
Received October 19, 2021, accepted November 4, 2021, date of publication November 8, 2021, date of current version November 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126708

Sparse-PE: A Performance-Efficient Processing
Engine Core for Sparse Convolutional
Neural Networks
MAHMOOD AZHAR QURESHI AND ARSLAN MUNIR , (Senior Member, IEEE)
Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA

Corresponding author: Arslan Munir (amunir@ksu.edu)

ABSTRACT Sparse convolutional neural network (CNN) models reduce the massive compute and memory
bandwidth requirements inherently present in dense CNNs without a significant loss in accuracy. Sparse
CNNs, however, present their own set of challenges including non-linear data accesses and complex design
of CNN processing elements (PEs). Recently proposed accelerators like SCNN, Eyeriss v2, and SparTen,
exploit the two-sided sparsity, that is, sparsity in both the input activations and weights to accelerate the CNN
inference. These, accelerators, however, suffer from a multitude of problems that limit their applicability,
such as inefficient micro-architecture (SCNN, Eyeriss v2), complex PE design (Eyeriss v2), no support
for non-unit stride convolutions (SCNN) and FC layers (SparTen, SCNN). To address these issues in
contemporary sparse CNN accelerators, we propose Sparse-PE, a multi-threaded, and flexible CNN PE,
capable of handling both the dense and sparse CNNs. The Sparse-PE core uses binary mask representation
and actively skips computations involving zeros and favors non-zero computations, thereby, drastically
increasing the effective throughput and hardware utilization. Unlike previous designs, the Sparse-PE core is
generic in nature and not targeted towards a specific accelerator, and thus, can also be used as a standalone
sparse dot product compute engine. We evaluate the performance of the core using a custom built cycle
accurate simulator. Our simulations show that the Sparse-PE core-based accelerator provides a performance
gain of 12× over a recently proposed dense accelerator (NeuroMAX). For sparse accelerators, it provides a
performance gain of 4.2×, 2.38×, and 1.98× over SCNN, Eyeriss v2, and SparTen, respectively.

INDEX TERMS Convolutional neural networks (CNNs), hardware accelerators, multi-threaded, sparsity,
high-throughput.

I. INTRODUCTION
Deep neural networks (DNNs) have enabled the deployment
of artificial intelligence (AI) in many modern applications
including autonomous driving, image recognition, speech
processing, and language translation. One of themost popular
algorithmic approach for many AI applications is the convo-
lutional neural network (CNN). Deployment of a CNNmodel
is usually carried out in two stages: (1) training - the CNN
parameters are learned by extracting key features from a set
of training data, and (2) inference - the trained CNN model
is deployed on the field and subjected to the real-world data
for making predictions. The CNN accuracy is determined by

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

observing the total number of accurate classifications in the
inference phase.

High accuracy CNN models [1]–[3] proposed in recent
years have further strengthened the notion of employing
CNNs for various vision-based AI applications. These CNN
models require massive amounts of convolution operations
over a series of network layers to perform a classification
task during the inference phase. These tremendous number
of computations (typically in tens of millions) present a huge
challenge for the devices employing these CNN models.
In addition, because of the large number of network layers
and varying layer dimensions, the massive CNN model can-
not be stored in the on-chip memory of the device, and, there-
fore, requires off-chip DRAM which presents high DRAM
access cost. To put this in perspective, the energy cost per
fetch for 32b coefficients in an off-chip LPDDR2 DRAM is

151458
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9995-6907
https://orcid.org/0000-0002-3126-8945
https://orcid.org/0000-0003-1072-0792


M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

about 640pJ, which is about 6400× the energy cost of
a 32b integer ADD operation [4]. The energy cost from just
the DRAM accesses would be well beyond the limitations of
an embedded mobile device employing the CNN.

Various techniques have been developed to address the
compute and memory bandwidth issues of a neural net-
work accelerator, running a CNN. Mobilenets [5], [6] were
developed to reduce the total number of computations by
splitting a regular convolution operation into separable con-
volutions (depthwise and pointwise), without incurring a loss
in accuracy. Another widely used approach for decreasing
the model size is the reduction in precision of both weights
and activations using various quantization strategies [7]–[9].
This again does not result in a significant loss in accuracy
and reduces the model size by a considerable amount. Hard-
ware implementations like Envision [10], NeuroMAX [11],
UNPU [12], and Stripes [13] show how reduced bit precision,
and quantization, translates into increased throughput and
savings in energy.

Non-linear activation functions [14], in addition to deep
layers, are one of the key characteristics that improve the
accuracy of a CNN model. Typically, non-linearity is added
by incorporating activation functions, the most common
being the rectified linear unit (ReLU) [14]. The ReLU con-
verts all negative values in a feature map to zeros. Since the
output of one layer is the input to the next layer, many of
the computations, within a layer, involve multiplication with
zeros. These feature maps containing zeros are referred to
as one-sided sparse feature maps. The multiplications result-
ing from this one-sided sparsity wastes compute cycles and
decreases the effective throughput and hardware utilization,
thus, reducing the overall performance of the accelerator.
It also results in high energy cost as the transfer of zeros
to/from off-chip memory is a wasted memory access. In order
to reduce the computational and memory access volume, pre-
vious works [15]–[17] have exploited this one-sided sparsity
and displayed some performance improvements.

Compression of DNN models was introduced the first
time in [18]. Han et al. [18] iteratively pruned the connec-
tions based on parameter threshold, and performed retrain-
ing to retain accuracy. This process resulted in two-sided
sparsity, i.e., sparsity in both weights and activations, which
led to approximately 9× model reduction for AlexNet, and
13× reduction for VGG-16. It also resulted in 4 - 9× effec-
tive compute reduction (depending on the model). These
gains seem very promising, however, designing an accelerator
architecture to leverage them is quite challenging because of
the following reasons:

A. DATA ACCESS INCONSISTENCY
Computation gating is one of the most common ways by
which sparsity is generally exploited. Whenever a zero in
the activation or the weight data is read, no operation is
performed. This results in energy savings but has no impact
on the throughput because of the wastage of compute cycle.
Complex read logic needs to be implemented to discard

the zeros, and instead, perform effective computations on
non-zero data. Some previous works [19], [20] use sparse
compression formats like compressed sparse column (CSC)
or compressed sparse row (CSR) to represent sparse data.
These formats have variable lengths and make ‘‘looking
ahead’’ difficult if both the weight and the activation sparsity
is being considered. Other than that, developing the complex
control and read logic to process these formats can be quite
challenging.

B. LOW UTILIZATION OF THE PROCESSING ELEMENT (PE)
ARRAY
Convolution operations for CNN inference are usually per-
formed using an array of two-dimensional PEs in a CNN
accelerator. Different dataflows (input stationary, output sta-
tionary, and row stationary) have been proposed that effi-
ciently map the weight data and the activation data on to
the PE array to maximize the throughput [14]. Sparsity intro-
duces inconsistency in the scheduling of data thereby reduc-
ing the hardware utilization. The subset of PEs provided with
more sparse data have idle times while those provided with
less sparse (or more dense) data are fully active. This bounds
the throughput of the accelerator to the most active PEs, and
therefore, leads to the under utilization of the PE array.

Considering the above mentioned issues, many accelera-
tors have been proposed in the past that attempt to strike
a balance between hardware resource complexity and per-
formance improvements. Cnvlutin [15] attempts to exploit
sparsity by skipping the computations during zero activa-
tion data. It, however, does not avoid transfer of zeros and
only skips cycles for zero-activations but not zero-weights.
This results in exploitation of only one-sided sparsity.
Eyeriss [17] only gates computations for sparse activations.
Eyeriss v2 [19] attempts to address the two-sided sparsity
by using CSC format for both the activations and weights.
It, however, requires complex read logic embedded within
a PE that drastically increases the area by ∼ 93% when
compared to the original Eyeriss [17]. Cambricon-X [16]
does not store activations in compressed format while
Cambricon-S [21] forces regularity by employing coarse
grain pruning that affects accuracy. Even though it dis-
cards zeros during computation, it still retrieves and stores
them. EIE [20] exploits the two-sided sparsity, albeit only
in fully-connected layers. EIE’s performance is equivalent to
one-sided sparsity as it discards zeros in the filter but wastes
compute cycles due to being idle. Sparse CNN (SCNN) [22]
targets two-sided sparsity but suffers heavily from ineffi-
cient microarchitecture and systematic load imbalance as
explained in [23]. It, also, cannot handle non-unit stride con-
volutions and FC layers. To address the complexity associated
with the CSC compression format, SparTen [23] uses sparse
bit mask to represent the location of zeros and non-zero data
values. SparTen, however, needs an offline load balancing
strategy, which it refers to as Greedy Balancing, to address
the systematic load imbalance. This form of balancing adds
extra latency and complicates the synchronization of various

VOLUME 9, 2021 151459



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

compute threads. SparTen also employs Permuter andOutput
Collector Units for the computation clusters to merge and/or
accumulate the outputs from independently running compute
units. These circuits require rather complex hardware and the
complexity grows exponentially as the number of compute
units are increased. In addition, SparTen, like SCNN, has no
support for FC layers.

