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ABSTRACT Matrix multiplication is a main computation kernel of emerging workloads, such as deep neural
networks and graph analytics. These workloads often exhibit high sparsity in data, which means a large
portion of the elements in the data are zero-valued elements. Though systolic arrays have shown a significant
performance and energy efficiency improvement over central processing units (CPUs) or graphic processing
units (GPUs) when executing matrix multiplications, data sparsity is largely overlooked in the conventional
systolic arrays. In this paper, we propose a row-wise product-based sparse matrix multiplication (SpMM)
hardware accelerator for compressed sparse row (CSR)-formatted input matrices. Our hardware accelerator
leverages row-wise product, which has advantages over inner-product or outer-product when executing
the sparse matrix multiplications. As compared to the conventional systolic arrays, which cannot skip the
ineffectual operations, our hardware accelerator only performs effectual operations with non-zero elements,
improving the performance when executing SpMM. In addition, we also propose an optimal load balancing
scheme when using multiple processing elements (PEs). Our load balancing scheme utilizes an operation
count-based matrix tiling for parallel execution of the PEs and resource contention avoidance. According
to our evaluation, our 32PE-SpMM accelerator shows 13.6× – 47.9× speedup over tensor processing unit
(TPU)-like systolic arrays, on average. Furthermore, our operation count-based load balancing scheme shows
better performance over the fixed tiling and non-zero element count-based tiling by up to 8.48% and 6.28%,
respectively, with only up to 0.06% matrix tiling pre-processing latency overhead.

INDEX TERMS Sparse matrix multiplication, row-wise product, load balancing, matrix tiling, speedup.

I. INTRODUCTION
Matrix multiplication (MM) is a pivotal part of many
emerging workloads, such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and graph ana-
lytics. Many of these emerging workloads show the data spar-
sity, which means most of the elements in input matrices are
zero. In MMs, since the zero-valued elements in the operand
matrices do not affect the results, removing the multiplica-
tions and accumulations (MACs) with zero-valued elements
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can significantly improve the performance and energy effi-
ciency of the systems.

The sparse matrix multiplication (SpMM) can be per-
formed in typical central processing units (CPUs) or graphic
processing units (GPUs). However, CPUs do not perform
data parallel workloads well while they have strengths on
executing the control-intensive workloads. Though GPUs
(e.g., NVIDIAV100 [1]) could be an alternative for executing
the data parallel workloads, GPU cannot skip the zero MACs
and only provides a rigid support for sparsity, worsening the
performance and energy efficiency. In addition, GPUs are
typically power-hungry, making them hard to be deployed in
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the systems that have a tight cost budget. On the other hand,
the systolic arrays such as Google tensor processing units
(TPUs) [2] have strengths on executing MMs. However, the
systolic arrays cannot also skip the zero MACs due to their
fixed dataflow. Thus, a specialized accelerator for SpMMwill
be a key component for performance and power efficiency of
modern computer systems.

For an efficient SpMM accelerator, there are two
traditional and well-known approaches: inner-product and
outer-product. Assuming that we perform the matrix mul-
tiplication A×B = C, the inner-product approach performs
the dot product between each row of A and each column
of B. The outer-product approach performs the cross product
between each column of A and each row of B. For sparse
MM, to remove the MAC operations with zero elements, the
inner-product must match the column indices of the non-zero
elements in the row vector of the matrix A and row indices of
the non-zero elements in the column vector of the matrix B
during the dot-product, making the hardware design compli-
cated. Though the outer-product does not require the index
matching, partial results from the cross-product require a
large on-chipmemory tominimize the amount of data transfer
between the accelerator and off-chip memory. In addition,
in the cases of inner-product and outer-product, accessing
the column of the matrices could be difficult for exploiting
the locality. In order to fully exploit the locality from the
matrix column, the matrix (i.e., B in the inner-product and
A in the outer-product) should be stored in a transposed
format, eventually causing the burden of transposing oper-
ations. To overcome the drawbacks of the inner- and outer-
product, we can utilize a row-wise product-based approach as
an alternative. The main advantages of the row-wise product
MM can be summarized as follows. First, it does not need to
perform index matching. Second, it does not require a huge
size of on-chip memory which is necessary for storing the
partial results. Third, it does not require column-wise access
to the operand matrices, making it advantageous to exploit
the locality.

Considering the several advantages of the row-wise prod-
uct, in this paper, we propose a row-wise product-based
SpMM accelerator architecture. In addition, to store the
sparse data efficiently, we leverage the compressed sparse
row (CSR) format, which is one of the most well-known
formats for compressing the sparse matrix. In summary,
our accelerator performs the matrix multiplication with
CSR-formatted input matrices, requiring much less on-chip
memory to store the sparse matrices.

Despite of the advantages of the row-wise product, the
efficient parallelization between the row-wise product opera-
tions with multiple processing elements (PEs) is challenging.
Depending on the non-zero value distributions, the amount of
load in each PE would be diverse. Since the entire execution
time will be determined by the PE that has the largest load,
PE load balancing is a critical factor for performance (and
thus, energy efficiency) of SpMM execution with multiple
PEs. By considering the number of operations and non-zero

elements assigned to each PE, our load balancing technique
tries to attain an optimal load balance among PEs, leading to
a better performance.

We summarize our contributions as follows:
• We propose a row-wise product-based SpMM accelera-
tor for CSR-formatted input matrices;

• We also propose an operation count-based matrix tiling
scheme for optimal load balancing across the multiple
PEs;

• Our row-wise product-based SpMM accelerator with
the operation count-based matrix tiling scheme shows
13.6× – 47.9× speedup (on average) over the TPU-like
systolic arrays;

• Our operation count-based load balancing scheme
shows better performance over the fixed tiling and
non-zero element count-based tiling by up to 8.48% and
6.28%, respectively, on average, while only incurring
the matrix tiling latency overhead in the host CPU up
to 0.06% (on average), which is almost negligible.

