
1

Design and Evaluation of a Reconfigurable ECU
Architecture for Secure and Dependable

Automotive CPS
Bikash Poudel and Arslan Munir, Senior Member, IEEE

Abstract — The next generation of automobiles integrate a multitude of electronic control units (ECUs) to implement various
automotive control and infotainment applications. However, recent works have demonstrated that these pervasively computerized
modern automobiles are susceptible to security attacks that could compromise the physical safety of the driver and/or passengers. In
this paper, we propose a novel ECU architecture for automotive cyber-physical systems (CPS) that simultaneously integrates both
security and dependability primitives in the design with negligible performance, energy, and resources overhead. We implement our
proposed ECU architecture on Xilinx Automotive (XA) Spartan-6 FPGA. We demonstrate the effectiveness of our proposed
architecture using a steer-by-wire (SBW) application over controller area network (CAN) with flexible data rate (CAN FD) as a case
study. We also optimize and implement a prior secure and dependable automotive work on NXP quad-core iMX6Q SABRE automotive
board. We quantify the performance, energy, and error resilience of our proposed architecture for the SBW case study. Results reveal
that our proposed architecture can attain a speedup of 47.9× while consuming 2.4× lesser energy than the optimized SABRE board
implementation of security and dependability primitives. We further perform a comparative analysis of prior designs and the proposed
ECU architecture for different in-vehicle networks, viz., CAN, CAN FD, and FlexRay. Results verify the feasibility as well as the
superiority of the proposed ECU over other prior designs in terms of response time, energy efficiency, and error resilience.

Index Terms —Automotive, cyber-physical systems, security, dependability, ECU, multicore, reconfigurable architectures, FPGA,
steer-by-wire

✦

1 INTRODUCTION AND MOTIVATION

MODERN automobiles (also known as cybercars)
are intricate distributed cyber-physical systems

(CPS) comprising of more than hundred heterogeneous
processors, numerous radio interfaces, hundreds of
megabytes of complex embedded software, and multiple
in-vehicle networks and protocols. The controller area
network (CAN) is the most prevalent protocol for
communication among ECUs in automotive CPS. To
enhance energy efficiency, automated control, and user
comfort, modern automobiles are forsaking traditional
mechanical and hydraulic subsystems in favour of x-by-wire
subsystems. However, x-by-wire systems have stringent
real-time performance and reliability requirements, which
pose significant challenges for implementation over
bandwidth-limited CAN. FlexRay with high speed data
transfer and inherent fault tolerance features is a
suitable replacement for CAN protocol. Nevertheless, the
automotive industry is reluctant to adopt the FlexRay
communication protocol because the transition requires a
major revamp of automotive electronic subsystems. CAN
with flexible data-rate (CAN FD) bridges the gap between
CAN and FlexRay, and provides an easier alternative for
implementing new automotive control applications, such as
x-by-wire.

Realization of next generation automotive CPS
applications, such as x-by-wire, requires incorporating

• Bikash Poudel is currently working at Intel Corporation. Arslan Munir
is with the Department of Computer Science, Kansas State University,
Manhattan, Kansas.
E-mail: {bpoudel@ksu.edu; amunir@ksu.edu}

dependability and security features in automotive ECUs
and in-vehicle networks. The automotive CPS applications
have strict dependability requirements as dictated by
International Organization for Standardization (ISO) 26262
[1]. The adherence to the ISO 26262 standard requires
that at least one critical fault must be tolerated by the
automotive applications without loss of functionality.
Meeting these dependability requirements presents various
challenges. Automobiles have to endure harsh operational
environments (including external noise and radiations)
that render electronic systems vulnerable to permanent,
transient, and intermittent faults. Permanent faults could
impair or stop the correct functionality of the system
while transient faults induce soft errors in the system. The
intermittent faults oscillate between quiescent and active
states [2], that is, the component functions correctly when
the fault is quiescent and the component malfunctions
when the fault is active. A loose electrical connection is
an example of intermittent faults. Furthermore, in-vehicle
distributed control systems are traditionally designed
without security in mind. All of the current in-vehicle
communication protocols, such as CAN, CAN FD, and
FlexRay, carry messages in plaintext format, which could be
read and altered by any device connected to the automotive
bus. These security threats are further aggravated by the
increasing integration of automotive systems with external
entities, such as consumer electronics, other vehicles, and
wireless networks.

The cardinal challenge in automotive CPS design is to
integrate security and dependability simultaneously while
ensuring that hard real-time constraints of the automotive

2

CPS applications are not violated. This paper addresses this
cardinal challenge of automotive CPS design while also
minimizing energy consumption. Temporal performance
(i.e., meeting timing constraints) is often considered as a
system’s quality of service (QoS) measure. We assert that
the system’s QoS must also be construed as a dependability
measure that can impact the system’s availability and safety
beyond a certain critical threshold as the driver can totally
lose the control of his/her vehicle beyond that critical
threshold [3]. This critical threshold also defines the notion
of behavioural reliability, which is defined as the probability
that the system’s worst-case response time is less than the
critical threshold. The behavioral reliability measure can be
used to ensure the stability of automotive CPS design [4].

The security susceptibilities and safety requirements
of automotive CPS justify inclusion of security and
dependability primitives in the design of automotive
CPS. Earlier works have addressed some of the
security and safety issues of in-vehicle distributed
systems, vehicle-to-infrastructure communication, and
vehicle-to-vehicle communication [4] [5] [6] [3]. Prior work
by Munir and Koushanfar [3] is the most relevant work
to this paper, in which the authors proposed a secure
and dependable approach for automotive systems, and
presented a primitive implementation of the proposed
approach on an Intel processor. The work by Munir
and Koushanfar [5] integrated security primitives by
software implementation of encryption and authentication
protocols. Furthermore, the work did not implement the
proposed approach on an automotive ECU. To overcome
the limitations of earlier work, this work integrates security
and dependability primitives in hardware to attain better
performance and energy efficiency than software-based
approaches. In this work, we propose a novel secure and
dependable automotive ECU architecture and compare it
with prior multicore-based ECU architectures [5] [3] with
respect to temporal performance, energy efficiency, and
error resilience. Our main contributions are as follows:

• We summarize various security and dependability
standards and specifications for automotive ECUs.
We also provide an overview of security and
dependability features in contemporary ECUs.

• We enhance the security structure of a prior secure
and dependable automotive approach (Munir and
Koushanfar [5]), which we refer to as “baseline
design” (BD). We reinforce the security of the BD
by replacing secure hash algorithm-2 (SHA-2) based
hash-based message authentication code (HMAC)
with SHA-3 based HMAC. We further optimize
and implement the BD on the NXP iMX6Q SABRE
automotive board. We refer to this optimized BD
implementation as OBD. Furthermore, we quantify
the error resilience of the OBD approach and
evaluate the interplay of performance, security, and
fault tolerance for the automotive SBW subsystem.

• We propose a novel ECU architecture that
incorporates security and dependability primitives
while minimizing energy consumption and ensuring
that real-time constraints of automotive CPS
applications are satisfied. The proposed architecture
is suitable for a broad range of automotive

subsystems, such as x-by-wire, infotainment, and
powertrain, etc.

• We implement our proposed secure and dependable
ECU architecture on Xilinx Automotive (XA)
Spartan-6 field-programmable gate array (FPGA).
We refer to this FPGA implementation of our
proposed ECU architecture as EAF.

• We analyze our proposed ECU architecture and
approach using a SBW application over CAN FD as
a case study. We compare the temporal performance,
energy efficiency, and error resilience of our
proposed ECU architecture with comparable security
and dependability primitives’ implementation on the
existing state-of-the-art ECU architectures, such as
NXP iMX6Q SABRE automotive board.

• We perform a comparative analysis of the
proposed approaches (BD, OBD, and EAF) for
different in-vehicle networks, viz., CAN, CAN
FD, and FlexRay, in terms of pure delay (pure
delay comprises of computation time required
for processing control algorithm and security and
dependability primitives, plus the transmission time)
and response time. Results verify the feasibility of
all the proposed approaches (BD, OBD, and EAF) as
well as the superiority of EAF over BD and OBD in
terms of pure delay and response time.

• We highlight the future research directions for
designing secure and dependable automotive CPS.

The rest of this paper is organized as follows.
Section 2 discusses prior research efforts in the field of
secure and dependable automotive CPS design. Section 3
elaborates on the contemporary standards and specifications
for automotive electronics, which have been adopted
in state-of-the-art automotive grade microprocessor and
microcontrollers. Section 4 explains our proposed security
and dependability approach. Furthermore, this section
illustrates the design modification and optimizations
incorporated in OBD as compared to BD. In Section 5, we
propose our novel ECU architecture that simultaneously
integrates security and dependability features in automotive
CPS without violating the real-time constraints inherent in
automotive CPS applications. Section 6 discusses the SBW
system case study that we have used to demonstrate the
effectiveness of our proposed ECU architecture. Section 7
details the experimental setup and evaluation results
demonstrating the performance, energy, and error resilience
features as well as the feasibility of our proposed approach
and the proposed ECU. Section 8 highlights future research
directions for designing secure and dependable automotive
CPS. Finally, Section 9 concludes this work.

2 RELATED WORK
Security for automotive CPS has been studied in previous
works. Koscher et al. [7] and Checkoway et at. [8]
analyzed the internal and external attack surfaces of a
modern automobile through which an attacker could control
automotive subsystems (e.g., engine, brakes, windshield
wipers) while completely ignoring the driver’s input.
The authors discovered a broad range of attack vectors
that included cellular radio, bluetooth, CD player, and
mechanics tools. One interesting work that incorporates

3

security features such as CAN message confidentiality and
integrity is by Chavez et al. [9]. Chavez et al. [9] suggested
using the security services, viz., confidentiality, integrity,
authentication, nonrepudiation, and access control, of the
OSI (Open Systems Interconnection) reference model (ISO
7498-2 [10]) for securing CAN protocol. Following this, the
authors proposed that access control could be taken care
of at higher layers in the protocol, that integrity could be
enforced by using hash algorithms, and that confidentiality
could be enforced by using RC4 encryption of CAN frames.
However, the foible of this work is that the remaining two
OSI services, viz., authentication and non-repudiation, were
not considered.

Various prior works [11], [12], [13], [14] discussed
incorporation of message authentication codes (MACs) in
CAN data frames to secure in-vehicle communication.
Nilsson et al. [13] proposed to use a compound MAC added
to the payload of the CAN frames, which could be used to
detect and possibly recover from injection and modification
attacks in the in-vehicle networks. In their proposed scheme,
the authors calculated the MAC over four consecutive CAN
messages and the resulting MAC was partitioned into four
16-bit blocks and transmitted in the cyclic redundancy
code (CRC) field of the next four CAN messages. The
protocol required a total of eight CAN messages for MAC
verification, and thus resulting in delayed verification of
data integrity and data authentication. Furthermore, the
protocol did not provide protection against replay attacks
nor was able to identify individual faulty messages in case
of MAC verification failure.

Several previous works [11], [12], [14] proposed
security mechanisms based on MACs and counters for
CAN to prevent both masquerade attacks and replay
attacks. However, these works did not consider message
confidentiality nor the fault tolerance (FT) aspects of
messages transmitted over the CAN bus. Herrewege et
al. proposed CANAuth [14]—a simple and backward
compatible broadcast authentication protocol for CAN bus.
The scheme provided two main security services for the
in-vehicle CAN network: CAN message authentication
and resistance to replay attacks. The authentication was
achieved by using HMAC and the resistance to reply attacks
was achieved by augmenting a counter with the message.
To make the proposed scheme backward compatible with
the existing CAN bus, CANAuth used out-of-band channel
to send authentication data using CAN+ protocol [15].
The drawback of the approach, however, is that the
scheme did not provide message confidentiality and source
authentication. Furthermore, the protocol assumed that all
of the CANAuth nodes possessed a preshared key.

Groza et al. [11] proposed LiBrA-CAN, which provided
source authentication and resilience to replay attacks for
CAN. The protocol was based on symmetric primitives and
utilized two interesting procedures that the authors referred
as key splitting and MAC mixing. Instead of performing
source node authentication independently for each node,
the approach split authentication keys between groups
of multiple nodes which led to an efficient progressive
authentication. The weakness of the protocol is that the
message confidentiality was not embodied in the CAN
network which left the CAN network vulnerable for traffic

analysis related attacks. Wolf et al. [16] presented a vehicular
hardware security module (HSM) that was implemented in
Xilinx Virtex-5 FPGA to secure in-vehicle ECUs and their
communication. However, the HSM did not incorporate any
FT features. Furthermore, the work did not evaluate the
interplay of performance, energy, and FT which is essential
for secure and dependable automotive CPS applications.