In this paper we introduce Sparse-PE, a high perfor-
mance, multi-threaded, generic processing engine (PE) core
for sparse CNN computations. Unlike many previous works,
this PE design can exploit full or two-sided sparsity and can
be used for sparse computations in any layer in a typical
CNN model. While the previous approaches use complex
PE designs targeted towards their specific accelerator archi-
tectures, the Sparse-PE core is generic in nature and can be
used as a general purpose, sparse dot product compute core.
Our main contributions can be summarized as follows:
• We present Sparse-PE, a multi-threaded, high perfor-
mance, processing engine core, ideal for two-sided
sparse computations. The core works by actively skip-
ping a huge number of ineffective computations (zerow×
zeroa, zerow × non-zeroa, non-zerow × zeroa) involving
zeros, while only favoring effective computations (non-
zerow × non-zeroa). This is accomplished by the use of
novel selection, computation, and accumulation blocks
to dynamically allocate maximum, non-zero computa-
tions, on to a thread matrix inside the core to drastically
improve the hardware utilization. The presented PE core
does not target a specific architecture, and thus, can be
modified for any accelerator design.

• Unlike previous approaches that use compressed sparse
column (CSC) format for their PEs, the Sparse-PE core
uses bit mask (BM) representation for sparse computa-
tions. We show that, on average, the CSC format has
3× higher DRAM memory accesses compared to the
BM representation which directly translates into higher
energy requirements for the CSC format.

• We develop a cycle-accurate performance simulator for
an accelerator that uses the Sparse-PE cores and show
drastic performance improvement over various recently
proposed dense and sparse CNN accelerators, and high
hardware utilization over a range of sparsity levels. Our
experiments show that the Sparse-PE core-based accel-
erator has a performance gain of 12× over a recently
proposed dense accelerator (NeuroMAX). For sparse
accelerators, it provides a performance gain of 4.2×,
2.38×, and 1.98× over SCNN, Eyeriss v2, and SparTen,
respectively. We also do an RTL implementation of the
core on Xilinx Z-7100 SoC and show a detailed module
level breakdown of the FPGA primitives cost, SRAM
cost, and power consumption of the core.

The remainder of the paper is organized as follows. Section II
gives a background on CNN sparsity and layer by layer spar-
sity associated with various popular CNNmodels. Section III
presents the proposed Sparse-PE core and its inner workings.
Experimental methodology, simulation results, comparisons,

and implementation cost is given in Section IV. Section V
summarizes recent literature related to our work. Lastly,
Section VI concludes this paper.

II. RELATED WORK
Many dense architectures have been introduced in the past
for acceleration of CNN inferences. Accelerators proposed
in [9], [24], [25] optimize compute, whereas, [26], [27] opti-
mize memory bandwidth. Quantization (linear [9], [28] and
log [7], [8]) of weights and activations provides addi-
tional benefits for memory footprint and compute reduc-
tions. Accelerators like NeuroMAX [11], VWA [29],
UNPU [12], and Stripes [13], show how reduction in bit
precision, improved dataflow, and quantization, increases
throughput and saves energy. Another set of accelerators [30],
[31] provide efficient implementation of separable convo-
lutions on FPGA hardware. These, however, cannot handle
regular convolution and fully connected (FC) layers which are
almost always a part of CNN models. Accelerators proposed
in [32], [33] use Booth encoding to avoid the use of zeros to
reduce the total computations. They, however, still transfer
zeros to and from memory which incurs SRAM area and
energy. Block circulant matrices for weights were introduced
in CirCNN [34]. CirCNN, however, requires complex fast
Fourier transform (FFT) operations in its PE design. It also
does not capture two-sided sparsity. In-memory accelera-
tors [35], [36] have also been presented that use analog
logic design to perform matrix multiplications within mem-
ory. Sparse multiplications, however, cannot be performed in
these accelerators as they require complexALU and buffering
logic. Analog circuits are also impacted by noise and varia-
tions during manufacturing process which can significantly
impact the CNN model accuracy during inference.
Sparse architectures reduce the compute and mem-

ory access volume by exploiting the zeros in activations
(one-sided), or both activations and weights (two-sided).
Cnvlutin [15] and Cambricon-X [16] exploit one-sided spar-
sity by ignoring zeros in weights or input maps, but not
both. Cnvlutin also does not avoid transferring of zeros
and only skips cycles for activations. Tensaurus [37] accel-
erates sparse and dense tensor factorizations by introduc-
ing compressed interleaved sparse slice (CISS) dataflow.
It, however, only supports one-sided sparsity. Recent sparse
GEMM (SpGEMM) accelerators [38]–[42] target general-
ized sparse-matrix, sparse-matrix multiplications. Sigma [40]
and ExTensor [39] use inner-product (output stationary)
dataflow for sparse matrix multiplications. Inner product,
however, is inefficient for highly sparse matrices because
every element of the rows and the columns must be tra-
versed even though there are less effectual computations
(non-zero × non-zero). This leads to a significant amount
of wasted computations. SpArch [41] and OuterSPACE [42]
use outer-product (or input stationary) dataflow to avoid
the inefficiencies associated with the traversals inherent in
the inner-product dataflow. Outer-product, however, gives
poor output reuse as the partial outputs generated are much

151460 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

more than the final outputs causing significant memory traf-
fic. Finally, MatRaptor introduces a modified version of
the CSR format referred to as channel cyclic sparse row
(C2SR) for better reuse and memory efficiency but requires
complex encoding for output matrices. Eyeriss v2 [19] uses
the CSC format for both weights and activations to address
the two-sided sparsity. It, however, suffers from system-
atic load imbalance due to variations in the density of the
sparse matrices. The PE design of Eyeriss v2 also requires
complex buffering logic that drastically increases the area
by ∼ 93% when compared to the original Eyeriss [17].
EIE [20] exploits the two-sided sparsity in FC layers and
does not address the CONV layers. EIE essentially discards
zeros in weights but remains idle, thus, wasting compute
cycles. Sparse CNN (SCNN) [22] targets two-sided spar-
sity but its PEs suffer from inefficient microarchitecture
and system-level load imbalance (also pointed out in [23]).
SCNN, also, is incapable of handling non-unit stride convo-
lutions and FC layers. Although some previous accelerator
architectures attempt to exploit sparsity in CNNs, they do not
address the issues related to high PE cost, inefficient micro-
architecture, and dependence of PE on accelerator design.
We design a multi-threaded PE, referred to as Sparse-PE,
which not only addresses the issues present in the previous
designs, but also, can carry out general sparse dot product
computations for any application.

III. SPARSITY IN CNNS
Sparsity refers to the fraction of zeros in a CNN layer’s
weight and input activation matrices. Weight sparsity is static
and is introduced while pruning a network during training.
Han et al. developed an iterative scheme for pruning a net-
work and retraining to retain the network’s accuracy [18].
Activation sparsity is introduced dynamically during the
inference phase and is highly dependent on the input being
processed. This sparsity occurs because of the ReLU acti-
vation function, most commonly found in many CNNs,
which converts all the negative outputs of a layer to
zero.

