
Distributed and Scalable OWL EL Reasoning

Raghava Mutharaju1, Pascal Hitzler1, Prabhaker Mateti1, and Freddy Lécué2

1 Wright State University, OH, USA.
{mutharaju.2, pascal.hitzler, prabhaker.mateti}@wright.edu
2 Smarter Cities Technology Centre, IBM Research, Dublin, Ireland.

freddy.lecue@ie.ibm.com

Abstract. OWL 2 EL is one of the tractable profiles of the Web Ontol-
ogy Language (OWL) which is a W3C-recommended standard. OWL 2
EL provides sufficient expressivity to model large biomedical ontologies
as well as streaming data such as traffic, while at the same time allows
for efficient reasoning services. Existing reasoners for OWL 2 EL, how-
ever, use only a single machine and are thus constrained by memory and
computational power. At the same time, the automated generation of
ontological information from streaming data and text can lead to very
large ontologies which can exceed the capacities of these reasoners. We
thus describe a distributed reasoning system that scales well using a clus-
ter of commodity machines. We also apply our system to a use case on
city traffic data and show that it can handle volumes which cannot be
handled by current single machine reasoners.

1 Introduction

We predict that ontology-based knowledge bases will continue to grow to sizes
beyond the capability of single machines to keep their representations in main
memory. Manually constructed knowledge bases will most likely remain consid-
erably smaller, but the automated generation of ABox and TBox axioms from
e.g. data streams [10] or texts [12] will likely go beyond the capabilities of current
single-machine systems in terms of memory and computational power required
for deductive reasoning. Also, for some reasoning tasks the output is several
times larger than the input. For such cases, distributed memory reasoning will
be required.

In this paper, we consider knowledge bases (ontologies) which fall into the
tractable OWL 2 EL profile [13]. In particular, our distributed reasoner, DistEL,
supports almost all of EL++ which is the description logic underlying OWL 2
EL. The following are our main contributions.

1. We describe our distributed algorithms along with the data distribution and
load balancing scheme. To the best of our knowledge, this is the first such
work for the EL++ description logic.

2. We demonstrate that DistEL scales well and also achieves reasonable speedup
through parallelization. It can handle ontologies much larger than what cur-
rent other reasoners are capable of.

2 Mutharaju R , Hitzler P, Mateti P, Lécué F

3. DistEL is GPL open-sourced at https://github.com/raghavam/DistEL.
Its usage and build are fully documented and it works on publicly available
ontologies.

The paper is structured as follows. After recalling preliminaries on OWL EL
(Section 2), we describe the algorithms for DistEL (Section 3) and discuss some
specific optimizations we have used (Section 4). We close with a performance
evaluation (Section 5), related work (Section 6), and a conclusion (Section 7).

2 Preliminaries

We will work with a large fragment of the description logic EL++[2] which un-
derlies OWL 2 EL. We briefly recall notation, terminology, and key definitions,
primarily taken from [2] which serves as general reference. We define only the
fragment which we use through this paper, and for convenience we call it EL*.

The underlying language of our logic consists of three mutually disjoint sets
of atomic concept names NC , atomic role names NR and individuals NI . An
(EL*-)axiom can have one of the following forms. (i) General concept inclusions
of the form C v D, where C and D are classes defined by the following grammar
(with A ∈ NC , r ∈ NR, a ∈ NI):

C ::= A | > | ⊥ | C u C | ∃r.C | {a}
D ::= A | > | ⊥ | D uD | ∃r.D | ∃r.{a}

(ii) Role inclusions of the form r1 ◦ · · · ◦ rn v r, where r, ri ∈ NR.
An (EL*-)ontology consists of a finite set of EL*-axioms. Axioms of the form

{a} v A and {a} v ∃r.{b} are called ABox axioms, and they are sometimes
written as A(a) and R(a, b) respectively.