II. RELATED WORK
As the SpMM is frequently used in a wide variety of
the emerging applications, many SpMM hardware archi-
tectures have been recently introduced. One of the most
well-known and intuitive approaches for MM is an inner-
product approach. In [3], Gondimalla et al. have introduced
SparTen architecture, which utilizes an inner-product based
approach. They have introduced an efficient inner-join with
bitmask (to mark non-zero element positions) which even-
tually are ANDed to identify ineffectual operations. They
have also introduced a sorting-based greedy load balancing
technique for the PEs. However, the sorting operation is a
time-consuming and complicated process, which is not desir-
able for efficient hardware implementation. Qin et al. have
also proposed an inner-product based hardware accelerator
architecture, SIGMA [4]. They have introduced a dot product
engine (a.k.a., Flex-DPE) that exploits tree-based topology
and forward adder network in order to support flexible inter-
connect. It also utilizes a bitmap-based format for compressed
data format. However, only loaded operand matrix is repre-
sented by the compressed format while the streaming matrix
is represented by dense format (i.e., including both all zero
and non-zero elements), causing the inefficiency in memory
and on-chip storage. Furthermore, the inner-product based
approaches inherently requires index matching (or inner-
join), which is not desirable for cost-efficient hardware design
and implementation.

To remove the complex index matching process, sev-
eral outer-product based approaches have been introduced.
Zhang et al. have proposed SpArch [5] that utilizes the
outer-product approach for sparse MM. For compressed data
format, SpArch utilizes condensed matrix representation that
compacts non-zero elements in a row. SpArch also utilizes
Huffman tree-based scheduler, which helps efficiently use
memory bandwidth. SpArch produces the partial result matri-
ces that have less non-zero elements earlier than those that
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havemore non-zero elements, so that it improves a reusability
of the partial result matrices and reduces a memory band-
width requirement. This is because the sparsermatrix requires
less size in memory or storage with condensed matrix rep-
resentation. Hojabr et al. have proposed SPAGHETTI [6],
which also utilizes the outer-product approach. SPAGHETTI
uses different compressed formats for input matrices (com-
pressed sparse row and compressed sparse column for each
operandmatrix) and output matrix (COO: coordinate format).
Since the COO format is not a sorted format (i.e., the coordi-
nates and values are not sorted in a format of row- or column-
major order), it is hard to be utilized in an in-situ manner.
In addition, the outer-product based approaches typically
require a large storage for partial result matrices.

In order to complement the disadvantages of the inner- and
outer-product based approaches, several row-wise product-
based approaches have also been proposed. Srivastava et al.
have proposed MatRaptor [7], which is a row-wise prod-
uct based approach with a new compressed format, channel
cyclic sparse row (C2SR). Exploiting that the multiplications
for each row of the matrix A can be performed in parallel,
MatRaptor carries out row-wise multiplication followed by
sort and accumulation with the primary and helper queues.
Similarly, in [8], another row-wise product-based approach
has been introduced by Zhang et al., which is called as
Gamma. It also exploits the row-level parallelismwhile it also
employs Fiber cache, a specialized memory structure to store
the non-zero elements and their coordinates. Our proposed
approach is similar to the above works in that the row-
wise product-based approach is used. However, our approach
uses a CSR format for compressed matrix format, which is
commonly used. In addition, we also propose a novel load
distribution and balancing technique for better parallelism
between the PEs, which considers the amount of operations
assigned to each PE.

III. BACKGROUND
A. ROW-WISE PRODUCT-BASED MATRIX MULTIPLICATION
WITH SPARSE INPUT MATRICES
In this subsection, we briefly explain how row-wise product-
basedMM is performed. Assuming we perform amatrix mul-
tiplication A (dimension:M×N)×B (dimension: N×K)=C
(dimension: M×K), we perform scalar × vector multipli-
cations between each element (coordinate: (m, n)) in the
matrix A and row vector with the row index n in the matrix B.
It generates a partial result of coordinate (m, k) in thematrix C
where k is the column index in the row vector of the matrix B.
In order to generate the complete result matrix C, we should
perform the multiplications iteratively for all elements in the
matrix A with all the rows in matrix B, meaning that M×N
scalar-vector multiplications are required. We then perform
accumulations with all partial results for each element in the
matrix C.

For SpMM, we should remove ineffectual MACs when
generating the row-wise products. We can easily skip the

FIGURE 1. An example of row-wise matrix multiplication by exploiting
sparsity. The black-colored element indicates a non-zero value while the
white-colored element indicates a zero value.

ineffectual operations (i.e., where the elements of operand
matrices are zero) in row-wise product-basedMM. In the case
of a zero-valued scalar element in the matrix A, we can skip
a scalar-vector multiplication which involves zero-valued
scalar value as an operand. During the scalar-vector mul-
tiplication with a non-zero scalar element in the matrix A,
we can also skip ineffectual scalar-scalar multiplications with
the zero-valued scalar elements in the row vectors of the
matrix B.