Figure 1 shows the weight and the activation sparsity
among two of the most commonly used CNNs. We randomly
select 50,000 images from the ImageNet dataset [43] and run
pretrained sparse AlexNet and VGG16. The weight sparsity
values in Figure 1 were obtained directly from the sparse
CNNs, whereas, the activation sparsity values were obtained
by averaging out the layer-by-layer activation sparsity during
processing of the input images. The whole process was done
using the Keras framework [44]. It can be seen that the weight
sparsity for AlexNet and VGG-16 can reach as high as 70%
and 80%, respectively, for some layers. Activation sparsity
tends to be lower in the initial layers but rises considerably
in later layers with some layers of VGG-16 having activa-
tion sparsity as high as 85%. This shows that many neural
nets, though seemingly compute and memory bandwidth-
intensive, are incredibly sparse with huge amounts of redun-
dant computations. A PE design which efficiently exploits

FIGURE 1. Sparsity in CNNs (a) Sparsity in AlexNet (b) Sparsity in VGG-16.

this redundancy can provide immense gains in both perfor-
mance and energy efficiency.

IV. SPARSE-PE
Figure 2 shows a typical convolution operation in a CNN.
Here, a 3 × 8 sparse input is convolved with a 3 × 3 sparse
weight to generate a 1×6 output. The input and weight matri-
ces have sparsity of 42% and 45%, respectively. The convolu-
tion operation can be broken down into 6 smaller convolution
chunks (C0-C5), as shown in Figure 2. Each of the 9 mul-
tiplications in a single convolution chunk are performed by
a compute thread within a 3 × 3 compute thread matrix.
The multiplications in red are ineffective computations which
means that either one or both the multiplication operands
are zeros, resulting in a wasted computation, whereas, the
multiplications in black are effective. It can be seen that,
on average, 66% multiplications in a convolution chunk are
ineffective (Output Sparsity OS = 6/9) which corresponds to
an effective hardware utilization of only 33%. This represents

FIGURE 2. Dense convolutions.

VOLUME 9, 2021 151461



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

a significant loss in computational efficiency as most of the
compute cycles are wasted on ineffective computations. The
Sparse-PE core addresses this issue and increases the hard-
ware utilization, consequently the throughput, by minimizing
the total number of ineffective computations performed by
the 3 × 3 compute matrix. It does this by looking-ahead
into the computations beforehand and scheduling only the
valid computations to minimize the total compute cycles.

Figure 3 shows the high-level block diagram of the
Sparse-PE core. The core takes the binary mask (BM) and
data input and performs sparse computations to generate
output data and binary mask. The Sparse-PE core consists of
three main components: Selection (SL), Computation (CM),
and Accumulation (AM). The SL block uses the sparse binary
masks of input data/feature maps and weights to perform
selection of valid computations (non-zerow × non-zeroa).
These valid computations are represented by a set of binary
matrices referred to as select matrices. The CM block uses
the select matrices to map the sparse input and weight data
on to a 3 × 3 matrix of compute threads. The mapping is
performed in such a way as to maximize the utilization of
individual compute threads. The AM block accumulates the
CM outputs to produce valid output results. The output sparse
binarymask (BM) is also generated which will be used for the
next CNN layer.

FIGURE 3. Sparse-PE architecture.

A. SPARSE BINARY MASK
Many previous approaches use compressed sparse row (CSR)
or column (CSC) formats to represent sparse data [15], [16],
[20]. We, instead, use a binary representation referred to as
sparse binary mask (BM) for representing both weights and
activations. The BM representation provides a simplistic, and
a more convenient method for representing the unstored zero
data and the stored, non-zero data. Unlike the CSR/CSC
formats, this representation does not require storage of count
and data pointers which significantly decreases the memory
footprint of the BM representation. Figure 4 shows the dense,
BM and CSR format representation of the 3 × 3 weight
matrix and the 3×8 input data/feature map given in Figure 2.
In the dense representation, both the zero and non-zero data
is stored in the memory along with the indices, as shown
in Figure 4(a). Figure 4(b) shows the equivalent BM rep-
resentation where only the non-zero data is stored. The
BM representation represents non-zero (stored) data with the
binary 1, and zero (unstored) data with the binary 0. Finally,
Figure 4(c) shows the CSR format representation, where
the relative locations of the non-zero data are represented
by the row and col pointers. We will further analyze the

FIGURE 4. Sparse data representations (a) Indexed-based representation
(b) BM-based representation (c) CSR format.

superiority of the BM representation over the CSR format
in Section IV-2.

To process the input sparse data, the Sparse-PE core is
provided the BM and the associated data in the form of
chunks for processing of a particular CNN layer. Although,
the Sparse-PE core can work on any type of convolution or
FC layer, for convenience and ease of understanding, we will
show the working of the core using the input and the weight
matrix in Figure 2. We also assume that the input and the
weight data is 8 bits wide.

B. SELECTION
The convolution operation works by performing dot product
between two vectors. In a two-sided sparse CNN model, the
dot product can result in four possible multiplication outputs.

i) zeroo = zerow × zeroa
ii) zeroo = zerow × non-zeroa
iii) zeroo = non-zerow × zeroa
iv) non-zeroo = non-zerow × non-zeroa
It can be seen that the only valid multiplication is the non-

zeroo which results when a non-zero weight (non-zerow) is
multiplied by a non-zero input/activation (non-zeroa). The
SL block has two user-defined parameters, n and k . The
main purpose of the SL block is to determine k , non-zeroo
computations in a set of n convolution chunks. The value of
k represents the total number of multiplier threads in the CM
block. In this design, we have a 3 × 3 matrix of multipliers,
making the value of k = 9. We define n as the lookahead
factor, which represents the number of convolution chunks
the core looks into to determine k multiplications. There are
a total of 6 convolution chunks (C0-C5) in the example input,
as shown in Figure 2. For this design, we consider the value
of n to be 3. This means that during one cycle, the core looks
into k = 9 valid multiplications in a set of n = 3, 3 × 3
convolution chunks. The SL block does this by using a series
of n, 2k-input AND gates followed by a selector, as shown
in Figure 5. Figure 6 shows the process of ANDing. During
the first cycle, the sparse masks of the weight and n = 3

151462 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 5. Selection (SL) block diagram.

FIGURE 6. Process of ANDing between the weight binary mask and the
input binary mask chunks in the SL block.

FIGURE 7. Selection for maximum multiplier utilization.

chunks of the input matrix are loaded into the core. Bit by bit
ANDing is performed between the sparsemasks of the weight
and the input to generate SEL_R1, SEL_R2, and SEL_R3,
representing the ANDed output of the first, second, and third,
convolution chunks, respectively. The ones in the SEL_R out-
puts represent the location of valid non-zero multiplications,
whereas, zeros represent in-effective computations involving
zero operands. To process the six convolution chunks, two
cycles are needed and the final SEL_R outputs are shown in
Figure 7. The first cycle generates the ANDed outputs for
the first three convolution chunks (C0, C1, C2), whereas, the
second cycle generates the ANDed outputs for the last three
convolution chunks (C3, C4, C5).

FIGURE 8. Selection algorithm employed by the Selector to maximum the
utilization of the multiplier matrix.

The ANDed outputs are provided to the selector which
selects the valid multiplications in a column major format.
There are a total of n selectors each processing a particular
comma-separated column. For this design, the three columns
Col0, Col1, Col2 (shown in Figure 7) are processed in parallel
by the three selectors. The selection process occurs iteratively
in a non-linear (or out-of-order) fashion. The purpose of the
selector is to schedule the effective computations in each of
the input columns (Col0, Col1, Col2) on to the respective
columns of the multiplier matrix. Since, at any point, the
maximum number of scheduled multiplications per column
cannot exceed the total number of multipliers per column of
the multiplication matrix, the selector has to make sure that
during any cycle the total number of selected multiplications
are equal to multiplier threads per column of the multiplier
matrix ((k = 9)/3 = 3) to ensure maximum hardware
utilization. Since every 1 in the input columns (Col0, Col1,
Col2) represents a valid computation, the selection algorithm
works by counting the number of ones in the individual
entries and selecting the entries that maximize the utiliza-
tion of the multiplier matrix. Consider the second column
(Col1) in Figure 7 on which the second selector operates. The
selection algorithm is shown in Figure 8. The selector iterates
over the first n = 3 values (val1, val2, val3) and generates
three accumulation values (accum1, accum2, accum3). #ones
function calculates the total number of ones in a particular
val. The first iteration comprises of the first three values
001 (val1), 100 (val2), 101 (val3). The first value, i.e., 001
is assigned the highest priority and the selector counts the
total number of ones in this entry and stores the result,
which in this case is 1, in the init variable. It then computes
the accumulator variables (accum1, accum2, accum3) using
the next two values (val2, val3). The selector then selects the
values based on whether the total number of ones in accumu-
lated values exceed the total number of compute threads in
one column of the thread matrix (i.e. 3). The working of the
algorithm for Col1 is shown in Figure 9. In the first iteration
(cycle 1), the selector selects val1 and val2, based on the

VOLUME 9, 2021 151463



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 9. Selection process for column 1 (Col1 in Figure 7) after running the algorithm in Figure 8.