The primary omissions from EL++ are concrete domains and that we limit
the use of nominals, which are classes of the form {a}, to the inclusion of ABox
axioms as described above.3 In particular, DistEL does not support concept
inclusions of the form C v {a}.

The model-theoretic semantics for EL* follows the standard definition, which
we will not repeat here. For this and other background see [7].

We recall from [2] that every EL* ontology can be normalized in such a way
that all concept inclusions have one of the forms A1 v B,A1u· · ·uAn v B,A1 v
∃r.A2,∃r.A1 v B and that all role inclusions are in the form of either r v s or
r1 ◦r2 v r3, where Ai ∈ BCO = NC ∪{>} (for all i) and B ∈ BC⊥O = NC ∪{⊥}.

In rest of the paper, we assume that all ontologies are normalized.
The reasoning task that is of interest to us (and which is considered the main

reasoning task for EL++) is that of classification, which is the computation of
the complete subsumption hierarchy, i.e. of all logical consequences of the form
A v B involving all concept names and nominals A and B. Other tasks such

3 Domain axioms can be expressed directly, and allowed range axioms can be rewritten
into EL* as shown in [3].

https://github.com/raghavam/DistEL

Distributed and Scalable OWL EL Reasoning 3

Rn Input Action Key: Value

R1 A v B U [B] ∪= U [A] AR1 : B
R2 A1 u · · · uAn v B U [B] ∪= U [A1] ∩ · · · ∩ U [An] (A1, . . . , An)R2 : B
R3 A v ∃r.B R[r] ∪= {(X,B) | X ∈ U [A]} AR3 : (B, r)
R4 ∃r.A v B Q[r] ∪= {(Y,B) | Y ∈ U [A]} AR4 : (B, r)
R5 R[r], Q[r] U [B] ∪= {X | (X,Y) ∈ R[r]

and (Y,B) ∈ Q[r]} 〈none〉
R6 R[r] U [⊥] ∪= {X | (X,Y) ∈ R[r]

and B ∈ U [⊥]} 〈none〉
R7 r v s R[s] ∪= R[r] rR7 : s
R8 r ◦ s v t R[t] ∪= {(X,Z) | (X,Y) ∈ R[r] rR8a : (s, t)

and (Y,Z) ∈ R[s]} sR8b : (r, t)

U [X] = {A,B, . . .} XU : {A,B, . . .}
R[r] = {(X,Y), . . .} (Y, r)RY : X; . . .

(X, r)RX : Y ; . . .
Q[r] = {(X,Y), . . .} (Y, r)Q : X; . . .

Table 1: Completion Rules and Key Value Pairs

as concept satisfiability and consistency checking are reducible to classification.
Note that ABox reasoning (also known as instance retrieval) can be reduced to
classification in our logic.

To classify an ontology, we use the completion rules given in Table 1 (left of

the vertical line). These rules make use of three mappings U : BC⊥O → 2BC⊥
O ,

R : NR → 2BCO×BCO and Q : NR → 2BCO×BC⊥
O which encode certain derived

consequences. More precisely, X ∈ U [A] stands for X v A, while (A,B) ∈ R[r]
stands for A v ∃r.B and (A,B) ∈ Q[r] stands for ∃r.A v B. For each concept
X ∈ BC⊥O , U [X] is initialized to {X,⊥}, and for each role r, R[r] and Q[r] are
initialized to {}. The operator ∪= adds elements of the set on the right-hand
side to the set on the left-hand side.

The rules in Table 1 are applied as follows. Given a (normalized) input on-
tology, first initialize the U [X], R[r] and Q[r] as indicated. Each axiom in the
input knowledge base is of one of the forms given in the Table 1 Input column,
and thus gives rise to the corresponding action given in the table. R5 and R6
are exceptions as they do not correspond to any input axiom types, but instead
they take Q[r], R[r] as input and trigger the corresponding action.