Several earlier work explored dependability for
automotive embedded systems. Beckschulze et al. [17]
investigated FT approaches based on dual-core
microcontrollers. The work compared the functional
monitoring architectures that monitored the hardware
executing the application. Baleani et al. [18] studied various
FT architectures for automotive including lock-step dual
processor architecture, loosely-synchronized dual processor
architecture, and triple modular redundant architecture.
The work, however, did not quantify the architectures’ FT
capabilities subject to real-time constraints of automotive
CPS. Rebaudengo et al. [19] investigated sofware-based FT
techniques for soft error detection. The authors presented
an approach for detection of soft errors by automatically
introducing data and code redundancy into an existing
program written in a high-level language. The proposed
approach, however, resulted in an average performance
penalty of 5×, and thus may not be feasible for automotive
CPS with hard real-time constraints.

In summary, although previous works identified security
vulnerabilities in automotive systems, these works did
not present an integrated approach for designing secure
and dependable automotive CPS. Munir and Koushanfar
[5] presented a multi-core ECU based design of secure
and dependable automotive embedded systems using SBW
application as a case study. However, the work did not
implement the proposed approach on an automotive-grade
processor. In this paper, we enhance the security structure of
the secure and dependable approach proposed in [5], which
we refer to as the “baseline design”, and further optimize
and implement the baseline design on an automotive-grade
processor.

3 SECURITY AND DEPENDABILITY STANDARDS

AND SPECIFICATIONS FOR AUTOMOTIVE ECUS
Contemporary automobiles utilize a variety of
microcontroller/microprocessor units (MCUs/MPUs)
as ECUs to implement various control and infotainment
applications. Recognizing the need for incorporation of
security and dependability primitives in automotive ECUs,
automotive original equipment manufacturers (OEMs),
suppliers, and standards organizations have developed
a few specifications and standards for automotive ECUs.
In this section, we discuss the contemporary standards
and specifications for automotive ECUs that have been
deployed in state-of-the-art automotive ECUs.

3.1 Security
A number of specification activities and security module
architectures have reached sufficient maturity to be
accepted as a standard within the automotive engineering
community, while some of the specifications are on process
to be standardized. We discuss some of these security
specifications for automotive ECUs in the following.

4

Secure Hardware Extension (SHE): SHE [20] is one of the
security specifications that has now been accepted as an
open and free standard. SHE was launched by Hersteller
Initiative Software (HIS), which is a working group of all
German car manufacturers. SHE is an industrial standard
that describes a hardware extension for adding essential
security functionalities, such as hardware cryptographic
module, secure boot, management of security keys, etc. SHE
is implemented as an on-chip extension to microcontroller.
The cryptographic service engine (CSE) modules used
in many automotive MPUs and MCUs including NXP
MPC564xB/C implement the security functions described
in SHE functional specification.

Hardware Security Modules (HSMs): The EVITA [21]
(E-safety Vehicle Intrusion proTected Applications) is a
European Union funded project that has developed a
set of guidelines that detail the design, verification, and
prototyping of security architectures for automotive ECUs.
EVITA has developed three HSMs: full, medium, and light,
for different automotive use cases. These HSM are used as
an extension to the existing automotive MCUs and MPUs
to provide security for in-vehicle networks. Furthermore,
PRESERVE [22] has extended the EVITA project to
develop, implement and test a scalable security subsystem
for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) applications. The security subsystem identifies and
addresses threats in V2X (i.e., V2V and V2I) communication
in future intelligent transportation system (ITS). PRESERVE
has designed an integrated vehicle security architecture
(VSA) to protect data and control information during the
V2X communication between ITS stations.

Trusted Platform Module (TPM): Trusted computing group
(TCG) [23] is a computer industry consortium that released
TPM specification. The TPM specification was standardized
by ISO and International Electrotechnical Commission
(IEC) in 2009 and was published as ISO/IEC 11889.
The TPM supports secure keys for authentication and
encryption functions. The TPM handles cryptographic
operations such as symmetric/asymmetric key generation,
symmetric/asymmetric encryption/decryption, hashing,
and random number generation. The TPM is usually a
microcontroller that securely stores passwords, digital keys,
and certificates that can provide unique identification. The
TPM is implemented either as an external peripheral with
a communication bus to automotive MCU/MPU or as an
embedded portion of another integrated circuit (IC), such as
Ethernet controller.

ARM’s TrustZone: ARM’s TrustZone [24] is a proprietary
specification/guideline to support the development of
secure and safe embedded systems. ARM’s TrustZone [24]
enables system-wide security by incorporating protective
measures into the ARM processor, bus fabric, and
system peripheral intellectual property (IP). The TrustZone
provides isolation between the normal world (operating
system and application layer) and the secure world,
and thus can be used for sensitive operations such as
cryptographic operations, key management, and integrity
checking.

3.2 Dependability
ISO 26262 [1] is a functional safety standard developed for
road vehicles. We clarify that functional safety is a subset of
system dependability. ISO 26262 has introduced automotive
safety integrity levels (ASILs) as a risk classification scheme.
ASILs are modification of safety integrity levels (SILs) used
in IEC 61508 for the automotive industry. ASIL defines
safety requirements that must be implemented in the
design and development phases of the system such that
the system provides sufficient margin of safety for users
(driver, passenger, etc.) even in conditions of failure. ASIL is
established by careful inspection of hazards and risks, and
detailed analysis of severity, exposure, and controllability
of the vehicle’s operational scenario. An ASIL is specified as
one of the four levels: ASIL-A, ASIL-B, ASIL-C, and ASIL-D,
where ASIL-D dictates the highest integrity requirements on
the product/function while ASIL-A stipulates the lowest.
Most of the recent safety-critical MPUs and MCUs fall in
one of the four ASIL grades. The safety and security features
available in some MPUs/MCUs that are used as ECUs in the
automotive system are shown in Table 1.

Automotive electronics council (AEC) is another
organization that sets qualification standards for the
components used in automotive industry. The AEC-Q100
[25] is the automotive standard specification developed by
AEC that dictates failure mechanisms based stress tests for
packaged ICs. The AEC-Q100 labels the qualified products
(ICs) in terms of automotive temperate grades that signify
the capability of the IC to operate correctly within a
specified temperature range. The automotive temperature
grades specified by AEC-Q100 are [25]: grade 0 (-40◦C
to +150◦C), grade 1 (-40◦C to +125◦C), grade 2 (-40◦C
to +105◦C), grade 3 (-40◦C to +85◦C), and grade 4 (0◦C
to +70◦C). Many of the automotive MPUs/MCUs satisfy
AEC-Q100 qualification with a particular grade depending
on the intended usage/application of the MPU/MCU. For
example, grade 0 qualified products should be used for
under the hood automotive applications, where ambient
temperature can rise up to 105◦C to 130◦C or even higher.
Similarly, grade 1 qualified products can be used in chassis
locations not directly exposed to the heat from the engine or
exhaust.

3.3 Deficiencies in Contemporary ECUs
As illustrated in Table 1, security features in MCUs/MPUs
are based on SHE [20] and HSMs from EVITA [21].
The TPM [23] from the TCG is neither designed nor
suitable for automotive CPS as the TPM lacks performance,
robustness and cost-effectiveness desired for automotive
functions. Further TPM does not provide all the required
security features for automotive CPS. Although SHE and
HSM provide all relevant security features, the internal
architecture of SHE and HSM is not FT or dependable. An
error in the operation of these modules makes automotive
CPS vulnerable to security breaches and malfunctions.
Hence, there is a need for developing an approach for
design of automotive CPS that simultaneously integrates
both security and dependability primitives. This work aims
to fill in this gap in the research and development of
automotive CPS and proposes a novel approach (Section 4)
and an ECU architecture based on that approach (Section 5)

5

TABLE 1: An overview of security and dependability features in MCUs/MPUs used as ECUs in modern automobiles.

Vendor Name Processor Name Security Feature Dependability Feature

NXP/Freescale

Qorivva MCUs HSM-based security module ISO 26262 ASIL-C,-D certified

iMX MCU Built-in security core None

Kinetis EA series None Supports ISO 26262/IEC 61508

MPC57xx None ISO 26262 ASIL-D certified

MPC56xx None ISO 26262 ASIL-D certified

S32K144 None ISO 26262 ASIL-B or higher certified

Texas Instruments

DRA746 Jacinto Built-in security module None

Hercules TMS570 Advanced JTAG security module ISO 26262 ASIL-D/IEC 61508 SIL-3 certified

Hercules TMS470M None ISO 26262 ASIL-D certified

TDAx SoC None ISO 26262 ASIL-B certified

STMicroelectronics SPC5 Series SHE and EVITA based security module ISO 26262 ASIL-D,-B certified

Fujitsu ‘Atlas’ MB9DF126 SHE based security module None

Qualcomm Snapdragon Qualcomm Haven security platform None

Atmel
ATSAMV70x/71x Built-in security module AEC Q100 Grade-2 qualification

ATSAMDA1x None AEC Q100 Grade-2 qualification

that simultaneously integrates security and dependability
features in automobiles.

4 SECURE AND DEPENDABLE APPROACH FOR

AUTOMOTIVE CPS
Automotive embedded systems have various design
challenges including resource limitation (e.g., memory,
processing, bandwidth) and applications’ real-time
deadlines. Implementation of security and dependability
primitives and protocol under these constraints provide
limited freedom for the designer. Bounded by these
constraints, we have proposed and designed a novel ECU
architecture in this work that leverages an enhanced version
of a prior secure and dependable automotive approach (by
Munir and Koushanfar [5]), which we refer to as “BD”.
The BD considers CAN as the in-vehicle communication
protocol whereas our enhanced approach (OBD) considers
CAN FD, which is more amenable for safety-critical
automotive CPS applications. Fig. 1 depicts our proposed
secure and dependable approach for automotive CPS
design. The figure shows the operations involved at both
sending and receiving nodes to incorporate security and
dependability primitives. This section first presents the
security threat model against which our proposed approach
provides resilience. We then elaborate the security and
dependability features provided by BD and OBD with
a brief comparison between these two modus operandi.
Finally, we discuss the techniques that we have used to
optimize the BD code to generate the OBD code.

4.1 Security Threat Model
To better illustrate our proposed approach and the
resilience it provides against security vulnerabilities, we
characterize the capabilities of an adversary aiming to
infiltrate automobile’s internal network (e.g., CAN, CAN
FD, FlexRay) to carry out numerous attacks. Modern
automobiles provide a variety of attack surfaces, ranging
from mechanical tools to on-board diagnostics ports
(OBD-II) and from CD players to various short/long
range wireless interfaces (e.g., bluetooth, remote keyless
entry, wireless tire pressure sensors, telematics systems,
global positioning systems, satellite radio, digital radio),
which make automotive systems vulnerable to a broad
range of attacks [8]. For example, an adversary who

has infiltrated an automotive braking system may cause
the driver to completely lose control of his/her vehicle.
Thus, in order to ensure security and safety of passengers
and vehicles, automotive CPS needs to integrate security
and dependability primitives in the design, in particular,
confidentiality, integrity, and authentication [3]. Assuming
that an adversary has gained access to the automotive
internal network, this section summarizes the threat model
against which our proposed approach provides resilience.

Threat 1—Passive Eavesdropping & Traffic Analysis →

Need for Confidentiality: Passive attacks come in two
flavours: passive eavesdropping or monitoring and traffic
analysis. In passive eavesdropping, an adversary can
sniff and store transmission of messages from one ECU
to another over in-vehicle networks. If the transmitted
messages are not encrypted, then an adversary can easily
extract information from the eavesdropped messages to
launch further attacks. The attacker can further garner
additional valuable information by performing traffic
analysis on the eavesdropped messages. For instance, for
the x-by-wire systems, if an adversary is aware of the
initial location of the vehicle, then, by eavesdropping and
traffic analysis of the steering angle, accelerator, and braking
values, the adversary can be able to trace the car which may
put the passengers and driver of the vehicle at risk [3].

