the size and line size threshold values. Even though this is an expected result for a simple
trend, this empirical analysis can be used for any tunable parameter with any number of
parameter values. Even though the threshold values can be generalized for any application
domain, the specific threshold values will vary across different application domains due to
different cache locality behavior. Therefore, for configuration estimation to be most effec-
tive, the threshold values should be application domain-specialized. We note, however, that
since our experiments considered phases from diverse application domains, we used general-
ized threshold values, which underestimate the effectiveness of our configuration estimation
algorithm.

Distance windows are phase distance ranges that represent an uncharacterized phase Pi ’s
configuration distance from the base phase Pb when changing a parameter’s value to an-
other value (e.g., increasing the associativity: Ab ∗ 2). Each distance window has a maxi-
mum WinM and minimum WinL and a phase distance D maps to the distance window in
which D is bounded by (i.e., WinL ≤ D ≤ WinM ). For our experiments, we created dis-
tance windows using a base phase from an image rotation application and evaluated how the
parameter values changed for the different phases’ optimal configurations (determined by
an exhaustive search) with respect to the base phase’s configuration. The distance windows
relate directly to all of the characteristics used to evaluate D and are applicable to all the tun-
able parameters represented by D. For example, since we use the cache miss rate to evaluate
D, the distance window bounds relate directly to the actual cache miss rate values and are
applicable to all of the tunable parameters (cache size, associativity, and line size). We deter-
mined that the seven distance windows: R1 = [0,0.25], R2 = [0.25,0.5], R3 = [0.5,0.75],
R4 = [0.75,1.25], R5 = [1.25,1.5], R6 = [1.5,2.5], and R7 = [2.5,∞], sufficiently cover
all the phase distances between the base phase and all of the other phases. The distance
windows’ bounds represent the normalized difference between Pi ’s and Pb’s cache miss
rate. The phase distance D maps to these distance windows such that if 0 ≤ D < 0.25,
D maps to R1, if 0.25 ≤ D < 0.5, D maps to R2, etc. In general, the number of distance
windows can vary based on a system’s intended applications and the applications’ phases,
the distance windows are specialized based on the evaluated characteristic (e.g., cache miss
rates or IPC), and if a multi-characteristic method is used for evaluating D, only one set of
distance windows is necessary to represent all of the tunable parameters.
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For each phase Pi , the configuration estimation algorithm is executed twice, once for the
instruction cache and once for the data cache. First, the algorithm assigns initial values to
Ci,Ai , and Li as Cb,Ab , and Lb , respectively (line 1), which represent default values for
Ci,Ai , and Li . Default values are used because some configuration distances in some dis-
tance windows require no parameter value change for some parameters. Next, the algorithm
determines which distance window the phase distance D maps to (line 4) and determines
Pi ’s best configuration based on the configuration distance for the corresponding distance
window. If a distance window does not specify a change to a parameter value, then Ci , Ai ,
and Li remain as the default values. For example, if phase P2 is the next phase to be exe-
cuted and D = 1.08, the algorithm determines that D maps to distance window R4 (line 18),
and determines Ci,Ai , and Li , based on the configuration distance for R4 (lines 19–25).

We note that even though PDM showed good average EDP savings using configuration
estimation (results are detailed in Sect. 5), PDM had several limitations. First, the designer
was required to statically define the distance windows based on the anticipated applications,
which limits the configuration estimation’s applicability to dynamic systems where applica-
tions are not known a priori. PDM using configuration estimation also required the designer
to designate the base phase such that the base phase represented the system’s prominent
application domain. Appropriate base phase designation was critical since the EDP savings
were strongly affected by how well the base phase represented the entire system. Thus, we
created DynaPDM, which refined PDM to address these limitations by dynamically analyz-
ing the applications, applications’ phases, and configurations, thereby eliminating designer
effort while maintaining the computational simplicity, low tuning overhead, and phase-based
nature of PDM.