To compute the completion, we non-deterministically and iteratively execute
all actions corresponding to all of the rules. We do this to exhaustion, i.e., until
none of the actions resulting from any of the axioms causes any change to any
of the U [X], R[r] or Q[r]. Since there are only finitely many concept names, role
names, and individuals occurring in the input knowledge base, the computation
will indeed terminate at some stage.

The rules in Table 1 are from [2], except for rules R4 and R5, which is
combined into one rule in [2]. Using two rules instead of one helps in the division
and distribution of work in our reasoner; conceptually, we only have to store
intermediate results (using Q, and this is the only use of Q we make), and
otherwise there is no difference. We also use the function U instead of a function

4 Mutharaju R , Hitzler P, Mateti P, Lécué F

S which is used in [2], where A ∈ S[X] is used to stand for X v A. The difference
is really notational only. Our rules (and corresponding algorithm) are really just
a minor syntactic variation of the original rules, and the original correctness
proofs carry over trivially. In section 4 we will comment further on the reasons
we have for using U instead of S: while it is only a notational variant, it is
actually helpful for algorithm performance.

In DistEL, we use key:value pairs to encode both the input knowldge base
and the output resulting from rule actions. In turn, these key:value pairs are
also used to control the (then deterministic) parallel and sequential execution of
rules, and we will discuss this in detail in the next section.

3 Algorithms of DistEL

In the algorithm descriptions in this section, we use a few CSP [1] inspired
notations. The expression P ! tag(e) ? v, occurring in a process Q, denotes that
the message tag(e) is sent to a process named P and the response received from
P is assigned to v. If P is not ready to receive tag(e), Q blocks until P is ready.
After this message is sent, Q waits for a response from P which it will save in
v. P may take a while to compute this response. But when it sends this reply,
Q is ready (since it has been waiting). So P does not block when replying. The
corresponding expression Q ? tag(u) occurring in process P denotes receiving
a message tag(e) from process Q and the body of the message is assigned to
variable u local to P. The expression P ! tag(e) occurring in a process Q simply
sends a message tag(e) to process P.

A process might receive many messages, and in order to distinguish between
them and provide the right service to the requester, tag is used. These tags are
descriptive names of the service that ought to be provided.

The on statements stand for an event processing mechanism that is ever
ready but asleep until triggered by a request, and the corresponding response is
shown on the rhs of the do.

Table 1 lists six unique axiom forms (excluding R5 and R6). R5 and R6
depend on the sets, Q[r] and R[r], for each role r. Q[r] and R[r] are set represen-
tations of axioms. For simplicity, we consider these two sets also as two separate
axiom forms. This gets the total axiom forms to eight and now the input ontology
O can be partitioned into eight mutually disjoint ontologies, O = O1 ∪ · · · ∪O8,
based on the axiom forms. Ontology Oi is assigned to a subcluster (subset of
machines in the cluster) SCi. Rule Ri, and no other, must be applied on Oi.
DistEL creates eight subclusters, one for each rule, from the available machines.
For example (Figure 1) axioms that belong to SC4 are divided among its three
nodes. Note that, axioms in Oi are further divided among the machines in SCi

and are not duplicated.
Ontology partitioning should be done in such a way, so as to reduce inter-

node communication. By following the described partitioning strategy, this goal
is achieved since most of the data required for the rule application is available
locally on each node. Other partitioning strategies such as MapReduce based

Distributed and Scalable OWL EL Reasoning 5

Results

R3
R3

R4
R4
R4

U[X]
U[X]

R5
R5
R5
R5

SC3

SC1 and SC2

SC7 and SC8

SC5

SC4

U[X]

R5

R1

R1

U[X]

R2

R2

R7

R7

R8

R8

R[r]

R[r]

R6
R6
U[X]

SC6

U[X]

Q[r]

Fig. 1: Node assignment to rules and dependency among the completion rules. A rect-
angle represents a node in the cluster and inner ovals represent subclusters. Outer ovals
enclosing SC1/SC2, and SC7/SC8 show their tighter input-output relationships. The
set (U[X], R[r], or Q[r]) affected by the rule is shown within the enclosing oval. For
simplicity, only one node is shown to hold results.