For an illustrative example, we show a matrix-matrix mul-
tiplication (input dimension: 5×5) in Figure 1. First, we per-
form scalar-vector multiplications for each scalar value in
each row of matrix A with the row vector in the matrix B
of which row index is equal to the column index of the scalar
element in the matrix A. At the first row of the matrix A,
we can remove four ineffectual scalar-vector multiplications
while performing the scalar-vector multiplication only with
the scalar value in (0, 3) of matrix A. When performing the
scalar-vector multiplication with the scalar value in (0, 3) of
the matrix A, we can also skip three scalar-scalar multiplica-
tions in (3, 0), (3, 1), and (3, 4) of matrix B, leaving only two
scalar-scalar multiplications ((3, 2) and (3, 3) of matrix B).
Since the second, third, and fourth row of the matrix A do not
have non-zero elements, we can also skip 15 scalar-vector
multiplications. For the last row of the matrix A, we only
perform one scalar-vector multiplication while removing four
scalar-vector multiplications. We perform the scalar-vector
multiplication with the element (4, 2) in the matrix A and
third row (i.e., row index = 2) of the matrix B. Since there
are three zero-valued scalar elements in the row vector of the
matrix B, we only perform two scalar-scalar multiplications
((4, 2) of the matrix A with (2, 0) and (2, 3) of the matrix B).
As a result, in the matrix C, we have four non-zero elements
in the coordinates (0, 2), (0, 3), (4, 0), and (4, 3).

As we explained in Section I, when performing SpMM,
row-wise product-based MM has several advantages over
inner- or outer-product-based MM approaches. Assuming
that we perform the inner-product-based MM with the exam-
ple shown in Figure 1, inner-product-based MM requires
index matching in order to perform multiplication operations
between two non-zero scalar elements. To generate the result
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element in the coordinate (0, 0) of the matrix C, we need
to find whether the indices (3 in Figure 1) of the non-zero
elements in the row vector (index= 0) of the matrix A and the
indices (2 in Figure 1) of the non-zero elements in the column
vector (index = 0) in the matrix B are equal or not, which
is referred to as ‘index matching’. When performing SpMM
with inner-product, we need to perform index matching for
each row vector in the matrix A and column vector in the
matrix B, which incurs a large overhead when performing
SpMM with large input matrices. Similarly, assuming that
we perform the outer-product-based MM with the example
shown in Figure 1, we perform cross-product with the column
vectors in the matrix A and the row vectors in the matrix B.
If we perform the cross-product between the column vector
(index = 0) in the matrix A and row vector (index = 0) in
the matrix B, the partial result matrix will contain the partial
results of all the matrix element from the coordinate (0, 0) to
(4, 4). Since the column vector with index 0 in the matrix A
does not have any non-zero element, all the partial elements
in the partial result matrix will be zero. Similarly, we perform
cross-products and partial results are accumulated to generate
the complete result matrix C. As it can be seen from the
example, we need a large memory or storage for temporarily
storing the partial matrices. The memory or storage overhead
will be exaggerated when performing the SpMM with large
input matrices.

B. COMPRESSED SPARSE ROW FORMAT
A CSR format is a well-known compressed format for sparse
matrices. Since the dense format (i.e., storing the matrix ele-
ments in the order of the coordinates in either row-major or
column-major order) is not efficient when storing the sparse
matrix due to a huge number of zero-valued elements, the
CSR format has been regarded as an efficient way for storing
the sparse matrix.

As shown in Figure 2, the CSR format stores three
components: values of non-zero elements, column index of
each non-zero element, and row pointers. The CSR for-
mat removes the zero-valued elements when storing the
matrix while only maintaining the non-zero elements and
their location information. In the first part, non-zero value
(NV), the CSR format contains the non-zero value itself.
The second part, column index (CI), contains the index of
the column location of the corresponding non-zero elements,
which is maintained as a pair with each non-zero element. For
a pair of the non-zero elements and column index, the same
index value for non-zero element array and column index
array is used. The third part, row pointer (RP), maintains how
many non-zero elements exist from the first row to the current
row (i.e., cumulative number). For example, RP[x] contains
how many non-zero elements exist from the row with index 0
to the row with index x − 1 (thus, RP[0] is always 0).
Other than the CSR format, COO, C2SR [7], and two-step

compression [9] can also be used as a compressed format for
sparse matrices. However, the CSR format is a classical for-
mat for sparse matrices, meaning that many software libraries

FIGURE 2. A conversion between the dense and compressed sparse row
format. The coordinate (x, y) indicates a location of the element in the
row index x and column index y with the dense format matrix. In the CSR
format, an array index indicates a location in the NV, CI, or RP array. For
CSR format, we follow a general C-style representation for indicating a
certain array element. For example, NV[2] and CI[2] are equal to ‘c’ and ‘1’,
respectively.

already support an efficient conversion between the CSR
and dense format. One can also argue that the bitmap-based
compression can also be used for a compressedmatrix format.
However, bitmap-based compression requires at least 1-bit
for each element to recordwhether the corresponding element
is non-zero or not. It means the bitmap-based format requires
at least 1-bit metadata for each element regardless of the value
(either non-zero or zero value), which has a disadvantage in
compression rate when compressing highly sparse matrix.

In addition, the CSR format is well suitable for the row-
wise product-based MM. This is because the CSR format
records the non-zero elements in a row-wise fashion with
the row pointers. When performing the row-wise product, the
scalar value in the matrix A can be easily accessed with the
ascending order of the index from the non-zero element array
and column index array. The row vector in the matrix B
can also be easily accessed by using the column index of
the matrix A. In the following section, we will explain how
to perform row-wise product-based SpMM with the CSR
formatted input matrices.