4.3 Dynamic phase distance mapping

DynaPDM dynamically creates and stores distance windows in the distance window table as
phases execute. Figure 5 overviews the DynaPDM flow. When a new phase Pi is executed
(i.e., Pi is not in the phase history table) and Pi ’s phase distance D maps to an existing
distance window, Pi ’s new configuration config(Pi) is calculated, stored in the phase history
table, and the system is configured to config(Pi). If D does not map to any distance win-
dows or the distance window table is empty (special case at system startup), a new distance
window is created.

Algorithm 2 Dynamic distance window creation
Input: Sd , D,WinUmax

Output: WinL, WinU //output new distance window’s lower and upper bound

1 if D < Sd then //create the first distance window
2 WinL = 0
3 WinU = Sd

4 else if D > WinUmax then //create the last distance window
5 WinL = WinUmax

6 WinU = ∞
7 else //create distance windows below maximum upper bound
8 WinL = x|(x ≤ D,x mod Sd = 0, x + Sd > D)

9 WinU = x + Sd

10 end
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Fig. 5 Phase characterization using dynamic phase distance mapping

Algorithm 2 dynamically creates a new distance window during runtime and takes as
input: the distance window size Sd , D, and the maximum upper bound for the distance win-
dow WinUmax. The length of each distance window (i.e., the difference between WinU and
WinL) is determined by the distance window size Sd.Sd directly affects the size of the dis-
tance window table since a larger distance window size indicates fewer distance windows
(i.e., fewer distance window entries), while a smaller distance window size indicates more
distance windows. To make the distance window sizes amenable to runtime changes, Sd de-
faults to 0.25 at system start up and dynamically changes during execution. We empirically
define Sd = 0.25 as the minimum distance window size since smaller sizes would drastically
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increase the number of distance windows without improving the tuning efficiency, and be-
cause similar phases could map to different distance windows, resulting in inaccurate char-
acterization of these phases. As phases execute, if two contiguous distance windows have
the same configuration distance, these two windows are combined into a single distance
window and the distance window size is increased by 0.25. Alternatively, Sd may be stati-
cally defined and maintained throughout execution. We empirically determined Sd = 0.5 as
a generally suitable static value based on a variety of training applications representative of
common embedded processor applications (detailed in Sect. 5). However, statically defining
Sd offers no clear advantages over dynamically defining Sd .

Creating either static or dynamic distance windows follow the same procedure. If D <

Sd , the algorithm sets WinL to 0 and sets WinU to Sd (lines 1–3). WinUmax is optional and
represents the maximum number of new distance windows D, such that if D > WinUmax,
D maps to WinUmax < D < ∞ (lines 4–6). WinUmax defaults to infinity, which may improve
the configurations’ efficacies using unlimited smaller, thus more accurate, finer-grained dis-
tance windows, but could exhaust hardware resources. Defining WinUmax restricts the num-
ber of distance windows to WinUmax/Sd and may reduce accuracy since all phases with
D > WinUmax map to the same distance window, which may not accurately define those
phases’ configuration distances. If Sd < D < WinUmax, the next value smaller than D and
divisible by Sd is selected as WinL for that distance window and WinU is set as WinL + Sd

(lines 7–9).
Since there is no configuration distance information at system startup, the first executed

phase, designated as the base phase, is tuned using any efficient tuning method (e.g., [36])
to determine that phase’s best configuration. Our experimental results (Sect. 5) showed that
the choice of the base phase does not affect the tuning efficiency since the distance windows
are dynamically created at runtime to adapt to the executing applications. We reiterate that
DynaPDM only requires a single arbitrary base phase, which alleviates the effort required
in designating a base phase that represents the prominent application domain.