If the transmitted messages on an in-vehicle network are
secured by some encryption mechanism, it makes traffic
analysis attacks difficult to perform albeit an adversary
can still obtain partial or complete information from the
messages. Moreover, an adversary can have the ability
to request generation of encrypted messages from ECUs
and thus knowledge of the plain-text can be used to
determine the encryption key, decrypt complete packets, or
obtain other valuable information through traffic analysis.
The traffic analysis on encrypted messages can enable
an attacker to determine the location and identity of
communicating hosts (ECUs in car) and to observe the
frequency and length of messages being exchanged that
can provide insights into the function implemented by the
ECU (e.g., transmission control). Nevertheless, encryption
of messages greatly limit traffic analysis attacks. Thus, it is
imperative for OEMs to provide confidentiality of messages
and data over in-vehicle networks to safeguard operational

6

 Multicore ECU

Sending CAN FD Node

FT-RMT/FT-RMT-QED

CT (128-bit)

HMAC
(256-bit)

Concatenate

and

Format
SHA-3-based HMAC

[HMACS(M)]

Message M

AES
Encryption

Receiving CAN FD Node

Multicore ECU

Message M

FT-RMT/FT-RMT-QED

M's Integrity
con�rmed

M has lost
Integrity≠

=

SHA-3-based HMAC
[HMACS(M)]

AES
Decryption

ComparatorFormatting of
Payload

CT
(128-bit)

(256-bit)

HMAC

 FT-RMT : Fault-Tolerance by RMT

 FT-RMT-QED : Fault-Tolerance by RMT
 with QED

 RMT : Redundant Multi-Threading

 SHA-3 : Secure Hash Algorithm-3

CT : Cipher-Text from encryption

HMAC : Hash-Based Message
 Authentication Code

CAN FD : Controller Area Network
 with Flexible Data

QED : Quick Error Detection

Fig. 1: Secure and Dependable Approach for Automotive CPS Design.

security, privacy, and consumer trust.

Threat 2—Active Eavesdropping & Message Injection →

Need for authentication and integrity: Active attacks
involve active eavesdropping where an adversary can
modify the message content or create a false stream of
messages. Active attacks can be further classified into four
categories: masquerade attack, replay attack, modification
of messages, and denial of service. A masquerade attack
takes place when an unauthorized entity impersonates an
authorized entity in the network. This can happen when
an unauthorized entity captures authentication sequences
and then replay the captured authentication responses after
some time to gain authentication in the network. In the
automotive CPS scenario, the attacker can cause a malicious
ECU to masquerade as a genuine ECU to gain access
to the network and participate in communication with
other ECUs. A replay attack involves the passive capture
of the messages and its subsequent retransmission either
to gain unauthorized access or cause abnormal operation
of automotive CPS, which may result in vehicle crash.
In message modification attack, the adversary modifies the
message(s) transmitted on in-vehicle network and can
take various forms, such as altering a legitimate message,
injecting a malicious message, delaying the transmission of
messages, and/or reordering the transmission of messages,
to produce a malicious effect. Finally, denial of service
attack inhibits the normal usage or management of an
in-vehicle network by authorized entities. An attacker
can accomplish the denial of service attack by various
means, such as overwhelming the in-vehicle network with
malicious messages, compromising the vehicle ECUs, etc.

In automotive CPS, an adversary can launch active
attacks by various means such as by attaching his/her
own device or compromising a valid user device (e.g., a
cell phone attached to the infotainment system) in order
to transmit fraudulent (or malicious) requests (commands,
codes, or messages) in the system [3]. Similarly, malicious
messages can be injected by the adversary by encoding
the messages on a CD as a song or video file and
then manipulating the user to play that song by social
engineering.

Since majority of the contemporary automotive systems
do not incorporate the security attributes, threat 1 and
threat 2 are possible. The vulnerabilities caused by these
threats include infringement on confidentiality, integrity,
and authentication of the messages disseminated on
in-vehicle networks. By exploiting theses vulnerabilities,
an adversary can potentially be able to circumvent most

of the safety-critical automotive systems while completely
ignoring the driver’s input.

4.2 Security
To countermeasure the possible attacks mentioned in
Section 4.1, our proposed approach (Fig. 1) integrates
confidentiality, integrity, and authentication in automotive
CPS with CAN FD as the vehicular network. However,
our proposed OBD approach, as shown in Fig. 1, is
“encrypt-and-MAC” as compared to “MAC-then-encrypt”
approach of BD [5]. Encrypt-and-MAC provides comparable
security to MAC-then-encrypt, however, encrypt-and-MAC
has lesser computation time and computation overhead
than MAC-then-encrypt. The BD [5] uses 128-bit
advanced encryption standard (AES-128) for integrating
confidentiality and SHA-2/SHA-256 based HMAC for
integrating message integrity and authentication. Our
approach reinforces the BD security by replacing SHA-2
based HMAC with SHA-3 based HMAC. Furthermore, the
OBD is made resistant to masquerade and replay attacks by
embedding a 64-bit counter value to the original message.
The input to the AES and the HMAC module is 128-bit
message where the first 64-bit is the original message and
the second 64-bit is the counter value.

Our proposed OBD approach (Fig. 1) requires only
one HMAC computation and one AES-128 encryption
of the original message as compared to three AES-128
encryptions and one HMAC computation in the BD. In our
“encrypt-and-MAC” approach, the HMAC of the message is
not encrypted because the HMAC is collision resistant, and
is computed with a secure secret key that is only known
to the legitimate sender and the receiver nodes. The output
of the HMAC computation (256-bit message digest) and the
AES-128 encryption (128-bit ciphertext) are concatenated to
generate a 384-bit (48-bytes) message. The sending node
then transmit the 384-bit concatenated message to the
receiver node via the CAN FD bus. The payload size of the
CAN FD bus is 64 bytes so it is able to transfer 48 bytes of the
message in one cycle. Hence, our enhanced approach saves
two AES-128 computations at the sender node and speeds
up CAN data transfer by 6× as the BD approach using
CAN required six CAN messages to transmit the encrypted
message and hash (the maximum payload size of the CAN
message is 8 bytes [26]). We clarify that the data transfer
speedup of OBD over BD is due to the larger payload size
(64 bytes) of CAN FD as compared to the CAN payload size
of 8 bytes although the combined encrypted and MAC-ed
message size for both BD and OBD is 384 bits (48 bytes).

7

Eq. (1) summarizes the time required by the operations
at the sender CAN FD node to incorporate the security
primitives for the message.

T S
(M‖C) = THMAC[(M‖C),K1] + TE[(M‖C),K2]

+ Tformat, (1)

where C represents the 64-bit counter, T S
(M‖C) represents

the time required at the sender CAN FD node to add
security primitives to the message concatenated with the
counter (M‖C), THMAC[(M‖C),K1] denotes the time needed
to compute the HMAC of the message concatenated with
the counter (M‖C) using secret key K1, TE[(M‖C),K2]

designates the time required to compute AES encryption
of the message concatenated with the counter (M‖C) using
secret key K2, and Tformat symbolizes the time needed to
concatenate and format the sending CAN FD node message.

Eq. (2) captures the time required at the receiver CAN
FD node to regenerate the original message and to check
the integrity of the received message.

T R
(CT ‖MAC) = Tformat + TD[CT ,K2] + THMAC[(M‖C),K1]

+ Tcmp, (2)

where T R
(CT ‖MAC) designates the time required to recover

the original message from the received message at the
receiver node, Tformat symbolizes the time needed to format
the received CAN FD payload, TD[CT ,K2] denotes the time
required to perform AES decryption of the ciphertext CT
using secret key K2, THMAC[(M‖C),K1] represents the time
needed to compute HMAC of the decrypted ciphertext
concatenated with the counter CT (or (M‖C)) using secret
key K1, and Tcmp designates the time required to compare
the HMAC calculated from the decrypted ciphertext and the
received HMAC from the sender.

4.3 Dependability
Both the BD and OBD uses FT to provide dependability
to the automotive CPS. The scope of our FT approach is
confined to error detection and correction for dependability.
The BD and OBD uses two types of FT: FT by
redundant multi-threading (FT-RMT) and FT by redundant
multi-threading and quick error detection (FT-RMT-QED).
The FT-RMT approach leverages RMT on a dual-core
architecture. The RMT uses two threads, a master thread
and a normal thread, to execute the same (safety-critical)
computation. At the end of the computation, the results
obtained from the two threads are compared to detect
an error in the calculation. If there is an error then
recomputation is carried out on both the threads to expunge
the computation error. Most of the time recomputation
rectifies errors because soft errors, which are caused by
transient faults, constitute a majority of errors in the
computation. The FT-RMT-QED enhances FT-RMT with
QED [27] by inserting check instructions at different
points in the master thread. When an error is detected
earlier by FT-RMT-QED rather than at the end of the
computation, the erroneous computation is aborted, and
the computation is restarted to obtain an error-free result
[5]. This early detection of errors by FT-RMT-QED helps in
better adherence to the real-time deadlines of automotive
CPS in the presence of faults and permits tolerance of

more soft errors by allowing more recomputations in
the slack time determined by the real-time constraints
[3]. The FT techniques employed by BD and OBD can
tolerate one permanent fault and multiple soft errors
(by recomputations), and therefore adhere to the safety
requirement of ISO 26262 standard [1].

4.4 Baseline Design Code Optimization
Although cryptographic primitives (eg., AES, HMAC)
are specified in terms of functionality, the optimum
performance of these cryptographic primitives on a given
architecture can only be attained by optimizing the code
for the underlying architecture. In this work, we focus on
the optimization of cryptographic primitives on ARM cores
(specifically automotive grade), which are widely used in
embedded industry.

Several efficient software implementations of AES-128
and SHA-3 are available in literature [28], [29], [30],
[31], [32]. We have studied these implementations and
have designed efficient algorithms for AES and SHA-3
computations for our proposed OBD approach. Since
our implementation is targeted for 32-bit ARM platform,
we have incorporated optimization strategies such as
loop-unrolling, cache-aware programming, alignment of
data structures to cache line boundaries in memory, use
of 32-bit data types only, and all of the efficient coding
strategies mentioned in [33] in our implementation. These
optimizations have enabled us to obtain a considerable
speed up in the execution time of OBD as compared to the
code used in BD.

5 PROPOSED SECURE AND DEPENDABLE ECU
ARCHITECTURE
As illustrated in Section 3, many of the contemporary
MCUs/MPUs utilized as ECUs in automotive CPS do
not simultaneously integrate security and dependability
primitives in the design. Although SHE and HSM standards
are widely being adopted by automotive industry, the
internal architecture of SHE and HSM is not FT, and
hence errors in the operation of these SHE and HSM
based modules make automobiles vulnerable to malfunction
and security breaches. In this section, we propose a novel
ECU architecture that aims to alleviate the deficiencies in
contemporary ECUs by simultaneously integrating security
and dependability primitives in a robust and flexible
manner. We first provide an overview of the proposed ECU
architecture followed by the description of its operation.
We then elaborate the dependability and security features
incorporated by our proposed ECU architecture.

5.1 Architecture Overview
Fig. 2 depicts the overview of our proposed ECU
architecture. This architecture is inspired by Xilinx
Zynq-7000 system-on-chip (SoC) [34]. Our proposed ECU
architecture has two programmable parts: an ARM based
application processor or real-time processor (AP/RTP) and
an FPGA based programmable logic fabric (PLF). The
AP/RTP implements the automotive function’s (e.g., SBW)
control algorithms. The type of AP/RTP used depends
on the automotive function and the corresponding control
algorithm to be executed. The FPGA-based PLF implements
cryptographic functionality (i.e., cryptographic algorithms

8

FPGA Based Programmable Logic Fabric

Crypto Algorithm Implementation

ARM Based Application Processor

Control Algorithm Implementation

External Communication Interface

Internal Communication Interface

Fig. 2: High level architecture of proposed ECU.

and protocols) for secure on-board communication and
authentication. The AP/RTP and the PLF are connected by
a high speed communication interface.