FIGURE 10. Generation of selection matrices.

algorithm in Figure 8. The selector generates the output (out0)
by creating a single row of the selected values. Since a total
of three values were considered, the selector replaces the last
unselected value (val3) by zeros in the out0 output. In the next
iteration (cycle 2), the selector prioritizes the unselected value
(val3) from the previous cycle and repeats the same process
to generate out1. It takes a total of three cycles for the selector
to process the entire input column. At the end, a total of three
select matrices are generated by the three selectors operating
in parallel, as shown in Figure 10.

As indicated earlier, in this design example, we have con-
sidered the value of n to be 3. Therefore, in Figure 9, the
selector considers three values (val1, val2, val3) for selection
in a particular cycle and uses three accumulators (accum1,
accum2, accum3 in Figure 8). For a higher value of n, let’s say
6, the selector will consider all the values in Col1 in Figure 9.
At higher levels of sparsity, the increased n will result in an
increase in throughput as more valid, non-zero computations
will be scheduled and more invalid, zero computations will

FIGURE 11. FIFO-based Selector implementation in hardware for
generating select_matrices.

be skipped by the core. This dependency of the throughput
on sparsity and n will be explored later in Section V-A.
We should also mention that increasing the value of n will
also result in an increase in the hardware resource count as
more logic will be required for the selector implementation.
For n > 3, (2n− 2) accumulators and conditional statements
will be required by the algorithm in Figure 8 for the selector
implementation. Therefore, the value of n is chosen in such
a way as to keep a balance between performance and area
overhead.

Figure 11 shows the implementation of the selection pro-
cess for Col1 in Figure 7. The outputs from the AND network
are stored in a local SRAM memory. On every cycle, a new

151464 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 12. Process of computation in the first row of the multiplier matrix (Figure 7). The select_matrices (generated in Figure 11)
are used to schedule the computations on to the multiplier threads.

value is written into the memory and values are read based
on the priority of selection, with P1 being the higher priority.
The selector block implements the algorithm presented in
Figure 8. After every iteration, the read address (rd_addr) gets
incremented to read the next value in the memory and the pri-
orities are reversed. The outputs get stored into the selection
matrix based on the row numbers. The tag bits are a crucial
part of this process since they are used by the CM and the
AM block for accumulation of data (explained in subsequent
sections). Whenever a particular value is not selected during
a selection run, the tag bit associated to that value is resetted
to 0. The selection process ends when no more values need
to be read from the memory, the read addresses for all the
memories are equal, and all the tag bits are set to 1. These
conditions raise a termination flag which ends the process of
selection. The final select matrices, along with the associated
tag bits for every value are shown in Figure 11.

C. COMPUTATION
Figure 12 shows the process of computation in the CM block.
The actual sparse data and its BM representation for a par-
ticular layer is loaded into the on-chip SRAM. Based on the
BM of the input and the weight matrix, zeros are inserted at
various locations for length equalization and proper indexing,
as shown in Figure 12. The CM block consists of a series
of fifos connected to the multiplier threads of the thread
matrix. Since the size of multiplier matrix is 3 × 3, a total
of 9 fifos (fifo0-fifo8) are connected to the 9 individual mul-
tiplier threads. Each column of the multiplier matrix gets a

portion of the zero-inserted weight matrix. This can be seen
in Figure 12, where the first column of multiplier threads
(th0,0, th1,0, th2,0) gets the weight vector wa000, the second
column (th0,1, th1,1, th2,1) gets wb00wb2 and the third column
(th0,2, th1,2, th2,2) gets wc00wc2. Zero-inserted data is also
scheduled to the threads from the fifos as shown in Figure 12.
The enable pin of the fifos are connected to the tag bits
of the select matrices. Whenever the tag bit for a particular
entry is 1, the fifo is enabled and a new value from the fifo
is passed to the multiplier which performs the computation.
Figure 13 shows the process of computation for the second
column (th0,1, th1,1, th2,1) of the thread matrix. In the first
cycle, the first three values in the three fifos (fifo3, fifo4,
fifo5) are controlled by the first row of the select_matrix 1
(001 100 000). The first three bits (001) along with the asso-
ciated tag bit (1) controls fifo3. Similarly the next 2 sets of the
three bits control fifo4 and fifo5, respectively. Since the tag
bits for the first two values (001 and 100) are set to 1, the two
corresponding fifos are enabled and the data is moved to the
corresponding multiplier threads. The multiplier determines
the valid non-zero computation based on the values from the
select matrix. For the first value (001), the multiplier extracts
the last 8 bits corresponding to the weight value (wb2) and
the data (b2) and performs the multiplication to generate the
output value b2wb2. Similarly the second multiplier thread
(th1,1) generates the value c0wb0. Since the last three bits of
the first row of the select matrix 1 have a tag 0 associated
to it, the fifo5 enable is off and the multiplier th2,1 does not
perform a valid multiplication. The same process repeats for

VOLUME 9, 2021 151465



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 13. Cycle-by-cycle computation of the partial products from the second column thread matrix (th0,1, th1,1, th2,1)
in Figure 12.

the next two rows of the select matrix for cycles 2 and 3. The
green rectangles on the fifo entries in Figure 13 represent
the fifo entries that have tag bits of 1 and are thus utilized
in the current cycle, whereas, the red rectangles indicate the
entries that have tag bit of 0, and thus, are not utilized in
the current cycle. Parallel to this multiplier column, the first
(th0,0, th1,0, th2,0) and the third (th0,2, th1,2, th2,2) multiplier
columns process the data in their own respective fifos using
their own select matrices to generate the outputs.

From Figure 12, it can be seen that the output of the
multiplier threads are fed into the level 1 (L1) Adder cir-
cuit. The purpose of this adder is to accumulate the outputs
which belong to the same convolution chunk and to bypass
the addition if the outputs belong to different convolution
chunks. To further illustrate this, consider the Cycle 2 in
Figure 13. The outputs from th1,1 (d0wb0) and th2,1 (d2wb2)
belong to the same convolution chunk (C2 in Figure 2) and
therefore need to be accumulated, whereas, the output from
th0,1 (f0wb0) belongs to a completely different convolution
chunk (C4 in Figure 2) and has no relevance to the outputs
from th1,1 and th2,1. This happens because the selector in the
previous step is selecting the valid non-zero computations in a
non-linear fashion to maximize the multiplier utilization and
does not necessarily care about maintaining a proper flow of
multiplications. To circumvent this issue and to determine
which multiplier outputs need to be accumulated, the L1
adder uses a bit mapper that encodes the select matrix rows
to appropriate values, as shown in Figure 14(a). The two bits
at the output encode the following information:
00 -> The thread outputs within the multiplier column are

not added and passed as is.
01 -> The outputs of th0,x and th1,x are added, whereas, the

th2,x output is passed as is.
10 -> The outputs of th1,x and th2,x are added, whereas, the

th0,x output is passed as is.

11 -> The outputs of all the threads within a multiplier
column are added.