For a new executing phase Pi that does not map to any distance window, DynaPDM
determines Pi ’s most similar phase Pmsp and uses Pmsp’s best configuration as Pi ’s initial
configuration. Pmsp is the phase with the minimum phase distance D from Pi among all
the previously executed phases. Using Pmsp’s best configuration as Pi ’s initial configuration
represents a configuration that is presumably closer to Pi ’s best configuration thus exploit-
ing any potential phase correlation. DynaPDM then adjusts Pi ’s configuration to determine
Pi ’s best configuration without significant tuning overhead, and this best configuration is
used to initialize Pi ’s distance window. To adjust Pi ’s configuration, DynaPDM gradually
increases the cache size, associativity, and line size, individually, while holding the other
parameters fixed. While adjusting the configuration, DynaPDM consistently monitors the
executing configuration’s EDP (calculated by the tuner) and stops adjusting the configura-
tion when an executing configuration achieves no EDP savings over previously explored
configurations. The configuration with the lowest EDP is then designated as Pi ’s best con-
figuration. Our experiments (details in Sect. 5) reveal that DynaPDM can determine the
best configuration after exploring as few as three configurations. After determining Pi ’s best
configuration, DynaPDM uses this configuration to initialize Pi ’s distance window.

When a new executing phase maps to an existent distance window, DynaPDM directly
determines the phase’s configuration using that distance window’s configuration distance.
During the first execution, DynaPDM adjusts the phase’s configuration in order to achieve
a configuration closer to the phase’s best configuration in the case of an inaccurate config-
uration distance. A configuration distance may be inaccurate if the distance window was
initialized using an inferior, non-optimal configuration. Also, adjusting the phase’s configu-
ration helps DynaPDM determine a configuration closer to the best configuration in the rare
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case where a phase maps to an existent distance window, but requires a different configu-
ration than the configuration determined by configuration distance in that distance window.
However, our experimental results (Sect. 5.2) showed that even in these cases, DynaPDM
significantly improved the EDP over using the base configuration, and adjusting the phase’s
configuration only further increased the EDP savings. After determining the new phase’s
best configuration, the distance window is updated, if necessary.

In order to maintain the consistency of EDP savings achieved by DynaPDM’s deter-
mined configurations when executing persistent phases (i.e., phases that reoccur several
times throughout the system’s lifetime) DynaPDM periodically monitors the EDP after ex-
ecuting a previously characterized phase and compares the current EDP to the previously
monitored EDP for the same phase. Since most modern microprocessors contain perfor-
mance monitoring units, periodically monitoring the EDP will not constitute any significant
additional overhead. If the phase’s current execution results in a significant EDP increase
compared to previous executions, DynaPDM determines a new best configuration for that
phase, using the previously determined configuration as the initial configuration. The phase’s
new best configuration is then stored in the phase history table. A significant EDP increase,
instigating the need for DynaPDM to determine a new best configuration for a previously
characterized phase, may result from a change in the hardware behavior due to changes in
the input stimuli or external factors (e.g., temperature).

Algorithm 3 initializes the distance windows and updates the phase history and distance
window tables. The algorithm takes as input the number of previously executed phases n and
the base phase’s best configuration, and outputs the executing phase Pi ’s best configuration
config(Pi). Since the algorithm’s optimization goal is to determine a configuration for each
phase with an EDP less than or equal to the base configuration’s EDP EDP[config(Pi)base],
all new phases default to the base configuration as the best configuration. The base configu-
ration is initially stored in the phase history and distance window tables as the lowest EDP
configuration. The algorithm monitors the EDP after every tuning interval, and only updates

Algorithm 3 Initializing distance windows
Input: n, config(Pb)
Output: config(Pi)

1 if n == 1 then //set initial configuration
2 config(Pi)init ← config(Pb)

3 else //set most similar phase’s best configuration as initial
4 for j ← 1 to n do
5 Dj ← d(Pi,Pj )

6 end
7 Pmsp ← Pj |D = min(Dj )

8 config(Pi)init ← config(Pmsp)
9 end
10 //adjust configurations while EDP improves
11 config(Pi) ← adjust(config(Pi)init)

12 if EDP[config(Pi)] ≤ EDP[config(Pi)init] then
13 config(Pi)init ← config(Pi)

14 goto line 11
15 end
16 updateDistanceWindowTable() //store new configuration distance
17 return config(Pi)
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the phase history and distance window tables when the current EDP is less than the stored
EDP. DynaPDM executes Pi in each explored configuration for a tuning interval of 500,000
cycles, which is long enough to warm up the cache and for miss/hit rates to stabilize. If
Pi completes execution in fewer cycles than required for DynaPDM to determine the best
configuration, Pi begins subsequent executions in the stored lowest EDP configuration and
DynaPDM continues exploring the configurations to determine Pi ’s best configuration.