Our proposed ECU architecture provides a multitude
of benefits. First, the PLF implements an FT cryptographic
module (CM) as shown in Fig. 3. The FT is realized by using
dynamic partial self-reconfiguration. Second, the PLF is a
suitable platform for implementing real-time constrained
compute-intensive algorithms, such as audio, video, image
processing, and machine learning algorithms. The PLF
can be extended to implement these compute-intensive
algorithms without incurring extra cost. To add new
applications on top of the CM, the designer simply needs
to write a hardware descriptive language (HDL) module
for the new application, and then embed this module with
the CM by modifying the bitstream in the PLF. Third,
the internal communication interface between the ECU’s
AP/RTP and PLF is inherently secure since the AP/RTP
and the PLF are connected by the internal bus, which is not
accessible to an attacker.

5.2 ECU Operation
At the sender node, during normal non-faulty state, the
input message is read by two AES encryption and two
SHA-3 based HMAC modules depicted on the left and the
right part in Fig. 3. The spare modules (designated by * in
figure) do not read the input message because the spare
modules are disabled by the self-checking fault handler
(SCFH) module. The outputs of the two AES encryption and
the two SHA-3 based HMAC modules are fed to two input
interfaces, which route these outputs to the comparators
in triple modular redundancy (TMR). The comparators
generate the comparison outputs, which are then fed to
the self-checking voter (SCV). The SCV is a majority voter,
which is designed based on totally self-checking (TSC)
Berger code. In case of a fault, the SCV can flag itself as
a faulty unit to the SCFH. The output of the SCV is then
passed to the SCFH. The SCFH generates all the necessary
control signals (omitted in figure for conciseness) for the
operation of the FT CM. Additionally, SCFH has a small
buffer that stores the results of recent computations of all
the modules in the FT CM.

If there is no error in the AES and HMAC computations,
then the SCFH concatenates the HMAC to the AES
encrypted message and sends the concatenated message
to the AP/RTP via a high speed internal bus, which then

transmits the message to the receiver ECU through CAN
FD bus. If there is a fault in the AES and/or HMAC
computation, then the fault detection and recovery is done
by Algorithm 1. The algorithm takes the input as modules
in dual modular redundancy (DMR) and spare modules.
The modules in DMR M1 and M2 are operational during
non-faulty state while the spare modules MS become
operational during the faulty state. The output of the
algorithm is successful reconfiguration of faulty modules.

Algorithm 1 works as follows. First, to detect an error
in the computation, the outputs of the two modules
in DMR are compared. If there is a mismatch in the
output, recomputation is done in both the modules using
previous input for which there was an error (lines 1 – 3).
If the recomputation yields the same output in the two
modules, the ciphertext produced by AES ENCRYPTION
module (Fig. 3) and the message digest produced by SHA-3
BASED HMAC module (Fig. 3) are concatenated and
sent to the receiver CAN FD node. The CM returns
to non-faulty mode (lines 9 – 10). However, if the first
recomputation does not correct the error, the algorithm tries
up to NUM SOFT ERR recomputations (lines 4 – 5), where
NUM SOFT ERR is a threshold set on permissible error
corrections by recomputations, which can be calculated
based on the slack time (slack time can be determined from
the real-time constraints of the application) [3]. Eq. (9) (given
in Section 6.2) can help in the determination of a suitable
NUM SOFT ERR threshold value. If recomputations fail to
rectify the fault, both of the suspected faulty modules are
deactivated, and the spare modules are activated for AES
and HMAC computation (lines 11 – 13) because it is not
feasible to correct the error with DRM and further it is not
possible with DMR to discern which of the two suspected
faulty modules is actually faulty.

Lines 13 – 30 in Algorithm 1 shows the localization
and fault recovery of the faulty modules. Here, the spare
modules compute AES and HMAC with the previous input
and the result is routed to SCFH via the input interface.
The SCFH compares this new output with the output
in buffer from the previous computation to identify the
faulty module. Finally, the SCFH signals the reconfiguration
subsystem to partially reconfigure the faulty module. If
both of the modules in the DMR configuration are faulty,
then both the modules are reconfigured while the system
continues operation with the spare modules until the
reconfiguration is completed. However, if only one of the
modules is faulty in the original DMR configuration, then
the non-faulty and the spare modules start operating in
DMR. The rationale for using the spare modules in the new
DMR configuration is that the reconfiguration takes longer
time (in order of tens of millisecond) and the CM must be
functional during that reconfiguration period for fulfilling
the security and dependability requirements of automotive
CPS.

Similar operations are performed by the proposed ECU
architecture at the receiver CAN FD node and are further
explained in Section 5.3 and Section 5.4.

5.3 Dependability
The dependability requirements of automotive CPS as
stipulated by ISO 26262 [1] can be met by designing a FT

9

SENDER CAN FD NODE

CONTROL ALGORITHM EXECUTION

H
IG

H
 S

P
E

E
D

IN
T

E
R

N
A

L
 B

U
S

SELF-CHECKING FAULT

HANDLER

SELF-CHECKING

VOTER

SECURE PAYLOAD

TO CAN FD BUS

COMPARATOR

COMPARATOR

COMPARATOR

IN
P

U
T

 I
N

T
E

R
F

A
C

E

IN
P

U
T

 I
N

T
E

R
F

A
C

E

AES

ENCRYPTION

SHA-3 BASED

HMAC

AES

ENCRYPTION
*

AES

ENCRYPTION

SHA-3 BASED

HMAC

*

SHA-3 BASED

HMAC

INPUT MESSAGE

CONFIGURATION

ENGINE

FPGA

CONFIGURATION

MEMORY

ICAP DESIGN

RECONFIGURABLE

SUB-SYSTEM

PLF

AP/RTP

CAN FD

CONTROLLER

RECEIVER CAN FD NODE

COMPARATOR

COMPARATOR

COMPARATOR

SECURE PAYLOAD

FROM CAN FD BUS

SELF-CHECKING

VOTER

INPUT MESSAGE

OF SENDER
SELF-CHECKING FAULT

HANDLER

AES

DECRYPTION
*

AES

DECRYPTION

SHA-3 BASED

HMAC

*

SHA-3 BASED

HMAC

SHA-3 BASED

HMAC

AES

DECRYPTION

IN
P

U
T

 I
N

T
E

R
F

A
C

E

IN
P

U
T

 I
N

T
E

R
F

A
C

E

FORMAT CAN FD MESSAGE AND DISTRIBUTE

CONFIGURATION

ENGINE

FPGA

CONFIGURATION

MEMORY

ICAP DESIGN

RECONFIGURABLE

SUB-SYSTEM

CAN FD

CONTROLLER

CAN FD INTERFACE

CONTROL ALGORITHM EXECUTION

AP/RTP

PLF

H
IG

H
 S

P
E

E
D

 I
N

T
E

R
N

A
L

 B
U

S

C
A

N
 F

D
 B

U
S

CAN FD INTERFACE

Fig. 3: Internal architecture of the secure and dependable cryptographic module (FT CM) implemented in PLF of the
proposed ECU.

Algorithm 1: Fault recovery in proposed ECU.

Input : modules in DMR (M1 and M2) and spare
modules MS

Output: reconfiguration of faulty module(s)
Data: count = 1, NUM SOFT ERR = nse

1 if (Op(M1) 6= Op(M2)) then
// Op(Mi): output of module Mi

2 count← count+ 1
3 RecomputeAES HMAC(M1,M2, previousInputs)
4 if (count < NUM SOFT ERR) then
5 Goto Line 1
6 else
7 Goto Line 11

8 else
9 Concatenate(cipherT ext,messageDigest)

10 SwitchMode(NonFaulty)

11 DeactivateModule(M1,M2)
12 ActivateModule(MS)
13 ComputeAESHMAC(MS)
14 if (Op(MS) 6= Op(M1) && Op(MS) = Op(M2)) then
15 faultyModule←M1

16 ActivateModule(M2)
17 ReconfigureModule(M1)
18 SwitchMode(NonFaulty)

19 if (Op(MS) 6= Op(M2) && Op(MS) = Op(M1)) then
20 faultyModule←M2

21 ActivateModule(M1)
22 ReconfigureModule(M2)
23 SwitchMode(NonFaulty)

24 if (Op(MS) 6= Op(M1) && Op(MS) 6= Op(M2)) then
25 faultyModule←M1 and M1

26 ReconfigureModule(M1, M2)
27 SwitchMode(NonFaulty)

CM. The main dependability features of the proposed FT
CM in our design (Fig. 3) include:

1) DMR with extra spare modules (marked by *
in Fig. 3) (one for AES and one for HMAC
computation)

2) Berger code based totally self-checking
combinational circuit [35]

3) Partial reconfiguration feature of Xilinx Automotive
Spartan-6 FPGA [36].

The first FT attribute of our proposed system is
DMR. DMR is a FT technique that uses two redundant
modules to help detect the computation error(s) by
comparing the outputs of the two modules. However,
one potential shortcoming of DMR based FT is that the
technique cannot identify (localize) the faulty module
among the two operating modules. In order to resolve
this identification/localization issue, our proposed ECU
uses spare modules (one for AES and one for HMAC
computation) which are activated only during the faulty
state to detect and identify the faulty module(s). The
activation of the spare modules only during the faulty
state and not in the normal correct operation helps to
improve energy efficiency of the automotive system. The
fault detection and recovery is shown in Algorithm 1 and is
thoroughly explained in Section 5.2.

The second FT feature incorporated in our proposed
ECU is TSC. The TSCs are a class of circuits in which the
occurrence of fault can be detected by observing the circuit
output. A TSC consists of a functional circuit whose output
words belong to a certain code (Berger code in our case), and
a checker that monitors the output of the functional circuit
to detect fault(s) in the circuit. The reliability of the circuit
depends on the ability of its checker to behave correctly
despite the possible occurrence of internal fault(s).

The final FT feature incorporated by our proposed ECU
for fault recovery is partial reconfiguration (PR) of PLF.
Our proposed ECU architecture heals the faulty modules by

10

exploiting the PR technology as discussed in the following.
Reconfigurability means the capability of programmable
hardware devices, such as FPGA, to change a customized
design by loading different bitstreams. A more advanced
reconfiguration technology is PR where a subset of FPGA
operational logic is modified by downloading a partial
configuration file/bitstream. Typically, PR is achieved by
overwriting the current design in the FPGA configuration
memory with the partial bitstream of the new design. Xilinx
FPGAs provide a dedicated internal configuration access
port (ICAP) that directly interfaces to the configuration
memory and accesses it. We use LogiCORE IP (Intellectual
Property) XPS (Xilinx Platform Studio) HWICAP (Hardware
ICAP) [37] to perform dynamic PR. The XPS HWICAP IP
enables MicroBlaze processor as configuration engine to
read and write the FPGA configuration memory through
the ICAP at run time and perform the PR.

5.4 Security
The proposed ECU architecture integrates confidentiality,
integrity, and authentication in automotive CPS. The CM
provides three security services: message confidentiality,
message integrity, and ECU authentication. We leverage
AES-128 (128-bit) encryption to provide confidentiality
and SHA-3 based HMAC for authentication and message
integrity. Eq. (3) gives the time taken to embed the security
primitive to the CAN FD message at the sender node during
the non-faulty state of operation.

T S
(M‖C) = T

S
cmp + T

S
SCV + T S

SCFH+
∨

(

THMAC[(M‖C),K1], TE[(M‖C),K2]

)

, (3)

where C represents the 64-bit counter, (M‖C) represents
the concatenation of message and the 64-bit counter,

∨

(. , .)
represents a function that selects larger of the two execution
times, THMAC[(M‖C),K1] represents the time to compute
HMAC of message (M‖C), TE[(M‖C),K2] designates the time
to compute AES of message (M‖C), T S

cmp designates the
time to compare the outputs of redundant AES and HAMC
computation modules at the sender node, T S

SCV represents
the time taken by the SCV module to perform the voting
decision at the sender node, and T S

SCFH designates the time
required by SCFH at the sender node to check the voting
decision of SCV and to format the CAN FD message so that
the message is ready to be sent to the AP/RTP.

The worst case time for embedding the security
primitives to the CAN FD message is given by Eq. (4). The
worst case time is the sum of the time to detect the error(s)
in computation plus the time to recompute the results using
spare modules plus the time to locate the fault. The time
to detect error(s) in computation is given by Eq. (3). The
time to recompute the results using spare modules is given
by

∨

(., .) term in Eq. (4) and time to locate the fault is the
execution time of SCV and SCFH.