K1 := x := 0;
forall the A v B ∈ O1 do

UN ! update(BU , A) ? x;
K1+ = x;

Algorithm 1: R1: A v B ⇒
U [B] v U [A]

K2 := x := 0;
forall the A1 u · · · uAn v B ∈ O2

do
UN ! u(BU , {A1, . . . , An}) ? x;
K2+ = x;

Algorithm 2: R2: A1u· · ·uAn v B ⇒
U [B] ∪= U [A1] ∩ · · · ∩ U [An]

data partitioning where spatial locality is followed (data in contiguous locations
are assigned to one mapper) and hash partitioning (axiom key is hashed) did
not yield good results [15].

Rule Processes. This section presents the bodies of each of the rules of Table 1.
These bodies are wrapped and repeatedly executed by the rule processes; this
wrapper code is discussed in the termination section further below.

The service process UN is described as Algorithm 9, and RN as Algorithm 10,
further below. Note that, there can be any number of processes of a particular
type (R1, . . . , R8, UN, RN). In all the algorithms, immediately following the
forall the keywords is the retrieval of axioms, discussed further below. Given
a key such as (Y, r)Q, it is fairly easy to i) extract individual values from it
(such as Y and r) and ii) convert to key of different type but same values, such
as (Y, r)RY . This conversion, though not explicitly stated in all the algorithms
listed here, is implicitly assumed.

6 Mutharaju R , Hitzler P, Mateti P, Lécué F

K3 := x := 0;
forall the A v ∃r.B ∈ O3 do

s := timeOf(AU);
UN ! queryTS(AU , s) ? M ;
forall the X ∈M do

RN ! update((B, r)RY , X) ? x;
K3+ = x;

Algorithm 3: R3: A v ∃r.B ⇒
R[r] ∪= {(X,B) | X ∈ U [A]}

K4 := x := 0;
forall the ∃r.A v B ∈ O4 do

s := timeOf(AU);
UN ! queryTS(AU , s) ? M ;
forall the Y ∈M do

R5 ! new((Y, r)Q, B) ? x;
K4+ = x;

Algorithm 4: R4: ∃r.A v B ⇒
Q[r] ∪= {(Y,B) | Y ∈ U [A]}

K5 := x := 0;
on R4 ? new((Y, r)Q, B) do
{ R4 ! (Q[(Y, r)Q] ∪= {B})#;
s := timeOf((Y, r)RY);
RN ! queryTS((Y, r)RY , s) ? T ;
forall the X ∈ T do

UN ! update(BU , X) ? x;
K5 += x;

};
on RN ? rpair((Y, r)RY , X) do
{ s := timeOf((Y, r)Q);
T := range(Q[(Y, r)Q], s,∞);
forall the B ∈ T do

UN ! update(BU , X) ? x;
K5 += x;

}
Algorithm 5: R5: (X,Y) ∈ R[r] ∧
(Y,B) ∈ Q[r]⇒ U [B] ∪= {X}

K6 := x := 0;
on RN ? yxpair(YR6, X) do
{ UN ! isMember(⊥U , YR6) ? b;

if b then
UN ! update(⊥U , X) ? x;
K6 += x;

}
Algorithm 6: R6: X v ∃r.Y ⇒
U [⊥] ∪= {X | Y ∈ U [⊥]}

K7 := x := 0;
on RN ? rpair((Y, r)RY , X) do
forall the s (with r v s ∈ O7)
do

RN ! update((Y, s)RY , X) ? x;
K7 += x;

Algorithm 7: R7: r v s ⇒
R[s] ∪= R[r]

Algorithms 1 and 2 follow directly from rules R1 and R2 respectively. Here
(and in subsequently described algorithms), keys such as BU correspond to those
listed in Table 1; see also the discussion of axiom retrieval further below. K1

(and more generally the Ki in subsequently described algorithms) are used for
termination handling, as detailed towards the end of this section.