The algorithm uses the base phase Pb’s configuration config(Pb) for Pi ’s initial configu-
ration config(Pi)init (lines 1–2) if only Pb has been previously executed (n = 1). Otherwise,
the algorithm uses the most similar phase Pmsp’s best configuration config(Pmsp) as Pi ’s
initial configuration (lines 3–9). The algorithm then adjusts Pi ’s configuration while new
configurations achieve lower EDP than previously explored configurations (lines 11–15)
and stores the configuration with the lowest EDP as Pi ’s best configuration. The algorithm
then updates Pi ’s distance window table with the configuration distance from the base phase
and uses config(Pi) for Pi ’s subsequent executions.

5 Experimental results

We evaluate PDM and DynaPDM by comparing a system that switches to the best configu-
rations, as determined by phase distance mapping, for each phase to a system fixed with the
base cache configuration. We present our experimental setup and the results obtained from
both PDM using configuration estimation and DynaPDM, and compare the results obtained
by DynaPDM to those obtained by PDM.

5.1 Experimental setup

We selected nineteen workloads from the EEMBC Multibench benchmark suite [8], which
is an extensive suite of multicore benchmarks that primarily target the embedded market
and model a wide variety of realistic applications. Table 1 depicts the workloads used in
our experiments. Each Multibench workload is a collection of kernels working on a specific
dataset. Our selected workloads covered diverse processing tasks, such as image rotation for
different colors/sizes, internet protocol (IP) packet checking, IP packet reassembly, trans-
mission control protocol (TCP) processing, video encoding, md5 message-digest algorithm
checksum calculation, Huffman decoding, etc. Since each workload was a collection of spe-
cific compute kernels, each of which performed a single task or a combination of similar
tasks, the kernels essentially represented a single phase of execution. Therefore, without
loss of generality, we assumed that each workload represented a different phase.

We simulated the system using Perl scripts for each phase to completion for the optimal,
base, PDM, and DynaPDM configurations for all executions of each phase. To gather cache
miss rates, we used GEM5 [3] to model a homogeneous dual core system with separate,
private L1 instruction and data caches. We used McPAT [21] to calculate the system’s total
power consumption and evaluate the system’s energy efficiency using the EDP in Joule
seconds:

EDP = system_power ∗ phase_running_time2

= system_power ∗ (total_phase_cycles/system_frequency)2

where system_power includes the core power and cache power, and total_phase_cycles is
the total number of cycles to execute a phase to completion. Table 2 shows some of the
system’s microarchitectural parameters that contribute to the EDP.
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Table 1 Experimental
workloads Domain Workload