IV. ROW-WISE PRODUCT-BASED SPARSE MM
ACCELERATION WITH OPTIMAL LOAD BALANCING
A. SPARSE ROW-WISE PRODUCT-BASED MM
ACCELERATOR WITH CSR FORMAT
1) OVERVIEW
In this subsection, we demonstrate how the sparse MM with
CSR-formatted operand matrices can be performed with row-
wise product. Figure 3 demonstrates how we perform a
scalar-vector multiplication with CSR-formatted input matri-
ces. For the matrix A, we can sequentially pick the element
of the CSR-formatted matrix A and search for the matched
row vector in the matrix B. Given a non-zero scalar value in
the matrix A, we refer to the column index of the selected
non-zero element in the matrix A (i.e., CIA) to find the
matched row vector in the matrix B. As shown in Figure 3,
when performing a scalar-vector multiplication with NVA[x],
we refer to CIA[x] to find the matched row vectors in the
matrix B where x is a certain array index for NVA and CIA.
Next, we select the row vector (in the matrix B) whose
index is equal to the CIA[x]. It can be accomplished by
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accessing the NVB and CIB entries starting from the array
index RPB[CIA[x]] (w in Figure 3). The number of elements
in the row vector can be calculated by RPB[CIA[x] + 1] −
RPB[CIA[x]] (z− w in Figure 3). For scalar-vector multipli-
cation, the scalar value from the matrix A is multi-casted to
the corresponding elements in the row vector, which enables
to perform multiple scalar-scalar multiplications.

Our sparse row-wise product-based MM with CSR format
also stores the output matrix (matrix C) in the CSR format.
The multiplication operations do not occur in the order of the
column index within a row vector in the matrix C. Since
the pairs of the non-zero elements and column indices in
the CSR format should be already aligned in the ascending
order of the column index within the row, we need to find
the appropriate array index (i.e., location) of the output ele-
ments to accumulate the partial result. Assuming that the
currently accessed row index of the matrix A is equal to i
(i.e., currently accessing RPA[i] as shown in Figure 3), a par-
tial result will be accumulated to the coordinate (i, CIB[j])
in the matrix C where j is equal to the currently accessed
array index of the CSR-formatted matrix B used as an
operand to produce the (partial) result (in Figure 3, j is equal
to w). Since we do not know whether the partial result of
(i, CIB[j]) in the matrix C already exists or not, we need to
search for the corresponding elements in the CSR-formatted
matrix C. We sequentially seek for the corresponding ele-
ment in NVC and CIC from the array index RPC [i] until
the empty (==NULL) entry. This is the advantage of the
row-wise product-based MM in which the partial results are
produced in the ascending order of the row index in the
matrix C, implying that we do not need to search for all
the elements from the beginning to find the corresponding
element. In other words, when constructing the matrix C, the
overhead of the sequential search can be relieved by using the
row-wise product-based MM.

During idx (currently accessed array index in the
CSR-formatted matrix C) search in the case of the partial
sum update, there are four possible cases (summarized in
Figure 4). In the first case where CIC [idx] is less than CIB[j],
we need to keep searching for the appropriate array entry by
increasing the idx. In the second case where the CIC [idx]
is higher than CIB[j], we need to allocate a new array entry
for CIC [idx] by right-shifting the right-side array entries in
order to maintain the NVC and CIC as a sorted order. After
allocating a new array entry, we can update the (partial)
result to that array entry (NVC and CIC ). In the third case
where we find CIC [idx] equal to CIB[j], we can accumulate
the partial result to the current array entry CIC [idx] and
NVC [idx]. In the fourth case where the CIC [idx] is an empty
array entry (i.e., it has not been allocated yet), existing array
entries do not need to be right-shifted, and we can write
the (partial) result to that array entry (NVC and CIC ). The
example shown in Figure 3 corresponds to the third case
(CIC [idx]==CIB[j]==m). Thus, we accumulate the partial
result to the NVC [idx] (+ = a×b).

2) ALGORITHM
Figure 5 presents a pseudocode of the algorithm for our
row-wise product-based MM with CSR format. Before we
describe the algorithm, we define the variables used in our
algorithm. The algorithm takes inputs NV , CI , and RP for
each operand matrix A and B. The NVA, CIA, and RPA
correspond to those of the matrix A while NVB, CIB, and
RPB correspond to those of the matrix B. We also require
the row height of matrix A (RowA) and column width of
matrix B (ColB), which can be obtained by measuring the
input matrix dimensions. For outputs, we will obtain NVC ,
CIC , and RPC . There are temporary variables to maintain
the current status of the MM operation. idxsearch and idxempty
are used for the indices that indicate the current search and
empty array entry (i.e., the array entry next to the last filled
entry), respectively, in the output matrix C. idxA and idxB are
used to indicate the current array indices, which point out the
array entry for the MM operations of the matrices A and B,
respectively. colidxA corresponds to the value of the current
CIA entry pointed out by idxA (i.e., equal to CIA[idxA]).
At first, the temporary variables, idxA, idxB, and idxempty

are initialized to 0. We also set the RPC [0] as 0 because
the first array entry of RPC is always 0 regardless of the
matrix elements and dimensions. For the main loops there
are three nested loops (loops 1©– 3©). The first loop ( 1©) is
iterated by the row height of the matrix A (RowA). The second
loop ( 2©) is iterated by the number of non-zero scalar values
in the selected (in the loop 1©) row vector of the matrix A (the
number of non-zero vector elements is equal to RPA[i+ 1] -
RPA[i]). In other words, inside of the second loop, the multi-
plications of the scalar value in the matrix A and row vector
in the matrix B are performed. Before starting the scalar-
vector multiplications, we set the multiple variables: colidxA,
idxB, and idxsearch. The colidxA is used tomaintain the column
index of the current scalar value in the matrix A (CIA[idxA]).
To perform the multiplication, we need to match the col-
umn index of the matrix A and row index of the matrix B.
Thus, we need to set idxB as RPB[colidxA]. We also initialize
idxsearch as RPC [i] because we need to accumulate the partial
sum in the row index iwhere i is equal to the row index of the
current scalar element in the matrix A. Since our sparse MM
algorithm performs the multiplications only with non-zero
operands, we need to perform the iterations for the third loop
( 3©) by the number of required scalar-scalar multiplications,
which can be identifiedwithRPB[colidxA+1] -RPB[colidxA].
Inside of the third loop ( 3©), before we perform the MAC
operations, we need to identify the location (entry) to write
the partial sum in NVC and CIC which will be determined in
the fourth loop ( 4©).