T SWC

(M‖C) = T
S
(M‖C) + T

S
SCFH∗

+
∨

(

T ∗
HMAC[(M‖C),K1]

, T ∗
E[(M‖C),K2]

)

, (4)

where T SWC

(M‖C) represents the worst case time to integrate the

security primitives in (M‖C), T S
(M‖C) represents the time

required to incorporate security primitives during normal

operation (i.e., without invocation of spare modules) which
can be considered as the time to detect the computation
error that is uncorrectable by recomputations in the DMR
modules, and T S

SCFH∗ designates the time required by the
SCFH module to identify the faulty module and to activate
the reconfiguration subsystem at the sending node.

At the receiver node, first, the CAN FD message is
formatted to separate the AES ciphertext and the HMAC.
Then, the ciphertext is decrypted by the AES decryption
module to generate the original message. The original
message (obtained from decryption of the ciphertext)
is sent to the HMAC computing module and to the
comparators via the input interface. The three comparators
independently compare the AES decryption results and
the outputs of the comparators are fed to the SCV, which
then informs its voting decision to the SCFH. During the
operation of the comparators and the SCV, the SHA-3
based HMAC module generates the local HMAC in parallel.
Since the comparators and the SCV are faster than the
SHA-3 based HMAC module by orders of magnitude,
correctness check for AES decryption, and local HMAC
calculation can be done in parallel without any conflict.
However, this parallel operation incurs some additional
signalling overhead on the SCFH. If there is no error in AES
decryption, then correctness of local HMAC is assessed after
the local HMAC calculation. The FT operation to heal the
faulty module is similar at both the sender and the receiver
nodes.

Eq. (5) represents the time needed by the receiver to
recover the original message with integrity checking. This
time is the sum of the time to format the received CAN FD
message plus the time to generate the original message sent
by the sender node via decryption plus the time to check
the integrity of the message by recomputing the HMAC of
the recovered original message and comparing the received
HMAC with the computed HMAC.

T R
(CT ‖MAC) = Tformat + TD[CT ,K2] + THMAC[(M‖C),K1]

+ T R
cmp + T

R
SCV + T R

SCFH , (5)

where Tformat is the time to separate the received CAN
FD message into the ciphertext CT and MAC, TD[CT ,K2]

is the time to decrypt the ciphertext CT using secret key
K2; THMAC[(M‖C),K1] designates the time to compute the
HMAC of the decrypted ciphertext; and T R

cmp, T R
SCV , and

T R
SCFH represent the time taken by comparators, SCV, and

SCFH, respectively, at the receiver node.
The worst case time to recover the original message with

integrity checking at the receiver node T RWC

(CT ‖MAC) is given
by Eq. (6).

T RWC

(CT ‖MAC) = T
R
(CT ‖MAC)+T

∗
D[CT ,K2]

+T ∗
HMAC[(M‖C),K1]

+ T R
SCFH∗ , (6)

where T R
(CT ‖MAC) represents the time required by the

receiver to recover the original message with integrity
checking during normal operation (i.e., without invocation
of the spare modules), which can be considered equivalent
to the time to detect the computation error that is
uncorrectable by recomputations in the DMR modules,
T ∗
D[CT ,K2]

is the time to compute AES decryption by the

11

spare module after the error is detected, T ∗
HMAC[(M‖C),K1]

is the time to compute HMAC from the decrypted ciphertext
by the spare module, and T R

SCFH∗ is the time taken by the
SCFH module to identify the faulty module and to activate
the reconfiguration subsystem at the receiver node.

Our proposed approach assumes that the initial AES and
HMAC keys are stored in secure tamper resistant memories
of ECUs by OEMs. Moreover, these keys are refreshed
deterministically over time by the participating ECUs.
Our proposed ECU architecture and the security approach
provides resilience against the security threat model
described in Section 4.1. Our security approach is resilient
to threat 1 because a passive adversary may eavesdrop
on traffic but the adversary cannot decrypt the messages
without the knowledge of the secret key. Our approach
is resilient against threat 2 because SHA-3 based HMAC
with a 128-bit counter value embedded in the ciphertext
prevents from the insertion of forged messages, prohibits
message modification, and also precludes masquerade and
replay attacks. This is possible because there are no known
brute-force and analytical attacks against AES and SHA-3
based HMAC computations.

6 STEER-BY-WIRE SYSTEM
A SBW system replaces heavy mechanical steering column
with an electronic system, which reduces the vehicle weight
and eliminates the risk of steering column entering into
the cockpit in the event of a car crash. However, these
benefits come with the stringent real-time performance
and reliability requirements for SBW system. This section
elaborates a SBW system that we use as a case study for this
work.

6.1 Steer-by-Wire Operational Architecture
In order to successfully replace the conventional steering
column, a SBW system needs to provide two main services:
front axle control (FAC) and hand-wheel (HW) force
feedback (HWF). The SBW architecture used in our study
is depicted in Fig. 4. For this study, we focus only on
the front axle control part to compute the response time
and error resilience of our proposed approaches (illustrated
in Section 4). The FT in the SBW system is furnished
via redundancy at ECU-, sensor-, and actuator-level. The
sensors are connected to ECUs via point-to-point links while
ECU-to-ECU communication is accomplished through CAN
FD bus. The operation of the SBW system is similar as in our
prior work [5], hence we omit the details here for brevity.
However, the SBW system uses multicore ECUs for BD and
OBD, and uses our proposed ECU architecture for EAF.
Furthermore, the ECU-to-ECU communication is carried out
via CAN FD bus instead of CAN bus to enable high-speed
data transfer.

6.2 QoS and Behavioral Reliability
The delay between the driver’s request at HW and the
response at FAA has significant impact on the reliability of
SBW system. This end-to-end delay/response time (Tres)
is regarded as a performance (QoS) measure, however,
this response time also becomes a reliability measure
that impacts safety and availability if this time exceeds
a critical threshold value, Tmax. This Tmax is determined
by automotive OEMs. The probability that the worst case

ECU: Electronic Control Unit (multicore or proposed architecture)

FAA: Front Axle Actuator

Point-to-Point Link Bus

CAN FD Bus

TMR: Triple Modular Redundancy

Front Axle Sensors

in TMR

Front Axle Control HW Force Feedback

Hand Wheel

(HW)

HW

Motor 1

HW

Motor 2
hws1 hws2 hws3

HW Sensors in TMR

FAA

Motor 1

FAA

Motor 2

FAA ECU1 FAA ECU2

fas1 fas2 fas3

HW ECU2HW ECU1

Fig. 4: SBW operational architecture.

response time is less than the critical threshold is termed as
behavioural reliability. The vehicle’s performance and stability
is measured in terms of a QoS score, S, and there exists a
linear relationship between S and Tres for instantaneous
rotation of HW. According to Wilwert et al. [4], for a
minimum tolerable S of 11.13, the critical limit Tmax for the
response time is 11.5 ms, beyond which the vehicle becomes
unstable and the safety of driver can be at risk.

In the following, we analytically model the response
time and the error resilience provided by our proposed
approaches (elaborated in Section 4) for the SBW system
subject to the timing constraints imposed by the critical
threshold. We consider the FAC part of the SBW system
for our analytical modeling. The end-to-end delay/response
time is modeled as the sum of pure delay (Dp), mechatronic
delay (Dmech), and sensing delay (Dsens), that is,

Tres = Dp +Dmech +Dsens. (7)

The pure delay comprises of ECUs’ computational delay
for processing the control algorithm and the transmission
delay to send the messages from the sending node to the
receiving node including bus arbitration. For our secure
and dependable architecture, pure delay also includes
the computational delay of executing the security and
dependability primitives. Since Dmech and Dsens can be
upper bounded by a constant value (3.5 ms [38]), we
focus on pure delay for our reliability and error resilience
analysis. The pure delay has the critical limit Dmax

p of
8 ms corresponding to Tmax of 11.5 ms. The behavioural
reliability can be modeled as PBR = P [Dwc

p < Dmax
p],

where Dwc
p is the worst case Dp and PBR is the behavioural

reliability. The pure delay for the FAC function can be
written as

DFAC
p = Decu1

hw +Dchannel
can fd +Decu1

faa , (8)

where Decu1
hw and Decu1

faa represent the computation time

at HW ECU1 and FAA ECU1, respectively, and Dchannel
can fd

denotes the time that CAN FD bus takes to transport a
message from HW ECU1 to FAA ECU1. The worst case pure
delay Dwc

p can be modeled as

Dwc
p = rcc1 · Decu1

hw + rtc · Dchannel
can fd + rcc2 · Decu1

faa ,

∀ rcc1, rcc2, rtc ∈ Z
+, (9)

12

where rcc1 and rcc2 represent the number of computations
(including recomputations) bounded by NUM SOFT ERR
threshold (plus the computations done by the spare
modules in case of EAF) (refer Algorithm 1) that need
to be done at HW ECU1 and FAA ECU1, respectively,
to yield an error-free result, rtc represents the number
of transmissions (including retransmissions) that needs to
be done for error-free sending of a secure message over
CAN FD bus, and Z

+ denotes the set of positive integers.
Eq. (9) helps to analyze the number of computations
(including recomputations) and transmissions (including
retransmissions) that are allowed within the real-time
budget of automotive CPS application, that is, the constraint
Dwc

p ≤ Dmax
p needs to be satisfied to ensure that the

real-time constraints of the automotive CPS application are
not violated. We have used this constraint (Dwc

p ≤ Dmax
p)

to determine the number of maximum tolerable errors in
Section 7.

7 RESULTS
In this section, we present our experimental setup and
evaluation results comprising of timing analysis, energy
analysis, QoS and behavioral reliability, and feasibility
analysis.

7.1 Experimental Setup
Multicore-based ECU Design Implementation: We have
implemented both the BD and the OBD (Section 4) on
NXP quad-core iMX6Q SABRE development board [39],
which has ARM Cortex-A9 CPU core. The 32-bit Cortex-A9
processor runs Ubuntu 14.04.4 LTS at 396 MHz clock
speed. The security primitives are coded in C. OpenMP
is used to provide RMT-based FT on the multicore
architecture. The OBD exploits efficient coding strategies for
32-bit ARM platform, such as loop-unrolling, cache-aware
programming, alignment of data structures to cache line
boundaries in memory, and the use of 32-bit data type only
to attain better performance.

Proposed ECU Design Implementation: Our proposed ECU
architecture has both the AP/RTP and the PLF. We have
implemented the security primitives in the PLF, which is
realized by Xilinx automotive grade Spartan-6 FPGA [40].
The proposed ECU architecture (Fig. 3) is coded in Verilog
HDL using Xilinx ISE 14.7 and the functional verification
is done using ModelSim. The post-place and route simulation
model is generated using Xilinx ISE 14.7. We have run the
simulation model in ModelSim to get the execution times.
We have used this procedure to get an accurate estimation
of the real-world execution time on the board. The total
power consumption (both static and dynamic) is obtained
via XPower Analyzer that comes with the Xilinx ISE 14.7. We
have used the power and execution time values to compute
the energy consumption of the EAF.

Vector CANoe based Setup: We have simulated the SBW
system (Fig. 4) in Vector CANoe 8.5 [41] with CAN FD
bus set to 48-byte payload, 1 Mbps arbitration-phase
baud rate, and 3 Mbps data-phase baud rate. We have
used CAPL (CAN Access Programming Language) to
implement the SBW functions on ECUs. Since we have
also compared the performance of our proposed secure and
dependable approach over other in-vehicle networks (CAN

and FlexRay), we have set the following parameters for
CAN and FlexRay [42]: CAN settings: baud rate = 1 Mbps,
payload size = 8-bytes; FlexRay setting: mixed mode of
operation, baud rate = 10 Mbps, payload size = 254-byte.
We have used CAPL [43] (CAN Access Programming
Language) to implement the SBW functions on ECUs.

Operational Parameters: For the SBW system, we have
assumed the steering wheel sensor sampling rate to be
fixed at 420 Hz, that is, Dsens = 2.38 ms (an estimate of
Dsens since Dmech plus Dsens can be upper bounded by
3.5 ms [38]). For multicore based SBW system, the ECU
operates at 396 MHz clock. The operational current is
calculated as 36 mA and the operational voltage as 1.42 V .
For our proposed ECU architecture, the PLF, XA Spartan-6
FPGA, operates at 50 MHz clock while running the CM.