Image processing rotate-16x4Ms32w8

rotate-16x4Ms4w8

64M-rotatew2

rotate-4Ms4w1

rotate-520k-270deg

rotate-color-4M-90degw1

Networking 4M-check

4M-reassembly

4M-tcp-mixed

ippktcheck-8x4M-4Worker

ipres-6M4worker

MD5 checksum md5-128M4worker

md5-32M4worker

md5-4M

Empty empty-wld

Code compression huffde-all

Video x264-4M

x264-4Mq

x264-4Mqw1

Table 2 Core microarchitectural
parameters Architectural configuration

Processing Cores 2

Clock Rate 2 GHz

Functional Units 2 IntAlu, 1 FPAlu, 1 Mult/DivAlu

Issue Width 1

Physical Registers 32 Int, 32 FP

L1 Instruction and Data Caches

Cache size 2 Kbyte–8 Kbyte

Associativity 1-way–4-way

Line size 16 byte–64 byte

5.2 Results

5.2.1 PDM

Figure 6(a) shows the EDP savings, as compared to the base configuration for the optimal
configuration as determined using an exhaustive search (Optimal) and the best configura-
tion as determined by phase distance mapping (PDM) for a single execution of each of the
nineteen phases. Rotate-16x4Ms32w8, from the image processing domain, which rotates
sixteen 4-megapixel greyscale images 90 degrees clockwise, is used as the base phase. On
average over all phases, phase distance mapping achieved an EDP savings of 24 %, with
savings as high as 47 % for 64M-rotatew2, and was within 4 % of the optimal configura-
tion on average. PDM determined optimal configurations for seven of the nineteen phases,
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Fig. 6 EDP savings for the optimal configuration (optimal) and the best configuration determined by phase
distance mapping (PDM) normalized to the base configuration when using (a) rotate-16x4Ms32w8 and
(b) huffde-all as the base phase, and (c) when considering only the image processing phases. Phase dis-
tance mapping is also used to determine the configurations for the base phases, which shows the worst-case
scenario for the base phases
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while some individual phases’ configurations achieved EDP savings within 10 % of the
optimal.

To evaluate the effects that a different base phase has on the EDP savings, Fig. 6(b)
shows the EDP savings, as compared to the base configuration, using huffde-all as the base
phase. Huffde-all executes Huffman decoding on seven datasets. On average over all phases,
phase distance mapping achieved an average EDP savings of 21 %, with savings as high as
38 % for rotate-4Ms4w1, and was within 7 % of the optimal configuration. Ippktcheck-
8x4M-4Worker had the lowest EDP savings (2 %), as compared to the optimal (21 %),
because PDM selected a smaller line size than required. However, PDM still achieved some
EDP savings over the base phase. Using Huffde-all instead of rotate-16x4Ms32w8 as the
base phase resulted in a 3 % reduction in average EDP savings, while 64M-rotatew2’s EDP
savings dropped by 15 %, and the number of phases for which PDM determined the optimal
configurations reduced to five. The reduction in average EDP savings is due to the fact
that Huffde-all is the only phase that performs any type of data compression whereas six
of the phases perform image rotation. To verify this application-domain dependence when
designating a base phase, we used 64M-rotatew2, another image processing phase, as the
base phase. For brevity, we omit the detailed results, but the results revealed that PDM
using 64M-rotatew2 as the base phase achieved EDP savings that varied by less than 1 % as
compared to using rotate-16x4Ms32w8 as the base phase.

We further analyzed the effectiveness of application-domain specialization by consider-
ing only the six image processing phases. Figure 6(c) depicts the EDP savings normalized to
the base configuration when considering only the image processing phases and using rotate-
16x4Ms32w8 as the base phase. The average EDP savings were 32 %, which is 8 % higher
than the average over all nineteen phases, and were within 2 % of the optimal, on average.

These analyses revealed that the magnitude of savings is highly application-domain de-
pendent, and that even though good savings could be achieved by using any base phase,
carefully considering the application domain when designating the base phase could sig-
nificantly increase the EDP savings. Designating the base phase for a small, application-
domain-specialized system with a small phase space can be done manually during design
time, however, this manual designation is infeasible for large, general-purpose systems with
a large phase space. For large systems, designers can use cluster analysis (e.g., k-means clus-
tering [19] or graph-based models [38]) to partition the phase space into different domains,
and the phase that most closely represents the largest cluster (most prominent domain) can
be designated as the base phase.