The mapping from the 9 bits of select matrix to 2 bit
output is straightforward. Since every color coded set of three
bits represent a multiplication within a particular convolution
chunk, whenever there are multiple ones within the same
set (black, blue, or orange), the thread outputs associated to
those values need to be added together. This can be seen from
entry 4 of Figure 14(a) (000 000 011 -> 01). The orange set
has value 011, so according to the above mapping, the first
two thread outputs are added together because they belong
to the same convolution chunk. Similarly, the last entry
(111 000 000) is mapped to 11, meaning that all three
thread outputs within a multiplier column belong to the
same convolution chunk, and therefore, need to be accu-
mulated. Using this mapping, the L1 adder can keep track
of which thread outputs need to be accumulated and which
do not. Figure 14(b) shows the internal structure of the
L1 Adder. It comprises of three adders which add different
combinations of the thread outputs. It also comprises of
an output multiplexer whose select line is connected to the
mapper output (2 bits). The multiplexer has three outputs
which are determined by the mapper output bits. The L1
Adder operation for the second column of the thread matrix
(th0,1, th1,1, th2,1) is shown in Figure 14(c). The mapper maps
the individual rows of the select matrix to 2 configuration
bits. Using the configuration bits, the L1 Adder generates the
outputs. In the first cycle, all three outputs (b2wb2, c0wb0, 0)
belong to different convolution chunks and therefore the con-
fig bits are 00, which passes the inputs to outputs without
accumulation. In the second cycle, the select matrix rowmaps
to 10, which adds the last two thread outputs (d0wb0, d2wb2)
together because they belong to the same convolution chunk
and forwards the first thread output (f0wb0) as is because it
belongs to a different convolution chunk. In the last cycle,

151466 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 14. L1 Adder computational mapping and partial sum generation (a) select_matrix to config
bits mapper (b) L1 Adder internal structure (c) Partial sum generation through accumulation from
the L1 adders.

the first two thread outputs are added and the last is passed as
is. It should be noted that there are a total of three identical
mappers (Figure 14(a)), each belonging to a particular L1
adder in Figure 12.

Even though the row length of the select matrix is 9 which
produces 29 = 512 combinations, the mapper only needs to
store those combinations for which the total number of ones
in the selectmatrix rows are less than or equal to themultiplier
threads per column of the multiplier matrix (3 in this case).
Therefore, the total combinations that need to be stored are
only 130. Generally, the total combinations that need to be
stored can be found using the following equation:

Combinations =
(
k
0

)
+

(
k
1

)
+

(
k
2

)
+ . . .+

(
k
n

)
(1)

where, k represents the length of a select matrix row
(9 in this case) and n represents the total multiplier threads
per column of the thread matrix (3 in this case). Therefore,
the total memory required for storing the three mappers is
only 780 bits (130× 2× 3).

Figure 15 shows the scheduling of threads for computation
of the output for the example in Figure 2. All the threads
are connected to their respective fifos and receive the data.
The select matrices are used to schedule the data and for
generating the 2-bit L1 Adder configuration bits (also shown
in Figure 15). To compare the performance of a dense design
which does not exploit sparsity, we can see from Figure 2 that
a dense approach would take a total of 6 cycles to generate
the output using the same number of multipliers (9 arranged
in a 3 × 3 matrix). The approach presented here utilizes just
three cycles to process the entire output by exploiting the
sparsity and maximizing the scheduling of valid, non-zero

FIGURE 15. Multiplier matrix thread scheduling for the example
in Figure 2.

multiplications during majority of the processing cycles.
This represents a 50% increase in the hardware utilization
which consequently represents a 50% increase in throughput.
It should also be noted that the hardware utilization increases
further when the input sparse matrix is larger. It can be
seen from Figure 15 that the last three multiplications in the
Thread Col 1 are all zeros because the input matrix has been
exhausted. For a larger input matrix, the average hardware
utilization and throughput would be higher. We will further
explore the impact of the size of the input on the hardware
utilization and throughput in Section IV.

VOLUME 9, 2021 151467



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 16. Accumulation for the example in Figure 2.

D. ACCUMULATION
The accumulation (AM) block buffers and accumulates the
partial dot product outputs from the CM block to produce
the final output results. The AM block consists of a series of
fifos (fifo1-fifo9) connected at the output of the 3 L1 Adder

circuits, as shown in Figure 16. The output of the fifos are
provided to a level 2 (L2) adder which accumulates the dot
products for a particular convolution chunk to generate the
final output. The CM block outputs the partial dot products
as well as the tag values associated with every product. The
tag bits are shown in parenthesis in Figure 16. The process of
accumulation occurs in two stages by the same color coded
fifos (fifo1 + fifo4 + fifo7), (fifo2 + fifo5 + fifo8), and
(fifo3 + fifo6 + fifo9). The outputs are either valid or partial,
based on the tag values associated to each accumulation
stage. If the tag values for all the inputs are equal to 1, the
output is considered valid, otherwise, it is considered partial.
Figure 17 shows the accumulation stage map for the example
in Figure 2. On every cycle there are two accumulation stages.
In the first stage, the previously generated partial outputs are
added to the new entries to make the output valid. To do
this, the AM block checks the tag bits in the partial output
and adds the missing tag 1 input to make the partial output
complete/valid. In the second stage, the AM replaces the
already used tag 1 values with zeros and generates new partial
outputs by summing the unused tag 1 values. This process
can be seen in Figure 17. The O3 partial value is generated by
summing the fifos F3, F6, F9 in cycle 1. The output is partial
because the Input2 and Input3 tag values are 0. O3 is made
valid by summing the O3(partial) with the now available
Input2 and Input3 tag 1 values in the stage 1 during the
2nd cycle. In the second stage, during the same cycle, the
already used tag 1 inputs are replaced by 0 and the new
partial product (O6) is generated. This process is repeated in
subsequent cycles until all the inputs are utilized and all the
outputs are valid.

FIGURE 17. Accumulation stage map.

151468 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 18. Initial latency of the Sparse-PE core operations.

Figure 18 shows the cycle-by-cycle processing latency of
the various blocks of the Sparse-PE core for the example
in Figure 2. The process of ANDing takes a total of two
cycles for the generation of a pair of 3-tuples (SEL_R1,
SEL_R2, SEL_R3). After the generation of the first tuple
of the SEL_R1, SEL_R2, and SEL_R3 values, the selection
block starts processing and takes a total of 3 cycles to generate
the select_matrices and the associated tag values (Figure 11).
The computation block gets triggered after the first row of the
select_matrices is generated and takes a total of three cycles
to process the three rows of the select_matrices (Figure 15).
Finally, the accumulation block takes a total of three cycles
to process the partial product outputs from the computation
block (Figure 17) to generate the final outputs. Therefore,
the initial processing latency to generate the first output is
six cycles. This initial latency, however, is amortized over
processing over a larger input.

E. OUTPUT ENCODING
Figure 19 shows the process of output sparse binary mask
encoding. Unlike the weight masks, the output binary mask
needs to be generated on-the-fly because of its dynamic
nature. From Figure 6, we can see that the SEL_R outputs
show the presence of the non-zero partial products for a
particular convolution chunk. The presence of even a single
one in the SEL_R outputs show that the output is non-zero.
To determine the output binary mask, we can use the same
metadata. The first step involves reduction of the individual
SEL_R outputs to a single bit (SEL_Rxr), based on an all-
zero check, as shown in Figure 19(a). This generates the
sparse binary mask for the outputs before ReLU. Note that
the SEL_R values are taken from the test example (Figure 2).
Figure 19(b) shows the second step after ReLU, where the
negative outputs, and their corresponding sparse mask loca-
tions, are converted into zeros. This final sparse mask is
stored as is, whereas, the output is shifted first to omit zero
data entries, and then stored.

This concludes the processing that goes on in a single
Sparse-PE core when convolution is performed using a 3× 3
filter. For a filter of size 5 × 5, 7 × 7, or higher, the kernel
factorization [45] is employed to convert larger filters into
a set of smaller 3 × 3 filters. This factorization makes it

FIGURE 19. Output sparse mask generation (a) 9-bits to 1-bit reduction
operation (b) Post-ReLU output generation.

FIGURE 20. 1 × 1 convolution layer transformation into an equivalent
3 × 3, stride 3 convolution layer.

possible to keep the design of PEs relatively simple and not
incorporate complex flow control to support larger filters.
It should be noted that the kernel factorization is done during
model generation and training. The final generated model
with 3 × 3 filters is then used during the inference. Sparse-
PE, however, also supports 5× 5 filters by using a multiplier
matrix of 5× 5, instead of the current 3× 3.