7.2 Evaluation Results

Timing Analysis: Table 2 depicts the timing performance
of BD, OBD, and EAF. The results show that for NFT
operational mode, OBD is 1.36× and 1.27× faster than BD
at the sender and the receiver nodes, respectively. Results
reveal that for FT-RMT, OBD has a speedup of 1.98×
and 1.97× over BD at the sender and the receiver nodes,
respectively. Finally, for FT-RMT-QED mode, OBD attains a
speedup of 1.88× and 1.67× over BD at the sender and the
receiver nodes, respectively.

Comparison of BD and EAF reveals that NFT EAF is
52.45× and 26.11× faster than NFT BD at the sender and the
receiver nodes, respectively. Furthermore, after embedding
FT in BD by FT-RMT and in FPGA by FT-SR-DMR (fault
tolerance using self-reconfiguration in DMR), EAF is 62.94×
and 37.72× superior than BD at the sender and the receiver
nodes, respectively. Lastly, EAF with FT-SR-DMR provides
a speedup of 90.19× and 46.75× over BD in FT-RMT-QED
mode at the sender and the receiver nodes, respectively.

Comparison of EAF and OBD shows that NFT EAF
is faster than NFT OBD by 38.57× and 20.44× at the
sender and the receiver nodes, respectively. Moreover,
FT-SR-DMR in EAF surpasses FT-RMT in OBD by 31.69×
and 19.1× at the sender and the receiver nodes, respectively.
Furthermore, FT-SR-DMR in EAF attains a speedup of
47.93× and 27.94× over OBD with FT-RMT-QED at the
sender and the receiver nodes, respectively.

We also compare the timing overhead of FT techniques
for OBD and EAF. Results indicate that FT-RMT and
FT-RMT-QED have time overheads of 10.33% and 61.41%,
respectively, over NFT for OBD at the receiver node.
Results also show that FT-RMT-QED has a time overhead
of 46.3% over FT-RMT for OBD at the receiver node, which
results from the insertion of additional check instructions
at different points in the program to enable early detection
of errors. Results also indicate that FT-SR-DMR incurs a
time overhead of 18.11% over NFT for EAF at the receiver
node. We observe similar timing overheads at the sending
node. The overheads incurred by FT techniques over NFT
are inevitable as these reflect the price for incorporating FT
in designs.

Energy Analysis: Table 2 and Fig. 5 depict the energy
consumption of BD, OBD, and EAF. Results reveal that
NFT OBD consumes 1.35× and 1.27× lesser energy than
NFT BD at the sender and the receiver nodes, respectively.

13

TABLE 2: Performance and energy results for BD, OBD, and EAF.

CAN FD Node

Baseline Design (BD)
Optimized Baseline Design Proposed ECU

Operational Implementation (OBD) FPGA Implementation (EAF)

Mode
FT Mode

Time Energy
FT Mode

Time Energy
FT Mode

Time Energy

(µs) (µJ) (µs) (µJ) (µs) (µJ)

Sender Node

NFT x 257 13.137 x 189 9.661 x 4.90 2.170

FT
FT-RMT 411 21.010 FT-RMT 207 10.581

FT-SR-DMR 6.53 6.647
FT-RMT-QED 589 30.109 FT-RMT-QED 313 16.000

Receiver Node

NFT x 235 12.013 x 184 9.406 x 9.00 3.996

FT
FT-RMT 401 20.499 FT-RMT 203 10.377

FT-SR-DMR 10.63 10.831
FT-RMT-QED 497 25.406 FT-RMT-QED 297 15.182

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

µ
 J

)

0

10

20

30

40

OBD

N
F

T
 S

e
n

d
e

r

N
F

T
 R

e
c

e
iv

e
r

F
T

-R
M

T
 S

e
n

d
e

r

F
T

-R
M

T
 R

e
c

e
iv

e
r

F
T

-R
M

T
-Q

E
D

 S
e

n
d

e
r

F
T

-R
M

T
-Q

E
D

 R
e

c
e

iv
e

r

F
T

-S
R

-D
M

R
 S

e
n

d
e

r

F
T

-S
R

-D
M

R
 R

e
c

e
iv

e
r

F
T

-S
R

-D
M

R
 S

e
n

d
e

r

F
T

-S
R

-D
M

R
 R

e
c

e
iv

e
r

BD

EAF

Fig. 5: Energy consumption in BD, OBD, and EAF
implementations.

The FT-RMT based OBD is 1.98× more energy-efficient
than BD whereas FT-RMT-QED based OBD is 1.88×
more energy efficient than BD at the sender node. At
the receive node, OBD consumes 1.97× and 1.67× lesser
energy than BD for FT-RMT and FT-RMT-QED, respectively.
These energy savings ensue from the modification of the
security architecture and code optimization for the security
primitives for 32-bit ARM platform.

The comparison between EAF and BD reveals that NFT
EAF is 6.05× and 3× more energy efficient than NFT
BD at the sender and the receiver nodes, respectively. At
the sender node, EAF with FT-SR-DMR is 3.16× more
energy efficient than BD with FT-RMT and 4.52× more
energy efficient than BD with FT-RMT-QED. Similarly, at the
receiver node, EAF with FT-SR-DMR is 1.89× more energy
efficient than BD with FT-RMT, and 2.34× more energy
efficient than BD with FT-RMT-QED.

The comparison between EAF and OBD divulges that
NFT EAF results in 4.45× and 2.35× more energy savings
than NFT OBD at the sender and the receiver nodes,
respectively. Additionally, at the sender node, EAF with
FT-SR-DMR engenders 1.59× more energy savings than
OBD with FT-RMT, and 2.4× more energy savings than
OBD with FT-RMT-QED, respectively. At the receiver node,
EAF with FT-SR-DMR consumes 1.04× more energy than

TABLE 3: The maximum number of allowed
recomputations and retransmissions on CAN FD bus to
yield correct result for the FAC function during faults.

Baseline Design Implementation

rtc
rcc1 with rcc2 = 1 rcc2 with rcc1 = 1

FT-RMT FT-RMT-QED FT-RMT FT-RMT-QED

1 18 12 18 14

2 17 12 18 14

5 17 11 17 13

10 15 10 15 12

Optimized Baseline Design Implementation

rtc
rcc1 with rcc2 = 1 rcc2 with rcc1 = 1

FT-RMT FT-RMT-QED FT-RMT FT-RMT-QED

1 37 24 37 25

2 36 23 37 25

5 34 22 35 23

10 31 20 32 21

OBD with FT-RMT. This is because that FT-SR-DMR uses
redundant modules for FT, which increases the static power
consumption of EAF, and thus the energy savings due to
faster execution in EAF with FT-SR-DMR as compared to
OBD with FT-RMT at the receiver node fail to overcome the
effect of increased static power consumption of EAF in this
case.

We also compare the energy overhead of FT techniques
for OBD and EAF. Results indicate that FT-RMT and
FT-RMT-QED have energy overheads of 10.32% and 61.41%,
respectively, over NFT for OBD at the receiver node. Results
also show that FT-RMT-QED has an energy overhead of
46.3% over FT-RMT for OBD at the receiver node. Results
also indicate that FT-SR-DMR incurs an energy overhead
of 171.05% over NFT for EAF at the receiver node. This
particularly larger energy overhead of FT-SR-DMR over
NFT is due to the additional static power consumed by the
redundant modules incorporated for providing FT in EAF.

QoS and Behavioral Reliability: We conduct experiments
to determine the maximum number of allowable
recomputations at SBW ECUs to yield error-free results
subject to the critical pure delay Dmax

p = 8 ms and

Dchannel
can fd = 0.118 ms. The channel delay is obtained from

Vector CANoe simulations [41]. The number of allowable
recomputations represents the number of faults (soft errors
in this context) the ECU can tolerate. Table 3, which
is obtained using Eq. (9) and the behavioral reliability
constraint Dwc

p ≤ Dmax
p , depicts rcc1, rcc2, and rtc

permissible for the FAC function during faults subject to
the real-time constraints. We have incorporated rtc because
CAN and CAN FD buses do not provide FT, and hence

14

TABLE 4: Pure delay (in ms) for BD, OBD, and EAF.

Operational Mode BD OBD EAF

NFT 0.610 0.491 0.131

FT-RMT/FT-SR-DMR 0.930 0.528 0.135

FT-RMT-QED/FT-SR-DMR 1.204 0.728 0.135

ECUs must retransmit the message(s) in case of transmission
errors on the bus for correct and safe operation of the SBW
system. We note that the number of faults tolerated at HW
ECU1 and FAA ECU1 are given by (rcc1−1) and (rcc2−1),
respectively, since even in absence of error(s), HW ECU1
and FAA ECU1 still require one computational run time for
the FAC function.

Table 3 depicts the number of permissible
recomputations on ECUs and retransmissions on CAN
FD bus to yield an error-free result for the FAC function
during faults for both BD and OBD. Results indicate that
OBD can tolerate up to (rcc1 − 1) + (rcc2 − 1) = 71 faults
with one transmission error (i.e., rtc = 2) without violating
Dmax

p critical limit for FT-RMT technique. Comparison
between BD and OBD reveals that OBD can tolerate 113%
(2.13×) and 94% (1.94×) more faults on average than BD
for FT-RMT and FT-RMT-QED, respectively. The table also
shows the number of allowable retransmissions under the
Dmax

p = 8 ms constraint. Results indicate that OBD permits
16.19× and 29.81× more retransmissions on average
than BD for FT-RMT and FT-RMT-QED operation mode,
respectively, for the same critical pure delay because of the
lesser ECU execution time for security and dependability
primitives for OBD than BD.

Feasibility Analysis over CAN FD: Table 4 and Table 5
depict the pure delay and response time for CAN FD
channel (defined and formulated in Section 6.2) for BD,
OBD, and EAF. Results verify that the pure delay for
all the three implementations (BD, OBD, and EAF) are
well within the critical threshold limit of pure delay
Dmax

p = 8 ms. Additionally, the response time for the three
implementations also satisfies the critical response time
threshold of Tmax = 11.5 ms. Results indicate that the pure
delay (Dp) and the worst-case pure delay (Dwc

p) for EAF
are 0.135 ms and 0.152 ms, respectively. Results show that
EAF provides improvements of 8.9× and 5.4× in pure delay
over BD and OBD (with FT-RMT-QED), respectively, with
CAN FD as in-vehicle bus. Results further shown that the
EAF provides improvements of 1.3× and 1.2× in response
time over BD and OBD (with FT-RMT-QED), respectively,
with CAN FD as in-vehicle bus. These results verify the
feasibility of our proposed secure and dependable approach
and BD, OBD, and EAF for automotive CPS with CAN FD
as in-vehicle bus for safety-critical applications.

From Table 4, we observe that the pure delay for OBD
is 1.5× lesser than BD on average. Further, on average,
the pure delay for EAF is 4.3× and 6.8× lesser than OBD
and BD, respectively. Comparing the response times, we
observe that OBD has 9.81% lesser response time than BD on
average. Moreover, EAF response time is on average 12.34%
and 21.49% lesser than that of OBD and BD, respectively.
The results indicate that our proposed secure and FT ECU
design (EAF) permits much more time for control processing
of the implemented automotive function (e.g., SBW) as
compared to the multicore-based implementations (BD and

TABLE 5: End-to-end delay or response time (in ms) for
BD, OBD, and EAF for CAN FD channel delay of 0.118 ms

and Dmech +Dsens = 3.5 ms.

Operational Mode BD OBD EAF

NFT 4.110 3.991 3.631

FT-RMT/FT-SR-DMR 4.430 4.028 3.635

FT-RMT-QED/FT-SR-DMR 4.704 4.228 3.635

OBD).

Comparison of the Proposed Approaches For Different
In-Vehicle Networks: We have performed experiments to
determine the impact of using different in-vehicle buses
(CAN, CAN FD, and FlexRay) on the end-to-end delay
and response time of BD, OBD, and EAF. Table 6 depicts
the response time of the SBW system (Fig. 4) when using
different in-vehicle buses in combination with different ECU
architectures (BD, OBD, and EAF). Results verify that the
pure delay as well as response time for our secure and
dependable approach leveraging BD, OBD, and EAF satisfy
the critical pure delay of Dmax

p = 8 ms and critical response
time of Tmax = 11.5 ms for all three in-vehicle networks
(CAN, CAN FD, and FlexRay). These results demonstrate
the feasibility and scalability of the proposed approach and
architectures for different in-vehicle networks.