In Algorithms 3, 4 and 5, timeOf(X) returns the access timestamp up to
which the values of the key AU have been read previously. Only the subsequently
added values are considered.

In the first on statement of Algorithm 5, the rule process R5 receives values
for (Y, r)Q and B from R4. The expression R4 ! (Q[(Y, r)Q] ∪= {B})# shall
mean that {B} is added to Q[(Y, r)Q] and that either 1 or 0 (the latter if B
was already in Q[(Y, r)Q]) is returned to R4. In the second on statement, R5
receives values for (Y, r)RY and X from RN. R5 gets triggered either when an
axiom ∃r.Y v B is newly generated by R4 or a new (X,Y) is added to R[r],
which is what these two on statements represent. range(Q[(Y, r)Q], s,∞) is a
range operation on the set Q[(Y, r)Q] in which elements starting at timestamp s
and going up to the maximum available timestamp are returned. The Q[r] sets,

Distributed and Scalable OWL EL Reasoning 7

K8 := x = 0;
on RN ? rpair((Y, r)RY , X) do {

forall the s, t (with r ◦ s v t ∈ O8) do
RN ! queryX((Y, s)RX) ? T ;
forall the Z ∈ T do

RN ! update((Z, t)RY , X) ? x;
K8 += x;

forall the s, t (with s ◦ r v t ∈ O8) do
RN ! queryY((X, s)RY) ? T ;
forall the Z ∈ T do

RN ! update((Y, t)RY , Z) ? x;
K8 += x;

}
on RN ? isOnLHS2(sR8b) do { b := exists(sR8b); RN ! b };

Algorithm 8: R8: r ◦ s v t ⇒ R[t] ∪= {(X,Z) | (X,Y) ∈ R[r], (Y,Z) ∈ R[s]}

on pid ? queryTS(XU , ts) do { T := range(U [X], ts, ∞); pid ! T };
on pid ? update(XU , {A1, . . . , An}) do pid ! (U [X] ∪= {A1, . . . , An})#;
on R6 ? isMember(XU , Y) do R6 ! (Y ∈ U [X]);
on R2 ? u(BU , {A1, . . . , An}) do R2 ! (U [B] ∪= U [A1] ∩ · · · ∩ U [An])#;

Algorithm 9: Process UN maintains U [X], for all X.

for all roles r, are maintained by rule R5 since it is the only rule process that
uses them.

In Algorithm 6 for rule process R6, a set membership request is made to UN
which returns a boolean value that is stored in b. Algorithm 7 straightforwardly
follows from rule R7.

In Algorithm 8 for rule process R8, whenever a new role pair (X,Y) is added
to R[r], it is checked whether this particular role r is part of any role chain
axiom, say p ◦ q v t. The two possible cases are i) r equals p or ii) r equals q.
Based on the case, the corresponding matching role pair is retrieved from RN.

Service Processes UN and RN. Each U [X] is a set and the process UN
handles the operations over each of the U [X], for any X. There can be several
such UN processes which allows them to share the load. UN associates with the
elements e of set U [X] a timestamp indicating when e was added to that set.

UN handles four kinds of requests, see Algorithm 9 – the first two from any
arbitrary process (here named pid), the third one from R6 and the fourth from
R2. The expression (U [X] ∪= setS)# stands for updating U [X] and returning
the number of new items added. The first type is a request from a process named
pid asking for a range of elements newly added to U [X] since its last such request
made at time ts. It is the responsibility of the client to keep track of the previous
timestamp up to which it has read from a particular U [X]. The second one is a
request of the form update(XU , D) from pid. This updates U as in U [X] ∪= D.
Elements of D are added to U [X]. The size increase of U [X] is replied back. The
third one is a membership request from R6 asking whether a particular element