The iteration count for the fourth loop will vary depending
on which case we encounter among the four cases shown in
Figure 4. In the first case (corresponding to Figure 4 (a)),
we need to keep searching for the appropriate array entry
because CIC [idxsearch] is less than CIB[idxB + k] (the col-
umn index of the element for the partial sum update in the
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FIGURE 3. An example of a row-vector multiplication with CSR-formatted input matrices.

FIGURE 4. Four possible cases when writing the (partial) results in the
CSR-formatted output matrix. ‘E’ in the entry means that the entry is
empty.

matrix C). In this case, we need to increment idxsearch to find
the next CIC array entry without terminating the fourth loop
( 4©). In the second case (corresponding to Figure 4 (b)), the
currently searched column index in CIC (CIC [idxsearch]) is
higher than theCIB[idxB+k]. In this case, we need to perform
right-shift operations (while loop denoted as 5©) in NVC and
CIC from the array index idxsearch to the idxempty − 1 to
maintain the sorted order of the NVC and CIC entries. In the
third case (corresponding to Figure 4 (c)), CIC [idxsearch] is
equal to CIB[idxB + k], meaning that we can accumulate the
partial sum to the current array index idxsearch entry location.
In the fourth case (corresponding to Figure 4 (d)), idxsearch is
equal to idxempty, meaning that we should allocate a new array
entry pointed out by the current array index idxsearch wherewe
will update the partial sum. For the second, third, and fourth
cases, we terminate the fourth loop ( 4©), implying that we are
ready for accumulating the partial sum to the NVC and CIC
(i.e., we have already provisioned the NVC and CIC entries
for writing the partial sum). Once terminating the fourth loop,
we need to perform the actual MAC operation and fill in
the (partial) result and column index to the identified (or
provisioned) NVC and CIC entries pointed out by idxsearch,
respectively (lines 24-25). Once terminating a scalar-vector
multiplication, we also increase idxA to perform the next
scalar-vector multiplication (line 27). Before terminating the
second loop ( 2©), we also need to update RPC [i + 1] as

FIGURE 5. Proposed algorithm (in the form of a pseudocode) for
row-wise product-based matrix multiplication with CSR format.

idxempty (line 29) because one row of the output matrix C has
been generated.

3) HARDWARE ARCHITECTURE
Figure 6 depicts our hardware architecture for a single PE.
We have internal buffers where the CSR-formatted matrices
A, B, and C are stored. We have idxA and idxB registers
which maintain the currently accessed indices of the matrices
A and B, respectively. By referring to the current indices,
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we multiply the values from NVA[idxA] and NVB[idxB]. The
middle part is responsible for writing the result matrix C in
the CSR format. The writing control unit determines the cor-
responding case among four possible cases (see the previous
subsection). The writing control unit receives the comparison
results of CIB[idxB] and CIC [idxsearch] that maintains current
search point for an array entry in the NVC and CIC . The com-
parison result will trigger the writing control unit, which takes
the appropriate action depending on the comparison result
(i.e., cases shown in Figure 4). The output is 4-bit one-hot
encoded value where each output bit from the writing control
unit corresponds to each partial sum update case (from 1st to
4th) shown in Figure 4. In the 1st and 4th case, the idxsearch
and idxempty (maintains the first empty array index of the
NVC and CIC ) are incremented, respectively. In the 2nd case,
it triggers NVC and CIC shift unit which performs right-shift
operations in theNVC andCIC entries for an orderedNVC and
CIC array entries. In the 2nd, 3rd, and 4th cases, the upper
OR gate output becomes 1 (logic high), and the multiplied
result from the multiplier is forwarded to the accumulator
and the result in NVC is updated. In addition, the lower OR
gate output becomes 1 (logic high) for either case 2, case 3,
or case 4, and thus CIC [idxsearch] is updated to the same value
as the current value in the CIB[idxB].

Though we only depict a single PE architecture in Figure 6,
our SpMM accelerator can also be extended to the version
with multiple PEs. In this case, on-chip buffers (NV , CI ,
and RP) are shared across the multiple PEs while each PE has
its own multiplier, accumulator, index registers, and writing
control unit.

B. PE LOAD BALANCING VIA MATRIX TILING AND TILE
PAIR SCHEDULING
Though a single PE would be sufficient in resource-
constrained systems, we can also employ multiple PEs to
improve the throughput of the accelerator. When using multi-
ple PEs, we can divide operand matrices A and B into multi-
ple tiles while supplying a pair of the tiles (each fromA and B
matrices) to each PE. In this case, load balancing between the
PEs will be a crucial factor for performance since the overall
execution time will be dependent on the longest execution
time among the PEs. For optimal load balancing, we exploit
the following characteristics of SpMM with CSR format: we
can calculate the load from the input CSR-formatted matrices
in advance. Before executing the SpMM in the accelerator,
the host CPU calculates the amount of the loads which will
be assigned to each PE. The host CPU then triggers the
transfer of the input matrices (from the main memory to the
accelerator on-chip buffer) to execute SpMM.