5.2.2 DynaPDM

Figure 7(a) shows the EDP savings of the optimal, PDM, and DynaPDM configurations nor-
malized to the base cache configurations for a single execution of each workload/phase. To
compare DynaPDM with PDM, we designated the base phase as rotate-16x4Ms32w8, which
is from the image processing application domain. On average over all phases, DynaPDM
achieved average EDP savings of 27 % with savings as high as 47 % for 64M-rotatew2. Dy-
naPDM determined the optimal configurations for 68 % (thirteen) of the nineteen phases.
On average over all phases, the EDP was within less than 1 % of the optimal, with EDP
savings within 3 % of the optimal for md5-4M. DynaPDM showed a 4 % improvement over
PDM, however, PDM’s savings are best-case savings acquired only after extensive design-
time effort. Compared to PDM, DynaPDM increased the EDP for rotate-16x4Ms4w8 and
rotate-4Ms4w1 by 1 % and 2 % respectively, because PDM leveraged domain specialization
with a base phase from the image processing domain. However, DynaPDM improved EDP
savings for eleven phases, with savings as high as 10 % for 4M-tcp-mixed.
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Fig. 7 EDP savings normalized to the base configuration when using (a) rotate-16x4Ms32w8 as the base
phase and (b) huffde-all as the base phase

To show DynaPDM’s effectiveness in achieving significant EDP savings with any base
phase, we quantified the EDP savings using huffde-all to represent an arbitrary base phase.
We used huffde-all because huffde-all was the only phase that performed any form of code
compression, and thus did not represent any of the other phases’ domains. Figure 7(b) de-
picts the EDP normalized to the base phase Huffde-all. Similar to using rotate-16x4Ms32w8
as the base phase, DynaPDM achieved average EDP savings of 27 %, with savings as high as
47 % for 64M-rotatew2. DynaPDM determined the optimal configurations for 63 % (twelve)
of the nineteen phases. Unlike PDM, where using a base phase that did not represent the
prominent application domain adversely affected the EDP savings, DynaPDM’s effective-
ness in achieving EDP savings was independent of the base phase.

To show DynaPDM’s ability to achieve significant EDP savings with minimal design
space exploration and tuning overhead, we evaluated the configurations explored during
tuning for all of the thirteen phases where DynaPDM determined the optimal configuration.
Figure 8 shows the EDP savings for each of the explored configurations, Config-1 to -5,
where each bar represents the single explored configuration’s EDP normalized to the base
configuration. Since inferior configurations are explored while finding the optimal config-
uration, the bars are not necessarily constantly decreasing. For rotate-color-4M-90degw1,
DynaPDM explored only three configurations (less than 3 % of the design space) before de-
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Fig. 8 EDP savings of explored configurations normalized to the base configuration for all phases where
DynaPDM determined the optimal configuration, where each bar, Config-1 to -5, represent the first to fifth
configurations explored

termining the optimal configuration, and then only explored two additional configurations.
For twelve of the thirteen phases, all of the explored configurations reduced the EDP over
the base configuration, preventing any tuning overhead, as compared to the base config-
uration, while determining those phases’ optimal configurations. For example, for rotate-
color-4M-90degw1, DynaPDM explored five configurations with EDP savings of 17 %,
19 %, 22 %, 27 %, and 4 %, respectively, as compared to the base configuration. Since
the fifth configuration reduced the EDP savings as compared to the first four configura-
tions, DynaPDM determined the fourth configuration as rotate-color-4M-90degw1’s opti-
mal configuration, since that configuration was the lowest EDP configuration. DynaPDM
determined rotate-color-4M-90degw1’s optimal configuration without executing any con-
figurations with higher EDP than the base configuration, thus minimizing tuning overhead.
For ippktcheck-8x4M-4Worker, the third explored configuration reduced the EDP by 74 %
as compared to the base configuration. However, since the second explored configuration
achieved 21 % EDP savings over the base configuration, DynaPDM determined that the
second configuration explored was ippktcheck-8x4M-4Worker’s optimal configuration. In
general, the results showed (details omitted for brevity) that DynaPDM only explored con-
figurations that progressively increased the EDP savings for eighteen of the nineteen phases
evaluated in our experiments, thus minimizing tuning overhead.