1 × 1 convolution, used in many modern CNN models,
is performed the same way as the 3×3 convolution. Figure 20
shows an example of 1×1 convolution. Here, a 1×1×9 filter
is convolved with a 3× 1× 9 input matrix to produce a 3× 1
output. Figure 20 also shows the transformation employed by
the architecture to transform the 1× 1 convolution operation
into an equivalent 3×3 stride 3 convolution. Here, individual
channels of the filter and the input matrix are transformed
into a 3× 3 matrix and scheduled to the core for processing.
The core then performs the selection, computation, and accu-
mulation in the same manner as explained previously. For an
input and a kernel with higher channel count, as is the case
for most commonly used CNN models, the channels are bro-
ken down equally and scheduled among different Sparse-PE
cores (Figure 22).

Sparse-PE architecture also allows the processing of FC
layers. Figure 21 shows an example of FC layer processing.

VOLUME 9, 2021 151469



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 21. FC layer transformation into an equivalent 3 × 3,
stride 3 convolution layer.

FIGURE 22. 3D Sparse-PE core architecture.

Here, a 9 × 1 input array and a 9 × 3 filter matrix produces
a 1 × 3 output. The input and the filter matrices are again
transformed into an equivalent 3 × 3 stride 3 convolution.
Sparse-PE then processes the transformed input to generate
the final outputs.

In the next section, we will show the performance improve-
ment offered by an accelerator that uses a system of
Sparse-PE cores to accelerate the CNN inference process.

V. IMPLEMENTATION AND RESULTS
This section describes the performance modeling and
the implementation of the Sparse-PE core. An individual

Sparse-PE core works by computing dot products between
a subsection of the sparse input data and the sparse weight
data to produce a subsection of the output data. To process
multiple subsections, we envision an R × C matrix archi-
tecture of the Sparse-PE cores, where, R represents the rows
and C represents the columns. From Figure 22, we can see
that the value of R and C is 7 and 4, respectively, making
the total number of Sparse-PE cores equal to 7 × 4 = 28.
Since, a single Sparse-PE core has 3 × 3 = 9 multiplier
threads, the matrix of cores in Figure 22 have a total of
9 × 28 = 252 multiplier threads. The cores get the sparse
data and the binary masks from input SRAMs. The outputs of
the cores are connected to level 3 (L3) adders that accumulate
individual channel outputs to generate the final output. These
outputs are stored in the output SRAMs and subsequently
sent to the DRAM for next layer processing. We simulate the
architecture using our cycle-accurate simulator and extract
the throughput and hardware utilization results. We also
implement the Sparse-PE core in RTL Verilog and provide
an estimate of resource and power consumption.

A. CYCLE-ACCURATE SIMULATOR
To evaluate the performance of an individual Sparse-PE
core and the 7 × 4 matrix of Sparse-PE cores as a whole,
we develop a cycle-accurate performance simulator. The sim-
ulator generates the results using different values of n for
the Sparse-PE cores in Figure 22. The simulator was built
usingMATLABR2020a and the Sparse-PE functionality was
implemented in software. The Sparse-PE cores in Figure 22
are implemented using a MATLAB function which is pro-
vided different data based on the current layer dimensions.
The evaluation files in the simulator use the data outputted by
the individual cores and schedulers to generate the through-
put and the speedup results for various dense and sparse
CNN models. The simulator has modifiable n parameter
(See Section IV-B) for the individual cores. Recall that n
(look-ahead factor) represents the total number of convolu-
tion chunks the core looks into during an input processing.
For the design example previously presented, we considered
the n value to be 3, which indicates that at any particular cycle,
the core looks into 3 convolution chunks to determine valid
computations. To evaluate the performance, we use different
values of the n parameter which allows us to look-ahead into
a different number of convolution chunks for processing in
a particular cycle. The simulator also contains routines for
SparTen [23], SCNN [22], and Eyeriss v2 [19] for performing
comparisons.

The performance is evaluated on many widely used CNN
models including Alexnet [1], VGG16 [2], MobileNet [5],
and GoogleNet [46]. We use the sparse versions of VGG16
and MobileNet for comparison purposes. To create sparse
versions of the CNNs, we use the approach presented in [18]
for pruning using the MATLAB’s Deep Learning Toolbox.
For fair comparison, we achieve the same level of the
weight and the input sparsity as the previous approaches
and then evaluate the nets for performance comparisons.

151470 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 23. VGG16 performance with varying sparsity (a) Speedup results
(b) Average thread utilization.

FIGURE 24. MobileNet performance with varying sparsity (a) Speedup
results (b) Average thread utilization.

The activation sparsity changes dynamically during the infer-
ence process, therefore, we average out the input sparsity for
a batch of 100 randomly selected inputs. After pruning of the
network, we generate the sparse binary masks for every layer
and generate a network containing only the binary masks,
since only this information is needed to efficiently represent
the MAC operations needed per layer for the accelerator.

1) PERFORMANCE WITH VARYING SPARSITY
Our core simulator has the ability to sweep both input
activation/weight sparsity from high (95%/95%) to low
(10%/10%). This gives us an accurate measure of how much
performance improvement, in terms of speedup and hard-
ware utilization, can be achieved using the Sparse-PE core.
Figures 23 and 24 show the speedup results and the average
thread utilization for VGG16 and MobileNet, respectively,
under varying sparsity. These results are obtained by running
the sparse neural nets layer by layer and then averaging out

the speedup and the thread utilization for one complete run.
It should be noted that all the layers, including the FC layers,
are accounted for in this test. Three Sparse-PE core con-
figurations (Sparse-PE-n) are considered with n (lookahead
factor) changed from 9 to 18 to 27. At very low sparsity
(0.1/0.1), we observe that a dense core and the Sparse-PE
core perform somewhat similar in terms of performance.
There is a slight increase in the thread utilization, with dense
providing almost 80% utilization while all the Sparse-PE
configurations providing almost 90% utilization for sparse
VGG16 net. For MobileNet, the dense provides almost 70%
utilization, while Sparse-PE cores provide almost 80%. For
VGG16, the Sparse-PE cores consistently keep the utilization
greater than 90% even at high sparsity levels (60%), whereas,
as expected, the dense core’s utilization decreases by 25-30%
and then decreases sharply by 50% at high sparsity levels.
This higher thread utilization directly correlates to improved
throughput and speedup when compared against a dense
design. At 80% sparsity, the Sparse-PE-9, Sparse-PE-18 and
Sparse-PE-27 are 7×, 10×, and 11.5× faster, respectively,
than a dense design for the sparse VGG16 net. Comparing
different versions of the Sparse-PE cores, we see a 57%
performance improvement when going from Sparse-PE-9
configuration to Sparse-PE-27 configuration. This shows that
the higher the value of the lookahead factor n, the greater
is the performance improvement delivered by our Sparse-PE
core for sparse input activations/weights.

2) COMPARISON AGAINST PAST APPROACHES
We compare our core design against three previously
proposed sparse CNN accelerators (SCNN [22],
SparTen [23], Eyeriss v2 [19]) and one dense accelerator
(NeuroMAX [11]). Among these designs, SCNN, SparTen,
and NeuroMAX do not support FC layers, so we omit our
FC layer results for fair comparison. SCNN, in addition, also
does not support non-unit stride convolutions. We use the
Sparse VGG16 net for comparison with these three accel-
erators. The average sparsity achieved without a significant
loss in accuracy for the weights and activations is 77% and
68%, respectively. Figure 25 shows the comparison results
obtained using our simulator. We observe that Sparse-PE-27,
on average, performs 11.2×, 4.3×, and 1.96× better than
NeuroMAX, SCNN, and SparTen, respectively.

Figure 26 shows the comparison of the Sparse-PE core
configurations against Eyeriss v2 on selected layers of
MobileNet. The average sparsity for the weights and activa-
tions is 73% and 64%, respectively. We observe that, on aver-
age, Sparse-PE-9, Sparse-PE-18, and Sparse-PE-27, perform
1.04×, 1.71×, and 2.85×, better, respectively, than Eyeriss
v2. Comparing different configurations show that the Sparse-
PE-27 configuration offers 108.8% increase in speedup over
Sparse-PE-9 configuration for sparse MobileNet.

Energy comparison among different accelerators is some-
what challenging as it requires working RTL implementa-
tions. Since the energy consumption is dominated by the
total number of DRAM accesses, therefore, by estimating

VOLUME 9, 2021 151471



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

FIGURE 25. VGG16 speedup comparison.