For optimal load balancing, we sample1 the operation
count (i.e., loads counted by the number of required MAC
operations) from the matrices A and B. We then divide the
A and B matrices into multiple tiles and make pairs of the

1Please note that we only sample 10% of the rows from the matrix A to
calculate the load.

tiles so that the required operation count with each tile pair
(each tile from the matrix A and B) can be as even as possible.
In addition, to avoid the stalls due to resource contentions dur-
ing the SpMM execution, we also need to make the assigned
loads mutually exclusive to each PE, which in turn eliminates
the resource contention (e.g., on-chip buffer bank conflict).
Consequently, our tile pair scheduling scheme makes each
PE access different scalar elements and row vectors in a single
scheduling round. For accomplishing both load balancing and
stall avoidance, when tiling the input matrices (A and B),
we cut the matrix A both horizontally and vertically (i.e., tiled
by two dimensions) while cutting the matrix B horizontally
(i.e., tiled by only one dimension).

For horizontal division of thematrix A, wemake the counts
of non-zero elements in each horizontally divided tile as even
as possible. It makes the assigned non-zero element count
evenly distributed to each PE. For the second step, we ver-
tically divide the matrix A so that the number of operation
counts can be evenly distributed to each PE. It makes the
assigned load to each PE as balanced as possible, leading
to the high utilization rate of the PEs (i.e., the idle time
of each PE can be minimized). For vertical division of the
matrix A, we first calculate the total operation count (opstotal)
as follows:

opstotal =
ColA−1∑
i=0

nzC i
A × nzR

i
B (1)

where nzC i
A and nzRiB correspond to the number of non-zero

elements in column index i of matrix A and row index i of
matrix B, respectively. ColA means the column width of the
matrix A. We vertically divide the matrix A so that each tile
has d opstotalPE e operation count. Since we sample 10% of the
rows in the matrix A, we scale the number of the assigned
rows to each PE by 10×.

Figure 7 describes our matrix tiling under N PEs. As a
result of the division of the matrix A, we have N × N tiles
(from tileA (0, 0) to tileA (N-1, N-1)) in the case where N
PEs are available. When vertically dividing the matrix A into
the tiles, we also horizontally divide the matrix B so that the
row height of the divided matrix B (TR0 to TRN−1) can be
identical to the column width of the divided matrix A.

Figure 8 demonstrates a tile pairing (each from
matrix A andB) and PE scheduling algorithm.When schedul-
ing the divided tiles into the multiple PEs, we use the follow-
ing method. Firstly, we pair the tileA (i, (i + k − 1)%N ) and
tileB ((i + k − 1)%N ), which will be assigned to the same
PE in a single scheduling round where i is the assigned PE
number (PE0–PE(N-1)) and k is the scheduling round (from
1 to N ). In this way, we can assign different scalar values
in the matrix A and different row vectors in the matrix B to
multiple PEs, which can avoid resource contention (i.e., the
scalar values and row vectors are not shared between the PEs
in the same scheduling round).

Figure 9 illustrates an example of our matrix tiling and
scheduling to two PEs (PE0 and PE1). Please note that the
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FIGURE 6. Hardware architecture for a single processing element (PE) of our row-wise product-based matrix multiplication with CSR
format.

FIGURE 7. Operation count-based matrix tiling.

FIGURE 8. Pseudocode for tile pairing and PE scheduling. Sched_round
means the number of scheduling round.

row sampling in thematrix A is omitted in the example shown
in Figure 9.We have 5× 5 inputmatrices A andB, generating
the 5 × 5 output matrix C. For horizontal division of the
matrix A, we divide the matrix so that each tile has equal

(or as equal as possible) number of the non-zero elements.
Thus, we horizontally divide the matrix A with the solid line,
making three non-zero elements exist in each divided sub-
matrix ({a, b, c} and {d, e, f}). When vertically dividing
the matrix A, we calculate the opstotal when performing
A × B, which results in the opstotal=8. Since we have two
PEs, we need to vertically cut the matrix A so that each PE
has as even operation counts as possible. As a result, when
including the d, c, f, and a in the left-side sub-matrix, the
operation count of the left-side sub-matrix becomes 4 which
is equal to d opstotalPE e. Obviously, the operation count of the
right-side sub-matrix is also equal to 4, implying that the
required MAC operations are evenly distributed to each PE.
Thus, we vertically divide the matrix A with the dotted line
so that the left-side sub-matrix has d, c, f, and a while the
right-side sub-matrix has b and e. The horizontal division of

64554 VOLUME 10, 2022



J. H. Lee et al.: Row-Wise Product-Based SpMM Hardware Accelerator With Optimal Load Balancing

FIGURE 9. Operation count-based matrix tiling. For better understanding,
we illustrate the input matrices as dense format. Please note that the
matrix tiling is performed with the CSR-formatted operand matrices.

the matrix B follows the vertical division of the matrix A.
Thus, we horizontally divide the matrix B so that the upper
and lower tiles have 3 (TR0) and 2 (TR1) rows, respectively.
When assigning the tiles to each PE, we assign tileA (0, 0)
and tileA (0, 1) to the PE0 while tileA (1, 0) and tileA (1, 1) to
the PE1. To avoid resource contention, in the first scheduling
round, we first schedule the tileA (0, 0) with tileB (0) to the
PE0 and the tileA (1, 1) with tileB (1) to the PE1. In the second
scheduling round, the remaining tile pairs are scheduled: the
tileA (0, 1) with tileB (1) to the PE0 and the tileA (1, 0) with
tileB (0) to the PE1.