We also evaluated the impact of using a fixed versus a dynamic distance window size Sd .
The distance window size Sd determines the granularity/length of the distance windows and
affects the distance window table’s size (memory requirements), however, this size is min-
imal since only a few distance windows are created during the system’s lifetime. Addition-
ally, the distance window table’s size can be fixed to adhere to system memory constraints,
and a replacement policy, such as least recently used, can be used when the table is full.
Sd may also affect the configuration distances’ accuracies (i.e., EDP savings). Larger Sd re-
duces the number of distance windows and distance window table size, but may cause phases
to map to distance windows that do not accurately represent the phases’ characteristics, re-
sulting in less accurate configuration distances. Smaller Sd increases the number of distance
windows and the distance window table size, but may not necessarily increase EDP savings.
Figures 9(a) and 9(b) illustrate the tradeoffs of Sd with the number of distance windows
(i.e., distance window table size) and the percentage EDP savings, respectively. We empir-
ically determined that Sd = 0.5 provided a good tradeoff between the number of distance
windows and EDP savings. With Sd = 0.5, DynaPDM created seven distance windows, and
achieved EDP savings within 1 % of the optimal. With Sd = 0.25, DynaPDM created nine
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Fig. 9 Distance window size tradeoffs with (a) number of distance windows and (b) percentage EDP savings

Fig. 10 Distance window table architecture

distance windows with no increase in EDP savings. Finally, with Sd = 1 DynaPDM created
five distance windows, but the average EDP savings dropped to 26 %. Therefore, using fixed
distance window sizes offers no definitive advantage over using dynamic distance window
sizes, while dynamic distance windows obviate the designer’s need to specify a distance
window size at design time.

6 Hardware overhead

Figure 10 depicts the distance window table architecture, which comprises the only poten-
tial area/power overhead imposed by DynaPDM. The distance window table, which could be
stored in the SRAM for quick access by the tuner, consists of the n-bit distance window iden-
tifications IDs, which identify unique distance windows for the instruction and data caches
(iCache and dCache). n depends on the number of entries in the distance window table. For
example, 16- and 32-entry distance window tables require 4-bit and 5-bit IDs, respectively.
The distance window table also stores the phase distance ranges with minimum WinL and
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Table 3 Area and power consumption overhead for the distance window table

# of entries Total area (µm2) Area overhead Total power (µW) Power overhead

16 0.517 0.24 % 12.78 0.11 %

32 0.620 0.30 % 14.18 0.11 %

maximum WinU values, and associated configuration distances for the iCache and dCache.
Since our configurable cache (Sect. 3) consists of eighteen different configurations, the dis-
tance window table only needs 5-bit entries, but could contain more entries for systems with
additional configurations.

Since most embedded systems will typically only require a small number of entries in the
distance window table (Sect. 4), we evaluated 16-entry and 32-entry distance window tables
in synthesizable VHDL. We quantified the area and power consumption using Synopsis De-
sign Compiler [34] and the Synopsis 90 nm Generic Library. Table 3 depicts the area and
power consumption values and overhead with respect to the MIPS32 M4K 90 nm processor
[23], which has an area of 0.21 mm2 and consumes 12 mW of power at 200 MHz. The
16-entry and 32-entry distance window tables result in negligible area and power overhead,
imposing only a 0.24 % and 0.30 % area overhead, respectively, and a 0.11 % power over-
head. Given the negligible area and power overhead imposed by these tables, larger distance
window tables will not attribute any appreciable area/power overhead.

7 Potential DynaPDM usage scenarios

DynaPDM’s ease of implementation and low power and area overheads makes DynaPDM
especially suitable for embedded systems. One of DynaPDM’s major usage scenarios is
dynamic phase-based cache tuning. Based on our experience with using DynaPDM for
cache tuning and DynaPDM’s fundamentals as described in this work, we are optimistic
that DynaPDM can be explored for other uses and areas of research. However, we note that
DynaPDM’s implementation in other optimization domains may require several additional
considerations, depending on the specific usage scenario. In this section, we elaborate on
other potential uses of DynaPDM in order to motivate future research directions.