Results indicate that CAN FD and FlexRay are better
alternatives to traditional CAN bus as they provide higher
bandwidths and lower latencies. In order to transport
the 48-bytes payload as required by our proposed secure
and dependable approach (elaborated in Section 4), CAN
FD requires 37× lesser time than CAN. We derive this
improvement in transmission time furnished by CAN FD
over CAN as follows. Since six CAN messages are required
to transmit the encrypted message and hash (48-bytes
payload), the time required for transmitting six CAN
messages is equal to 0.74 ms× 6 = 4.44 ms, whereas CAN
FD requires only one message to transfer 48-bytes payload
(the maximum payload size of the CAN FD message is 64
bytes [44]) with a transfer time of 0.12 ms. Hence, CAN
takes 4.44/0.12 = 37× more time than CAN FD to transmit
the 48-bytes payload required by our proposed secure and
dependable approach. Similarly, FlexRay requires only one
message to transfer 48-byte payload (the maximum payload
size of the FlexRay message is 254 bytes [45]) with a
transfer time of 0.05 ms. Hence, CAN takes 4.44/0.05 =
88.8× more time than FlexRay to transmit the 48-bytes
payload required by our proposed secure and dependable
approach. Moreover, FlexRay requires 0.12/0.05 = 2.4×
lesser time than CAN FD to transmit the 48-bytes payload.
Furthermore, FlexRay offers FT in communication as it
provides redundant communication channels.

Comparison between pure delays indicate that EAF with
FT-SR-DMR decreases the pure delay by 19.34%, 88.64%,
and 94.10% over BD with FT-RMT-QED for CAN, CAN FD,
and FlexRay, respectively. Similarly, EAF with FT-SR-DMR
decreases the pure delay by 11.74%, 81.23%, and 89.85%
over OBD with FT-RMT-QED for CAN, CAN FD, and
FlexRay, respectively. Comparison between response times
indicate that EAF with FT-SR-DMR decreases the response
time by 6.94%, 14.02%, and 14.25% over OBD with
FT-RMT-QED for CAN, CAN FD, and FlexRay, respectively.
For CAN, pure delay and response time are dominated by

15

TABLE 6: Response time Tres and pure delay Dp (in ms) of the SBW subsystem for different in-vehicle buses
(CAN, CAN FD, and FlexRay) assuming Dmech +Dsens = 3.5 ms.

CAN FD Node

Baseline Design (BD)
Optimized Baseline Design Proposed ECU

Operational Implementation (OBD) FPGA Implementation (EAF)

Mode
FT Mode

Dp Tres
FT Mode

Dp Tres
FT Mode

Dp Tres

(ms) (ms) (ms) (ms) (ms) (ms)

CAN NFT x 4.932 8.432 x 4.813 8.313 x 4.454 7.954

Latency =
FT

FT-RMT 5.252 8.752 FT-RMT 4.850 8.350
FT-SR-DMR 4.457 7.957

0.74 ms FT-RMT-QED 5.526 9.026 FT-RMT-QED 5.050 8.550

CAN FD NFT x 0.612 4.112 x 0.493 3.993 x 0.134 3.634

Latency =
FT

FT-RMT 0.932 4.432 FT-RMT 0.530 4.030
FT-SR-DMR 0.137 3.637

0.12 ms FT-RMT-QED 1.206 4.706 FT-RMT-QED 0.730 4.230

FlexRay NFT x 0.542 4.042 x 0.423 3.923 x 0.064 3.564

Latency =
FT

FT-RMT 0.862 4.362 FT-RMT 0.460 3.960
FT-SR-DMR 0.067 3.567

0.05 ms FT-RMT-QED 1.136 4.636 FT-RMT-QED 0.660 4.160

transmission time, which explain the lower improvements
in pure delay and response time by EAF over BD and
OBD in case of CAN bus. The improvements in response
time and pure delay rendered by EAF over BD and OBD
become more pronounced for CAN FD and FlexRay as
computation times becomes the more significant fraction
than transmission time in pure delay as well as response
time. The improvements in pure delay and response time
furnished by EAF over BD and OBD are due to the lower
execution time of the security and dependability primitives
in EAF as compared to BD and OBD.

8 FUTURE RESEARCH DIRECTIONS
Although security and dependability of automotive CPS
has gained much interest in both academia and industry
in recent years, there still exist various research challenges
in this domain that demand attention. In this section, we
highlight these challenges and future research directions
that need consideration to realize next generation of secure
and dependable automobiles.

Reconfigurability in Automotive CPS Design: Although
this paper proposes a reconfigurable ECU architecture
that simultaneously integrates security and dependability
primitives in automotive CPS, further research is needed
to explore the potential of utilizing reconfigurability in
automotive CPS. For instance, the proposed approach
in this work (Fig. 1) can be extended to embed
configurability in security and reliability parameters in
order to ensure meeting real-time requirements based
on changing application requirements and environmental
stimuli (e.g., transient fault rate and in-vehicle bus load).
The security and reliability parameters that can be adapted
include determining N value for NMR (N modular
redundancy) in an automotive processor that permits using
multiple (N) cores or resources for providing FT, number
of comparison points for QED, and key lengths for AES
encryption/decryption and HMAC.

In-Vehicle Networks: Modern automobiles utilize a variety
of in-vehicle networks, such as LIN (Local Interconnect
Network), MOST (Media Oriented Systems Transport),
CAN, CAN FD, and FlexRay, for different applications. LIN
is typically used for automotive body electronics including
air conditioning systems, seats, doors, climate control,
intelligent windshield wipers, and sunroof actuators.
MOST is utilized for multimedia and entertainment
applications. CAN has been used traditionally for real-time

and safety-critical application, such as engine control,
transmission, and anti-lock braking braking/ABS. Recently,
CAN FD and FlexRay are being considered for automotive
applications requiring higher bandwidth than CAN. More
recently, automotive Ethernet has beginning to permeate in
modern automobiles for infotainment and high-bandwidth
applications. However, further research is needed in
in-vehicle networks, in particular, CAN FD, FlexRay,
and Ethernet, to help determine the most appropriate
network for different safety-critical applications in modern
automotive CPS and in autonomous vehicles.

Secure Storage of Secret Keys: Most of the contemporary
security methods (discussed in Section 3.1) for automotive
CPS are based on secret keys that are to be stored
in automotive ECUs. The leakage of these secret keys
can forfeit the security of the entire automotive system.
The secret keys can be stored in secure tamper-resistant
memories (as assumed in this paper), however, a large
number of attack vectors, such as side-channel attacks,
fault injection attacks, microprobing, reverse engineering,
and software attacks have been developed for estimation,
cloning, and extraction of secret keys stored in nonvolatile
memory. For instance, cryogenic memory attacks are
possible even if TPM is in place as illustrated in [46] [47]
and summarized here. Dynamic random access memory
(DRAM), also used in modern ECUs, can preserve their
contents and memory images for several seconds after
power is lost, even at room temperature and even if
removed from the automotive bus. It has been shown
by researchers that cryogenically frozen DRAM can retain
the data for several minutes to an hour. Hence, cold
(cryogenic) reboots can be used to mount successful attacks
for extracting cryptographic keys from memory images [47].
Consequently, further research is needed to ensure secure
storage of secret keys in automotive ECUs.

Secure Generation and Distribution of Secret Keys: To
alleviate the perils of secret keys’ storage, hardware-based
security techniques such as physically unclonable functions
(PUFs) can be utilized to generate secret keys without
the need for storing them in nonvolatile memory. Another
relevant challenge is secure distribution of secret keys
between automotive ECUs. Asymmetric cryptography is
widely used in Internet for secret key distribution. However,
resource constraint of automotive ECUs makes it difficult
to implement complex secret key exchange protocols

16

with large key lengths required to provide adequate
security. Moreover, private keys need to be stored in
automotive ECUs for key distribution using asymmetric
key distribution, which makes private keys vulnerable to
security attacks and extraction. Hence, there is a need
to develop security mechanisms and protocols that can
solve the problem of key generation and distribution in
automotive CPS.

ECU Authentication: Authentication of ECUs is paramount
for security of automotive CPS as the authentication ensures
that only legitimate ECUs participate in communication
over the in-vehicle network. In this work, possession
of secure symmetric keys is considered a means
for ECU authentication because only authorized ECUs
will have the secret symmetric keys. However, other
means of ECU authentication needs to be developed.
Asymmetric cryptographic techniques can be used for ECU
authentication but require public key infrastructure (PKI)
support to accomplish that. Asymmetric cryptographic
techniques also enable revocation of certificates in case
ECUs become compromised or stolen, however, there will
always be a period when certificates are invalid but
revocation lists have not been communicated to all ECUs
especially in case of automobiles which are frequently
driven in remote areas with limited Internet and cellular
connectivity. Hence, accomplishing ECU authentication
without PKI support is a topic of future research.

Artificial Intelligence Safety and Security: Artificial
intelligence (AI) has revolutionized the automotive industry
by driving the development of increasingly intelligent
autonomous vehicles. The automotive AI market is expected
to be valued at $11k million by 2025 [48]. AI has become
an essential component of automated drive technology
by enabling voice recognition, sentiment analysis, image
recognition, object detection, motion detection, and machine
vision in autonomous vehicles. However, machine learning
(ML) algorithms are susceptible to various types of
adversarial attacks. Adversarial examples are an instance of
these adversarial attacks where an adversary introduces
small perturbations to the legitimate input to force an ML
algorithm to misclassify (misinterpret) while the perturbed
input remains correctly classifiable by the human observer
[49]. These adversarial examples can cause an autonomous
vehicle’s ML algorithm to malfunction (e.g., the algorithm
may classify a stop sign as an yield sign) and thus put the
safety of the vehicle’s passengers, pedestrians, and property
at risk. Therefore, to ensure the safety and security of
autonomous vehicles, further research is needed in AI safety
and security to mitigate the vulnerabilities of AI algorithms.

Privacy of Vehicle Owner and Passengers: Next generation
of automobiles, including autonomous vehicles, will gather
and maintain identifying information about the vehicle
owner and passengers for various purposes, such as to
authenticate authorized users and to customize safety,
comfort, and entertainment settings [50]. The stored
information will probably be able to identify owner and
passengers and their behavior and activities with a high
degree of certainty, and thus can be exploited by attackers
to infringe on the privacy of vehicle owner and passengers.
The V2X communication in ITS will further exacerbate

privacy issues as vehicles will be communicating with
each other and the infrastructure, which pose the risk
of exposing identity of vehicles and the drivers of those
vehicles. To better ensure the privacy of vehicle owners and
passengers, automotive systems need to adhere to privacy
by design approach where privacy is embedded in design
specifications and architecture of systems and processes
at the outset rather than as an afterthought [51]. The
promising approaches to preserve privacy by design include
privacy-preserving computing, homomorphic encryption,
and blockchain cryptography. However, further research is
needed to integrate privacy by design in automotive CPS
and thus ensure privacy of vehicle owners and passengers.

9 CONCLUSIONS
In this paper, we have proposed a novel ECU architecture
for automotive cyber-physical systems (CPS) that
simultaneously integrates both security and dependability
primitives in the design with negligible performance,
energy, and resources overhead. We have implemented
our proposed ECU architecture on Xilinx Automotive (XA)
Spartan-6 FPGA, which we refer to as EAF. We have also
proposed a secure and dependable approach for automotive
CPS design that leverages our proposed ECU architecture.
We have demonstrate the effectiveness of our proposed
architecture and approach using a steer-by-wire (SBW)
application over controller area network with flexible
data rate (CAN FD) as a case study. We have further
optimized and implemented a prior secure and dependable
automotive work (baseline design (BD)) on the NXP
quad-core iMX6Q SABRE automotive board. We refer to
the optimized implementation as optimized baseline design
(OBD).

Results reveal that our optimized design can tolerate
113% (2.13×) more faults on average than BD. Results also
divulge that our proposed ECU architecture can attain a
speedup of 90.19× while consuming 4.52× lesser energy
over BD. Furthermore, EAF can attain a speedup of 47.93×
while consuming 2.4× lesser energy than OBD. We further
perform a comparative analysis of prior designs (BD and
OBD) and the proposed ECU architecture (EAF) for different
in-vehicle networks, viz., CAN, CAN FD, and FlexRay.
Results verify the feasibility as well as the superiority of
EAF over BD and OBD in terms of pure delay and response
time. Results show that EAF in fault tolerance (FT) mode can
reduce the pure delay by 19.34%, 88.64%, and 94.10% over
BD with FT for CAN, CAN FD, and FlexRay, respectively.
Finally, we have also highlighted future research directions
for designing secure and dependable automotive CPS.