FIGURE 26. MobileNet speedup comparison.

the DRAM accesses, energy difference among the acceler-
ators can be approximated. Many of the recent works rely
on the CSC/CSR formats for the storage of the non-zero
data. We, therefore, compare the accessed memory for the
CSC format against the sparse binary mask format. Figure 27
shows the intermediate activations’ memory access compar-
ison for selected sparse VGG 16 and MobileNet layers.1

The activation sparsity for different layers is also shown.
In the initial layers with low activation sparsity, the CSC
format has approximately 4× and 3.7× higher DRAMmem-
ory accesses than the sparse mask for sparse VGG16 and
Mobilenet, respectively. In the deeper layers with moderate
to high sparsity, the memory requirement for the CSC format
is around 1.7× that of the sparse mask.

This shows that the sparse binary mask format not only
needs less encoding/decoding logic, but is also efficient when
it comes to memory requirements when compared against the
CSC format. This translates directly to higher energy, area,
and compute savings for our accelerator which employs the
sparse binary mask.

B. RTL IMPLEMENTATION
We use Xilinx Z-7100 SoC to implement the Sparse-PE core
design. The SoC is divided into two parts, the programmable

1The memory requirement for the non-zero data is not shown since it is
the same for both the CSC format and the sparse binary mask. The accessed
memory comparison is made for the sparse binary mask and the location
vectors (column, index) of the CSC format.

FIGURE 27. Sparse binary mask vs. CSC DRAM access for (a) Sparse
VGG16 (b) Sparse MobileNet.

TABLE 1. Resource utilization for a single Sparse-PE-27 core.

logic (PL), containing the FPGA fabric, and the processing
system (PS), containing ARM cores. The two are connected
using an AXI on-chip communication subsystem. We imple-
ment the Sparse-PE core on the PL and use the PS to transfer
data to/from a desktop computer to PL. The test design is
implemented for the Sparse-PE-27 configuration and runs
at 200 MHz. Table 1 shows the resource utilization results
for a single Sparse-PE core with n = 27. Figure 28 shows
the breakdown of the utilization among various sub-blocks of
the Sparse-PE core. The LUT and the FF cost is dominated
by the selection (SL) block with SL taking almost 40% and
34% of the overall LUTs and FFs used, respectively. The
SRAM utilization is dominated by the computation (CM)

151472 VOLUME 9, 2021



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

TABLE 2. Comparison of Sparse-PE-based accelerator with previous designs.

FIGURE 28. Breakdown of resource utilization for (a) LUTs (b) FFs
(c) SRAM memory.

block because of the bit mapping and the buffering fifos
(Figure 13). The design has a power consumption of 2.48W
with the PS dominating the consumption (55%).

Table 2 shows the implementation details of the Sparse-PE
accelerator (Figure 22) comprising of the Sparse-PE-27
cores. It should be noted that the PE number in Table 2 refers
to the total number of multipliers in the design. Since, a single
Sparse-PE-27 core has 3 × 3 = 9 multipliers, the total PEs
(or multipliers) in the design are R × C × 9 = 252. The
R×C matrix of the accelerator consumes roughly 85% of the
available LUT resources, whereas, the rest 15% are consumed
by the additional control logic. Table 2 also lists the details
of some recently proposed sparse CNN accelerators. Eye-
riss v2, implemented on a 65nm ASIC, supports two-sided
sparsity (sparsewa), i.e., sparsity in both weights and activa-
tions. Eyeriss v2, however, uses a total of 2695k gates which
represents a 108% increase in area cost when compared to
the original Eyeriss [17]. This is because of the relatively
complex design of the PEs of Eyeriss v2. SparTen accel-
erator [23] is implemented on Intel Cyclone IV FPGA and
operates at 50 MHz. It also supports two-sided sparsity but
has no support for FC layers. Although the implementation
cost of SparTen is not reported, the architecture of SparTen
requires complex inter-PE synchronization circuits which
would greatly increase its cost. Zero-Activation-Skipping
Convolutional Accelerator (ZASCA) [47], implemented on a
65nmASIC, uses a total of 192 PEs and runs at 200MHz. Just
like Sparse-PE, ZASCA accommodates both the CONV and
the FC layers in its architecture. However, unlike Sparse-PE,
ZASCA only exploits activation sparsity (sparsea). In addi-
tion, because of architectural limitations, ZASCA cannot
fully exploit its resources for 1 × 1 convolution, result-
ing in a significant decrease in hardware utilization for

such convolutions. Zhu et al. [48] proposed a structured
sparse CNN accelerator, implemented on Xilinx ZCU102
FPGA. The proposed accelerator uses structured pruning to
reduce irregularities in sparse weights and employs a sparse
wise dataflow scheme for high data reuse. The accelerator
proposed in [48], however, only exploits sparsity in weights
(sparsew) and cannot exploit activation sparsity. Because of
the complex design and the dataflow scheme, the accel-
erator proposed in [48] has a huge logic utilization cost
(390k LUTs). Sparse-PE accelerator, even though, employs
32% more PEs than [48], it, however, utilizes 71% lesser
resources. Xie et al. [49] proposed a flexible accelerator
architecture that supports both structured and unstructured
weight sparsity. The accelerator is implemented on Intel
Aria 10 SoC and uses a hybrid parallel (HP) dataflow. Even
though, the resource count of the accelerator is lower than
Sparse-PE, the dataflow employed in the accelerator does not
support FC layers. It, also, can only exploit weight sparsity
(sparsew) and has no support for activation sparsity. The
accelerator proposed in [50] uses a weight-oriented dataflow
that performs element-matrix multiplication. It also uses a
tile lookup table (TLUT) to match the sparse weight with
the input pixel to exploit weight sparsity (sparsew). Similar
to [49], the accelerator proposed in [50] is also a CONV only
accelerator and has no support for FC layers. It also, cannot
exploit activation sparsity (sparsea).

VI. CONCLUSION
This paper proposes Sparse-PE, a multi-threaded, general
purpose, dot product core for sparse convolutional neural net-
works. The designed core is capable of exploiting two-sided
sparsity, that is, sparsity in both the weights and activations,
to maximize the throughput and hardware utilization. Unlike
contemporary approaches that use the CSC format and the
associated complex PE design, the Sparse-PE core uses the
sparse binary mask format and has a relatively low com-
plexity. We also develop novel, low-cost circuits, including
selection, computation, and accumulation, which, when used
in conjunction, allows the core to skip huge number of com-
putations involving zero data and only favor computations
involving non-zero data to maximize the throughput. Our
results show that the Sparse-PE core can effectively keep the
hardware utilization above 85% at sparsity as high as 60%, for

VOLUME 9, 2021 151473



M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

both the input activations and weights. We also compared the
performance of our core-based accelerator against previous
state-of-the-art dense and two-sided sparse CNN accelera-
tors. Sparse-PE offers, on average, 12×, 4.2×, 2.38×, and
1.98×, speedup over NeuroMAX (dense), SCNN (sparse),
Eyeriss v2 (sparse), and SparTen (sparse), respectively.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. 25th Int. Conf. Neural
Inf. Process. Syst. (NIPS), vol. 1. Red Hook, NY, USA: Curran Associates,
2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ 2015, arXiv:1512.03385.

[4] M. Horowitz, ‘‘1.1 computing’s energy problem (and what we can do about
it),’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
vol. 57, Feb. 2014, pp. 10–14.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ 2018,
arXiv:1801.04381.

[7] D.Miyashita, E. H. Lee, and B.Murmann, ‘‘Convolutional neural networks
using logarithmic data representation,’’ 2016, arXiv:1603.01025.

[8] S. Vogel, M. Liang, A. Guntoro, W. Stechele, and G. Ascheid, ‘‘Efficient
hardware acceleration of CNNs using logarithmic data representation with
arbitrary log-base,’’ in Proc. Int. Conf. Comput.-Aided Design (ICCAD).
New York, NY, USA: Association for Computing Machinery, Nov. 2018,
pp. 1–8, doi: 10.1145/3240765.3240803.

[9] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, ‘‘Fixed point quantization
of deep convolutional networks,’’ 2015, arXiv:1511.06393.

[10] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, ‘‘14.5 envi-
sion: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOI,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246–247.