To increase configurability and more closely satisfy design objectives, DynaPDM can
tune other tunable hardware, such as clock frequency, instruction issue width, etc. Since
different tunable hardware have different runtime behaviors, which may be susceptible to
external factors, such as temperature, the specific hardware behaviors should be considered
when adapting DynaPDM to these tunable hardware. To adapt DynaPDM for other tunable
hardware, the application characteristics used to evaluate the phase distance must closely
relate to the actually tunable hardware. For example, since clock frequency directly affects
temperature, temperature can be used to evaluate the phase distance in dynamic voltage
and frequency scaling (DVFS). Furthermore, since different tunable hardware have vary-
ing degrees of impact on different design objectives (e.g., clock frequency typically has a
higher impact on IPC than cache miss rates), the specific design objectives must be consid-
ered simultaneously with DynaPDM’s implementation and the tunable hardware’s runtime
behaviors.

For systems with several tunable hardware, DynaPDM can use multiple characteristics
to evaluate the phase distance, wherein each characteristic can be weighted to reflect the im-
pact of the tunable hardware on each characteristic. To incorporate multiple characteristics,
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the phase distance may be holistically calculated using a multidimensional distance calcula-
tion methodology, such as Euclidean distance, Manhattan distance, etc. with N dimensions,
where N is the number of characteristics used to calculate the phase distance.

In heterogeneous core systems where energy efficiency and performance are affected
by the specific application-to-core scheduling decisions, applications should be scheduled
to cores that best satisfy design objectives. DynaPDM can be leveraged in these systems
to determine the best application-to-core schedules based on the application characteris-
tics. DynaPDM can evaluate the application distance (analogous to phase distance) between
a previously executed application’s characteristics and a new application’s characteristics,
and use the correlation between this application distance and core configurations to predict
which core would achieve the best energy/performance efficiency for the new application.

Finally, in non-configurable systems where designers must determine the best configu-
rations during design time, usually using extensive simulations and evaluations, DynaPDM
can directly predict the systems’ best configurations, which can then be compared to a base
configuration to quantify the improvement (e.g., EDP and/or energy savings) over the base
configuration. DynaPDM can also assist computer architecture researchers to determine op-
timal or near-optimal configurations without time consuming design-time simulations.

8 Conclusion and future work

Phase-based tuning specializes a system’s configurations to varying runtime application
characteristics to meet design constraints. One of the major challenges of phase-based tuning
is determining the phases’ best configurations without incurring significant tuning overhead.
In this paper, we presented phase distance mapping—PDM—a phase-based tuning method
that directly determines the best configuration for a phase with no design space exploration.
Using extensive analysis of application phases and configurations, PDM determined con-
figurations within 4 % of the optimal configuration, with an average energy delay product
(EDP) savings of 24 %.

To reduce the design time overhead of pre-analyzing the application phases, and to make
PDM more amenable to runtime changes and general purpose embedded systems with large
or unknown phase spaces, we also presented a refinement to PDM, dynamic phase distance
mapping—DynaPDM—a runtime phase-based tuning method that dynamically correlates a
known phase’s characteristics and best configuration with a new phase’s characteristics to
determine the new phase’s best configuration, thereby reducing tuning overhead. DynaPDM
adapts to runtime phase changes and eliminates designer effort. DynaPDM achieved average
EDP savings of 27 % and determined configurations within 1 % of the optimal.

Future work includes evaluating DynaPDM’s scalability to tunable many-core systems.
In these systems, many cores could be tuned simultaneously, imposing large collective tun-
ing overhead, and a single/centralized tuner could impose performance bottlenecks. Ad-
dressing these challenges may require using a dedicated tuner for each core (distributed
tuning), which increases the area overhead, but may alleviate the performance bottleneck.
Alternatively, the area overhead may be reduced by dividing the cores into clusters of cores
comprising fewer cores, with a separate tuner for each cluster, which reduces the area over-
head, but may impose performance bottlenecks. Thus, it is critical to evaluate the tradeoff
between hardware overhead and shared resource contention. We also plan to explore and
evaluate our proposed DynaPDM usage scenarios (Sect. 7) and more complex systems (e.g.,
heterogeneous systems, multilevel caches, etc.) with additional tunable hardware.
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