ACKNOWLEDGMENTS
This work was supported by the National Science
Foundation (NSF) (NSF CNS 1743490). Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] ISO. (2011, November) ISO 26262 road vehicles - functional
safety. [Online]. Available: http://www.iso.org/iso/catalogue
detail?csnumber=43464

17

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. Morgan
Kaufmann Publishers, 2007.

[3] A. Munir and F. Koushanfar, “Design and Analysis of Secure and
Dependable Automotive CPS: A Steer-by-Wire Case Study,” IEEE
Transactions on Dependable and Secure Computing (TDSC), June 2018.

[4] C. Wilwert, Y.-Q. Song, F. Simonot-Lion, Loria-Trio, and
T. Clément, “Evaluating Quality of Service and Behavioral
Reliability of Steer-by-Wire Systems,” in Proc. of IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), Lisbon,
Portugal, September 2003.

[5] A. Munir and F. Koushanfar, “Design and Performance Analysis
of Secure and Dependable Cybercars: A Steer-by-Wire Case
Study,” in Proc. of IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, Nevada, January 2016.

[6] A. Vinel, N. Lyamin, and P. Isachenkov, “Modeling of
V2V Communications for C-ITS Safety Applications: a CPS
Perspective,” IEEE Communications Letters, vol. 22, no. 8, pp.
1600–1603, August 2018.

[7] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
and S. Savage, “Experimental security analysis of a modern
automobile,” in 2010 IEEE Symposium on Security and Privacy,
Berkeley, California, USA, May 2010, pp. 447–462.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in Proc. of the 20th USENIX conference on Security (SEC),
San Francisco, California, August 2011.

[9] M. L. Chavez, C. H. Rosete, and F. R. Henriguez, “Achieving
confidentiality security service for can,” in 2005 15th International
Conference on Electronics, Communication and Computers
CONIELECOMP, Puebla, Mexico, Feb 2005, pp. 166–170.

[10] ISO. (2000) Iso 7498-2:1989: Information processing systems
– open systems interconnection – basic reference model
– part 2: Security architecture. [Online]. Available: https:
//www.iso.org/standard/14256.html

[11] B. Groza, S. Murvay, A. van Herrewege, and I. Verbauwhede,
LiBrA-CAN: A Lightweight Broadcast Authentication Protocol for
Controller Area Networks. Springer Berlin Heidelberg, 2012, pp.
185–200.

[12] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for
the controller area network (CAN) communication protocol,”
in 2012 International Conference on Cyber Security (CyberSecurity),
Washington, DC, USA, Dec 2012, pp. 1–7.

[13] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle
delayed data authentication based on compound message
authentication codes,” in IEEE 68th Vehicular Technology Conference,
2008, Calgary, BC, Sep 2008, pp. 1–5.

[14] A. V. Herrewege, D. Singelee, and I. Verbauwhede, “CANauth -
a simple, backward compatible broadcast authentication protocol
for CAN bus,” in ECRYPT Workshop on Lightweight Cryptography,
Louvain-la-Neuve, Belgium, Nov 2011.

[15] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new
backward-compatible Controller Area Network (CAN) protocol
with up to 16x higher data rates.” in 2009 Design, Automation Test in
Europe Conference Exhibition, Nice, France, Apr 2009, pp. 1088–1093.

[16] M. Wolf and T. Gendrullis, “Design, implementation, and
evaluation of a vehicular hardware security module,” in
Proceedings of the 14th International Conference on Information
Security and Cryptology, Seoul, Korea, Nov-Dec 2012, pp. 302–318.

[17] E. Beckschulze, F. Salewski, T. Siegbert, and S. Kowalewski,
“Fault handling approaches on dual-core microcontrollers in
safety-critical automotive applications,” in 2008 International
Symposium on Leveraging Applications of Formal Methods, Verification,
and Validation ISoLA, Porto Sani, Greece, Oct 2008.

[18] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-tolerant platforms for automotive
safety-critical applications,” in 2003 ACM International Conference
on Compilers, Architecture and Synthesis for Embedded Systems
CASES, San Jose, California, Oct-Nov 2003.

[19] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante,
“Soft-error detection through software fault-tolerance techniques,”
in 1999 14th International Symposium on Defect and Fault-Tolerance in
VLSI Systems DFT, Oct 1999, pp. 210–218.

[20] Fujitsu. (2012, Feb) Secure hardware extension. [Online].
Available: https://www.escrypt.com/fileadmin/escrypt/pdf/
WEB Secure Hardware Extension Wiewesiek.pdf

[21] F. SIT. (2008) E-safety vehicle intrusion protected applications.
[Online]. Available: http://www.evita-project.org/

[22] PRESERVE. (2015) PRESERVE - preparing secure V2X
communication systems. [Online]. Available: https://www.
preserve-project.eu/

[23] T. C. Group. (2016) Trusted computing group - open
standards for security and technology. [Online]. Available:
http://www.trustedcomputinggroup.org/

[24] ARM. (2015) Trustzone - ARM. [Online]. Available: http:
//www.arm.com/products/processors/technologies/trustzone/

[25] Automotive Electronics Council. (2007, May) Aec-q100-rev-g,
failure mechanism based stress test qualification for
integrated circuits. [Online]. Available: http://www.aecouncil.
com/Documents/AEC Q100 Rev G Base Document.pdf

[26] CAN in Automation (CiA). (2018, November) Can data
link layers. [Online]. Available: https://www.can-cia.org/can-
knowledge/can/can-data-link-layers/

[27] T. Hong et al., “QED: Quick Error Detection Tests for Effective
Post-Silicon Validation,” in IEEE ITC, Austin, Texas, Nov 2010.

[28] C.-F. Lu, Y.-S. Kao, H.-L. Chiang, and C.-H. Yang, “Fast
implementation of AES cryptographic algorithms in smart cards,”
in Proceedings of IEEE 37th Annual 2003 International Carnahan
Conference on Security Technology, 2003, Taipei, Taiwan, Oct 2003,
pp. 573–579.

[29] A. Javed, “Fast implementation of AES on mobile devices,” in 8th
International Network Conference, Heidelberg, Germany, Jul 2010,
pp. 133–142.

[30] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and
S. Marchesin, Efficient Software Implementation of AES on 32-Bit
Platforms. Springer Berlin Heidelberg, 2004, pp. 159–171.

[31] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. (2016,
May) The keccak sponge function family. [Online]. Available:
http://keccak.noekeon.org/

[32] K. Atasu, L. Breveglieri, and M. Macchetti, “Efficient AES
implementations for ARM based platforms,” in Proceedings of the
2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, Mar
2004, pp. 841–845.

[33] C. Shore, “Efficient C code for ARM devices,” in ARM Technology
Conference 2010, Santa Clara, California, USA, Sep 2010, pp. 1–14.

[34] Xilinx. (2018, November) Zynq-7000 all programmable
soc. [Online]. Available: https://www.xilinx.com/support/
documentation/product-briefs/zynq-7000-product-brief.pdf

[35] S. Kundu and S. M. Reddy, “Embedded totally self-checking
checkers: A practical design,” IEEE Design Test of Computers, vol. 7,
no. 4, pp. 5–12, Aug 1990.

[36] Spartan-6 FPGA Configuration User Guide (v2.8), Nov 2015.
[37] LogiCORE IP XPS HWICAP v5.01a Product Specification, Jun 2011.
[38] K. Klobedanz, C. Kuznik, A. Thuy, and M. Wolfgang, “Timing

modeling and analysis for autosar-based software development -
a case study,” in IEEE/ACM DATE, Dresden, Germany, Mar 2010,
pp. 642–645.

[39] NXP. (2018, November) Rd-imx6q-sabre: Sabre board for smart
devices based on the i.mx 6quad applications processors. [Online].
Available: https://www.nxp.com/support/developer-resources/
evaluation-and-development-boards/sabre-development-
system/sabre-board-for-smart-devices-based-on-the-i.mx-
6quad-applications-processors:RD-IMX6Q-SABRE

[40] Xilinx. (2018, November) Automotive-grade xa spartan-6 fpga
family. [Online]. Available: https://www.xilinx.com/products/
silicon-devices/fpga/xa-spartan-6.html

[41] VECTOR. (2018, October) Testing ecus and networks with CANoe.
[Online]. Available: https://www.vector.com/int/en/products/
products-a-z/software/canoe/

[42] B. Poudel, N. K. Giri, and A. Munir, “Design and Comparative
Evaluation of GPGPU- and FPGA-based MPSoC ECU
Architectures for Secure, Dependable, and Real-Time Automotive
CPS,” in IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Seattle, Washington,
July 2017.

[43] Programming with CAPL, Dec 2004.
[44] CAN in Automation (CiA). (2018, November) Can fd - the

basic idea. [Online]. Available: https://www.can-cia.org/can-
knowledge/can/can-fd/

[45] AUTOSAR. (2011, April) Specification of flexray transport layer.
[Online]. Available: https://www.autosar.org/fileadmin/user
upload/standards/classic/3-2/AUTOSAR SWS FlexRay TP.pdf

18

[46] ZDNet. (2008, February) Cryogenically frozen ram
bypasses all disk encryption methods. [Online].
Available: https://www.zdnet.com/article/cryogenically-frozen-
ram-bypasses-all-disk-encryption-methods/

[47] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest We Remember: Cold Boot Attacks on Encryption Keys,” in
Proc. of the 17th USENIX conference on Security (SEC), San Jose,
California, July 2008.

[48] S. Gadam. (2018, April) Artificial intelligence
and autonomous vehicles. [Online]. Available:
https://medium.com/datadriveninvestor/artificial-intelligence-
and-autonomous-vehicles-ae877feb6cd2

[49] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in ACM Asia Conference on Computer and Communications Security.
Abu Dhabi, United Arab Emirates: ACM, April 2017, pp. 506–519.

[50] Norton Rose Fulbright. (2017, July) The privacy
implications of autonomous vehicles. [Online].
Available: https://www.dataprotectionreport.com/2017/07/the-
privacy-implications-of-autonomous-vehicles/

[51] A. Cavoukian, “Privacy by design: Origins, meaning, and
prospects for assuring privacy and trust in the information
era,” in Privacy Protection Measures and Technologies in Business
Organizations: Aspects and Standards. IGI Global, 2012, pp. 170–208.

Bikash Poudel is currently working at Intel
Corporation as a post silicon validation engineer.
He received his M.S. in Computer Science
and Engineering from the University of Nevada,
Reno in 2017. He also worked as a Staff
Research Assistant at Kansas State University
in 2017. His research interests include hardware
security, computer architecture, embedded and
cyber-physical systems, and design validation.

Arslan Munir (M’09, SM’17) is currently
an Assistant Professor in the Department
of Computer Science (CS) at Kansas State
University (K-State). He holds a Michelle
Munson-Serban Simu Keystone Research
Faculty Scholarship from the College of
Engineering. He was a postdoctoral research
associate in the Electrical and Computer
Engineering (ECE) department at Rice
University, Houston, Texas, USA from May 2012
to June 2014. He received his M.A.Sc. in ECE

from the University of British Columbia (UBC), Vancouver, Canada,
in 2007 and his Ph.D. in ECE from the University of Florida (UF),
Gainesville, Florida, USA, in 2012. From 2007 to 2008, he worked as a
software development engineer at Mentor Graphics in the Embedded
Systems Division.

Munir’s current research interests include embedded and
cyber-physical systems, secure and trustworthy systems,
hardware-based security, computer architecture, multicore, parallel
computing, distributed computing, reconfigurable computing, artificial
intelligence (AI) safety and security, data analytics, and fault tolerance.
Munir received many academic awards including the doctoral fellowship
from Natural Sciences and Engineering Research Council (NSERC)
of Canada. He earned gold medals for best performance in electrical
engineering, gold medals and academic roll of honor for securing rank
one in pre-engineering provincial examinations (out of approximately
300,000 candidates). He is a Senior Member of IEEE.