Though we have illustrated a matrix tiling and scheduling
with a dense format for better understanding, it can also be
applied to CSR formatted matrices. When tiling the matri-
ces, the horizontal division of the matrix A can be done by
referring to the RPA with counting the number of non-zero
elements for each row. For the vertical division, we can also
refer to the CIA (by counting the number of array elements
in a certain column) and RPB (by calculating RPB[i + 1] −
RPB[i] where i is a matched row index of the matrix B) to
calculate the operation counts. When scheduling the tiles into
the multiple PEs, we can set different initial values for idxA,
i, and idxempty (variables shown in Figure 5) of each PE.
Calculation of the opstotal and matrix tiling and pairing

are done outside of the accelerator. Before we execute the
SpMM accelerator, matrix tiling and tile pair scheduling are
performed in the host CPU. When executing the SpMM
accelerator, the host CPU can send the information of the
tile pair and scheduling information (along with the NVA,
CIA, RPA, NVB, CIB, and RPB) to the SpMM accelerator so
that each PE can have different initial values for the registers
in the PE. We have also evaluated the latency overhead of
the matrix tiling and tile pair scheduling, which can be per-
formed with a negligible latency overhead (for details, see
Section V-D).

TABLE 1. Our 4-PE sparse MM hardware implementation results on Xilinx
ZCU106 FPGA platform. Our implementation is verified with 64 × 64 input
matrices (for both A and B) while varying the input sparsity.

C. FPGA PROTOTYPING AND IMPLEMENTATION
We have implemented our SpMM hardware accelerator on
Xilinx ZCU106 FPGA platform. Our accelerator can per-
form the matrix multiplication with 32-bit floating point
elements. Table 1 summarizes the implementation results of
our hardware. Our 4-PE SpMM hardware is synthesized as
214.270MHz clock frequency. Our 4-PE hardware imple-
mentation shows moderate resource utilization on Xilinx
ZCU106 while power consumption is 6.18W in ZCU106.
Please note that logic implementation can further be opti-
mized when our hardware is implemented as application
specific integrated circuits (ASICs), resulting in higher clock
frequency and lower power consumption.

V. EVALUATIONS
A. METHODOLOGY
For evaluations of our SpMM hardware accelerator, we have
implemented a cycle-accurate simulator. The cycle-level
behavior of our hardware architecture is based on our FPGA
prototype implementation. We compare performance of our
hardware architecture with that of the systolic arrays (128×
128 and 256 × 256) with 1GHz clock frequency, which is
simulatedwith Scale-SIM [10]. Please note that 128×128 and
256 × 256 systolic arrays are widely used in contemporary
DNN accelerators (e.g., Google TPUs [2]). For execution
of matrix multiplication in systolic arrays, we cut the input
matrices A and B into multiple tiles so that the tile from the
matrix A is streamed into the systolic array and the tile from
the matrix B is stationary in the systolic array (i.e., weight
stationary).

We demonstrate the results by varying the number of PEs in
our design. In this paper, we use three PE configurations: 4PE,
16PE, and 32PE. The 4PE2 design is our FPGA prototype
version. 16PE3 and 32PE4 designs are iso-power designs
against one matrix multiply unit (MXU) in Google TPUv4i
and TPUv1 [2], respectively. Considering our SpMM accel-
erator performs matrix multiplication with 32-bit floating

2A single PE power consumption of our SpMM accelerator is ≈1.55W.
3TPUv4i MXU power is about 23.3W at 1GHz clock frequency with a

utilization rate of 0.53 according to [2]. The iso-power PE count is 15.1≈16.
4TPUv1 MXU power is about 57.1W at 1GHz clock frequency with a

utilization rate of 0.53 according to [2]. The iso-power PE count is 36.9≈32
(power-of-two).
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TABLE 2. Matrices used for our evaluations [7], [11].

point while TPUs only support 8-bit integer or 16-bit bfloat
format, our iso-power designs in the evaluation is based on
the conservative assumption.

For benchmarking our SpMM accelerator versus systolic
arrays, we use matrices from SuiteSparse [11], which is
composed of 14 various matrix dimensions and densities as
shown in Table 2. For simulations, we have synthetically
generated input matrices (A and B with the same dimen-
sion) by referring to the dimension and non-zero densities
of 14 benchmarks in SuiteSparse. Please note that we use an
evaluation methodology similar to that presented in [7].

B. PERFORMANCE
Table 3 summarizes the latency comparison between our
SpMM hardware accelerator and the systolic arrays. For our
SpMM results shown in Table 3, we have employed our
operation count-based load balancing scheme.

In the case of 32PE-SpMM hardware accelerator, one can
obtain 47.9× and 13.6× speedups, on average (geometric
mean), as compared to the cases of 128 × 128 and 256 ×
256 systolic arrays, respectively. Even when using 16PE-
SpMM hardware accelerator, one can still gain 8.8× and
2.5× speedups, on average, as compared to the cases of
128× 128 and 256× 256 systolic arrays, respectively. In the
case of 4PE-SpMM hardware accelerator, though the latency
is increased (i.e., performance loss) as compared to the cases
of 128× 128 and 256× 256 systolic arrays (on average), our
SpMM hardware accelerator still leads to better performance
when running the matrix multiplications with large matrices
(e.g., wg, m2, az, mb, and pg).

When using the systolic arrays, as the input matrix size
increases, the latency also significantly increases. This is
because the systolic array cannot remove or skip the inef-
fectual operations with the zero-valued elements. On the
contrary, our SpMM hardware accelerator performs MAC
operations only with non-zero elements by exploiting the
row-wise product-based MM, resulting in a proportional
increase in the latency as the number of non-zero elements
in the input matrices increases. It also means our SpMM

accelerator is much more scalable as compared to the systolic
arrays when running the SpMM.

While our SpMM accelerator shows much higher effec-
tiveness in the case of large input matrices than the case of
small ones, our SpMM shows worse performance when the
input size is small (e.g., wv, p3, and fb). This is because our
SpMM hardware should be implemented with a lower clock
frequency (due to higher logic complexity) as compared to
the systolic arrays. In addition, although the systolic arrays
cannot skip the zero-valued elements, smaller input matrices
will have less number of tiles (thus, less number of iterations
and cycles for loading and streaming in the systolic array)
and lower input matrix streaming latency for the systolic
array. It leads to better performance when using the systolic
array (with higher clock frequency) as compared to using our
SpMM accelerator.