[11] M. A. Qureshi and A. Munir, ‘‘NeuroMAX: A high throughput, multi-
threaded, log-based accelerator for convolutional neural networks,’’ in
Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), Nov. 2020,
pp. 1–9.

[12] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, ‘‘UNPU:
An energy-efficient deep neural network accelerator with fully vari-
able weight bit precision,’’ IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[13] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
‘‘Stripes: Bit-serial deep neural network computing,’’ in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1–12.

[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[15] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, ‘‘Cnvlutin: Ineffectual-neuron-free deep neural network
computing,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 1–13.

[16] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, ‘‘Cambricon-X: An accelerator for sparse neural networks,’’
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1–12.

[17] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[18] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[19] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,’’ IEEE
J. Emerging Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[20] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.

[21] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen,
and Y. Chen, ‘‘Cambricon-S: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach,’’ in Proc.
51st Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2018,
pp. 15–28, doi: 10.1109/MICRO.2018.00011.

[22] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, ‘‘SCNN: An accel-
erator for compressed-sparse convolutional neural networks,’’ in Proc.
ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 27–40.

[23] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
‘‘SparTen: A sparse tensor accelerator for convolutional neural networks,’’
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture. New York,
NY, USA: Association for ComputingMachinery, Oct. 2019, pp. 151–165,
doi: 10.1145/3352460.3358291.

[24] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, ‘‘Snowflake:
An efficient hardware accelerator for convolutional neural networks,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[25] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor process-
ing unit,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

[26] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, ‘‘ShiDianNao: Shifting vision processing closer to the sen-
sor,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2015, pp. 92–104.

[27] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, ‘‘PuDianNao: A polyvalent machine learning accelera-
tor,’’ SIGPLAN Notices, vol. 50, no. 4, pp. 369–381, Mar. 2015, doi:
10.1145/2775054.2694358.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep
learning with limited numerical precision,’’ 2015, arXiv:1502.02551.

[29] K.-W. Chang and T.-S. Chang, ‘‘VWA: Hardware efficient vectorwise
accelerator for convolutional neural network,’’ IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 67, no. 1, pp. 145–154, Jan. 2020.

[30] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, ‘‘An FPGA-based
CNN accelerator integrating depthwise separable convolution,’’ Electron-
ics, vol. 8, no. 3, p. 281, Mar. 2019.

[31] L. Bai, Y. Zhao, and X. Huang, ‘‘A CNN accelerator on FPGA using
depthwise separable convolution,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 65, no. 10, pp. 1415–1419, Aug. 2018.

[32] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M. Stuart,
Z. Poulos, and A. Moshovos, ‘‘Laconic deep learning inference acceler-
ation,’’ in Proc. 46th Int. Symp. Comput. Archit. (ISCA). New York, NY,
USA: Association for ComputingMachinery, Jun. 2019, pp. 304–317, doi:
10.1145/3307650.3322255.

[33] A. Delmas, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Sharify,
M. Nikolic, and A. Moshovos, ‘‘Bit-tactical: Exploiting ineffectual com-
putations in convolutional neural networks: Which, why, and how,’’ 2018,
arXiv:1803.03688.

[34] C. Ding, S. Liao, Y.Wang, Z. Li, N. Liu, Y. Zhuo, C.Wang, X. Qian, Y. Bai,
G. Yuan, X.Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan, ‘‘CirCNN:
Accelerating and compressing deep neural networks using block-circulant
weight matrices,’’ in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Oct. 2017, pp. 395–408.

[35] A. Ankit, I. El Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin,
R. S. Williams, P. Faraboschi, W.-M. Hwu, J. P. Strachan, K. Roy, and
D. S Milojicic, ‘‘PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,’’ 2019, arXiv:1901.10351.

[36] A. Shafiee, A. Nag, N.Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, ‘‘ISAAC: A convolutional neural
network accelerator with in-situ, analog arithmetic in crossbars,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 14–26.

[37] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
‘‘Tensaurus: A versatile accelerator for mixed sparse-dense tensor compu-
tations,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2020, pp. 689–702.

[38] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, ‘‘MatRap-
tor: A sparse-sparse matrix multiplication accelerator based on row-wise
product,’’ in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2020, pp. 766–780.

151474 VOLUME 9, 2021

http://dx.doi.org/10.1145/3240765.3240803
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1145/3352460.3358291
http://dx.doi.org/10.1145/2775054.2694358
http://dx.doi.org/10.1145/3307650.3322255


M. A. Qureshi, A. Munir: Sparse-PE: Performance-Efficient Processing Engine Core for Sparse CNNs

[39] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, ‘‘ExTensor: An accelerator
for sparse tensor algebra,’’ in Proc. 52nd Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO). New York, NY, USA:
Association for Computing Machinery, Oct. 2019, pp. 319–333, doi:
10.1145/3352460.3358275.

[40] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, ‘‘SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 58–70.

[41] Z. Zhang, H. Wang, S. Han, and W. J. Dally, ‘‘SpArch: Efficient archi-
tecture for sparse matrix multiplication,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 261–274.

[42] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, ‘‘OuterSPACE:
An outer product based sparse matrix multiplication accelerator,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2018,
pp. 724–736.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015, doi: 10.1007/s11263-015-0816-y.

[44] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io
[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ 2015, arXiv:1512.00567.
[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 1–9.

[47] A. Ardakani, C. Condo, and W. J. Gross, ‘‘Fast and efficient convolutional
accelerator for edge computing,’’ IEEE Trans. Comput., vol. 69, no. 1,
pp. 138–152, Jan. 2020.

[48] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, ‘‘An
efficient hardware accelerator for structured sparse convolutional neural
networks on FPGAs,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 28, no. 9, pp. 1953–1965, Sep. 2020, doi: 10.1109/TVLSI.2020.
3002779.

[49] X. Xie, J. Lin, Z. Wang, and J. Wei, ‘‘An efficient and flexible
accelerator design for sparse convolutional neural networks,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2936–2949,
Jul. 2021.

[50] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, ‘‘An efficient
hardware accelerator for sparse convolutional neural networks on FPGAs,’’
in Proc. IEEE 27th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr. 2019, pp. 17–25.

MAHMOOD AZHAR QURESHI received the
B.S. degree in electrical engineering from the
National University of Science and Technology
(NUST), Pakistan, in 2013, and the M.S. degree in
electrical engineering from the University of Engi-
neering and Technology (UET), Taxila, Pakistan,
in 2018. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, Kansas
State University. From 2014 to 2018, he worked
as a Senior RTL Design Engineer at Center for

Advanced Research in Engineering (CARE) Pvt. Ltd., Islamabad, Pakistan.
During the summer of 2020, he interned at MathWorks, USA, adding new
features in the HDL Verifier toolbox product. During fall 2020, he interned
at Tesla, working on the failure analysis of the infotainment hardware for the
TeslaModel 3 andModel Y global feet. His contributions resulted in massive
savings for the company in Q4 of 2020. He is actively pursuing research in
the domain of hardware security and deep learning hardware accelerators.

ARSLAN MUNIR (Senior Member, IEEE)
received the M.A.Sc. degree in electrical and com-
puter engineering from The University of British
Columbia, Vancouver, BC, Canada, in 2007,
and the Ph.D. degree in electrical and com-
puter engineering from the University of Florida,
Gainesville, FL, USA, in 2012.

From 2007 to 2008, he worked as a Software
Development Engineer at the Embedded Systems
Division, Mentor Graphics Corporation. From

May 2012 to June 2014, he was a Postdoctoral Research Associate with the
Electrical and Computer Engineering Department, Rice University, Houston,
TX, USA. He is currently an Associate Professor with the Department of
Computer Science, Kansas State University. His current research interests
include embedded and cyber-physical systems, secure and trustworthy
systems, parallel computing, artificial intelligence, and computer vision.
He received many academic awards, including the Doctoral Fellowship
from the Natural Sciences and Engineering Research Council (NSERC)
of Canada. He earned gold medals for best performance in electrical
engineering, gold medals and academic roll of honor for securing rank one
in pre-engineering provincial examinations (out of approximately 300,000
candidates).

VOLUME 9, 2021 151475

http://dx.doi.org/10.1145/3352460.3358275
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TVLSI.2020.3002779
http://dx.doi.org/10.1109/TVLSI.2020.3002779