C. EFFECTIVENESS OF OPERATION COUNT-BASED MATRIX
TILING FOR LOAD BALANCING
Our operation count-based matrix tiling results in further
performance improvement as compared to the fixed tiling
(FT: matrix tiling with the regular row and column length)
and element count-based tiling (ET: matrix tiling based only
on the non-zero element count while not considering the
operation count). Please note that the non-zero element count-
based tiling only considers the number of non-zero elements
within each tile (as evenly as possible) while our opera-
tion count-based matrix tiling considers how many MAC
operations are performed within each PE. Since a single
element can be used for MAC operations with different ele-
ments (i.e., each element will have different MAC operation
counts), only considering the non-zero element count results
in sub-optimal results for load balancing between PEs.

Table 4 summarizes performance improvements of our
operation count-based tiling over ET and FT across three
SpMM configurations (32PE, 16PE, and 4PE). In the case of
4PE-SpMM, the performance improvement of our operation
count-based tiling over the FT and ET is 5.7% and 5.8%,
respectively, on average (geometric mean). When employing
our operation count-based tiling to the 16PE-SpMM, one
can obtain performance improvements by 4.0% and 3.9%,
on average, as compared to the FT and ET, respectively. In the
case of 32PE-SpMM, our operation count-based tiling brings
performance improvements of 8.5% and 6.3% compared to
the FT and ET, respectively. It means the load balancing can
greatly affect performance when employing a large number
of PEs.

In the case of pg, our operation count-based tiling leads
to performance improvement by up to 25.1% as compared
to the FT. While performance of the FT can vary depending
on the non-zero element distribution patterns, our operation
count-based tiling can show the stable performance without
being significantly affected by the data distribution patterns.

On the contrary, in the case of f3 with 4PE-SpMM, the
fixed tiling shows better performance over the ET and our
operation count-based tiling. Depending on the non-zero
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TABLE 3. Speedup results of our SpMM hardware compared to the 128 × 128 and 256 × 256 systolic arrays. The value over 1.0 means that the our SpMM
hardware shows better performance compared to the systolic arrays, and vice versa.

TABLE 4. Performance improvement of our matrix tiling scheme over fixed tiling (FT) and element count-based tiling (ET).

data distribution patterns, the performance results could be
diverse across the ET, FT, and our operation count-based
tiling. We leave the detailed investigation on the impact
of data distribution patterns across the ET, FT, and our
operation count-based tiling on performance as our future
work.

D. MATRIX TILING AND TILE PAIR SCHEDULING
OVERHEAD
Our operation count-based matrix tiling and tile pair schedul-
ing require an additional latency (referred to as ‘tiling
latency’) to calculate the operation counts that will be
assigned to each PE and divide the CSR-formatted input
matrices into multiple tiles. We have measured the tiling
latency by using gem5 architectural simulation tool [12]
and calculated the matrix tiling overhead. Matrix tiling
overhead can be given as LCPUtile /LAcc, where LCPUtile denotes
tiling latency in the host CPU and LAcc denotes execution

latency of the SpMM accelerator. We set the cache param-
eters of gem5 to Intel Xeon Gold [13] (which is com-
monly used CPU in servers or datacenters) as similar as
possible. The core parameters follow the gem5 O3 model
parameters.

Table 5 shows the matrix tiling overhead of our oper-
ation count-based matrix tiling across various SpMM
configurations. As we have more number of PEs in the
SpMM, the tiling overhead will increase because we need
to tile the A and B matrices in a finer granularity. When
using 4PE-SpMMand 16PE-SpMMconfigurations, the tiling
overheads are almost negligible (0.00033% and 0.01015%
when using 4PE and 16PE configurations, respectively).
In the case of 32PE-SpMM, latency overhead is only
0.05504%. It implies that even considering the latency
overhead of the matrix tiling, our operation count-based
matrix tiling can be effectively deployed in real servers and
datacenters.
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TABLE 5. Matrix tiling overhead of our operation count-based
matrix tiling across various SpMM configurations.

VI. CONCLUSION
Sparse matrix multiplication is a key computation kernel
for many real-world applications. In this paper, we have
proposed a sparse matrix multiplication (SpMM) accelerator
that receives compressed sparse row (CSR) formatted input
matrices. Our SpMM accelerator exploits a row-wise product
algorithm for MM, which has several advantages over the
inner product and outer product. In addition, we have also
proposed an operation count-based load balancing scheme
that divides input matrices into multiple tiles (and also sched-
ules these tiles) for parallel execution on the multiple pro-
cessing elements (PEs). According to our evaluations, our
32PE-SpMM accelerator shows 13.6× – 47.9× speedup over
TPU-like systolic arrays, on average. Moreover, our opera-
tion count-based load balancing scheme shows better perfor-
mance over the fixed tiling and non-zero element count-based
tiling by up to 8.5% and 6.3%, respectively, while only incur-
ring the matrix tiling overhead in the host CPU up to 0.06%.

We also summarize our future work as follows:
• We will quantitatively evaluate our accelerator and load
balancing scheme with the state-of-the-art accelerators;

• We will further investigate the impact of non-zero data
distribution patterns of the matrix A and B on perfor-
mance across the ET, FT, and our operation count-based
tiling;

• We will extend our hardware accelerator to enable the
multiplication and accumulation operations with vari-
ous sizes of the matrix elements such as 8-bit, 16-bit,
and 64-bit.
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