8 Mutharaju R , Hitzler P, Mateti P, Lécué F

on R5 ? queryTS((Y, r)RY , ts) do {T := range(R[(Y, r)RY], ts,∞); R5 ! T};
on R8 ? queryX((X, r)RX) do R8 ! (R[(X, r)RX]);
on R8 ? queryY((Y, r)RY) do R8 ! (R[(Y, r)RY]);
on pid ? update((Y, r)RY , X) do {

pid ! (R[(Y, r)RY] ∪= {X})#;
R5 ! rpair((Y, r)RY , X);
R6 ! yxpair(YR6, X);
R7 ! rpair((Y, r)RY , X);
R8 ! rpair((Y, r)RY , X);
R8 ! isOnLHS2(rR8b) ? b;
if b then

R[(X, r)RX] ∪= {Y };
}

Algorithm 10: Node RN maintains R[r] sets

Y is in U [X]. A true or false value is given as a response. The fourth is a request
from R2 to retrieve the intersection of a group of U [A1], . . . , U [An].

Analogous to UN, there is an RN process that handles operations over each
of the R[r], for any role r, and there can be several such RN processes sharing
the load. RN handles four kinds of requests, see Algorithm 10, with most of
them similar to the requests handled by UN. The time stamp ts is sent in by
the requester. Whenever RN receives an update message with a new role pair
((Y, r)RY , X), it notifies the processes (R5, R6, R7, R8) that depend on R[r]
values. A new role pair is duplicated on the rule process R8 for further processing.
This is done because it is more efficient than separate retrieval of the right role
pair using a key. However, this duplication is not required in all cases: If, for a
particular role r, this r does not appear in the second position of the chain, (e.g.,
in the position of q as in p ◦ q v t), then this particular R[r] is not duplicated.

The expression (R[(Y, r)RY] ∪= {X})# stands for updating (R[(Y, r)RY]
and returning the number of new items, zero or one, added.

Retrieval of Axioms from the Key Value Store. We use key-value stores
[5] to keep the eight parts of the ontology including the U [X], the R[r] and the
Q[r], for all concepts X and roles r. Each of these is maintained by separate
service processes. The Oi processes are co-located with the Ri rule processes.
We retrieve axioms from the Oi services in the forall the ... do statements.

Concepts and roles are mnemonic strings of the ontology and we encode them
as integers. E.g., 032560 represents a concept (indicated by the last 0) whose ID
is 256. The length of the ID is given in the first two positions (03 in this case).

Table 1 shows the keys and their corresponding values for axioms in the
ontology. Axioms have a left hand side and a right hand side with respect to
v. In most cases, the left hand sides becomes the key and right hand side the
value, both encoded as unsigned 64-bit integers. The paired expressions yield an
integer from which the paired items can be peeled off. The hash of the concepts
is used in encoding them as keys.

The choice of key is not straightforward. For example, for axioms of type
A v ∃r.B (R3), making r as the key would lead to load imbalance since there

Distributed and Scalable OWL EL Reasoning 9

repeat
Ki := apply Ri on Oi once;
broadcast(Ki);
nUpdates := barrier-sum-of
Ki;

until nUpdates = 0;
Algorithm 11: Wrapper for Ri

repeat
nUpdates :=
barrier-sum-of Ki;

until nUpdates = 0;
Algorithm 12: Wrapper for

UN and RN

are generally only a few roles in an ontology and comparatively many axioms
of type A v ∃r.B. On the other hand, making A as key leads to better load
distribution, thus allowing several machines to work on R[r].

R8 gets triggered when there is a change to either R[r] or R[s]. In order to
retrieve the exact match, i.e., given (X,Y) of R[r], get (Y,Z) of R[s] or vice
versa, the R[r] sets, for any r, have two keys (Y, r)RY and (X, r)RX . The R[r]
sets are selectively duplicated. For the same reason, there are two keys for the
role chain axioms as well.

Termination. Algorithm 11 invokes the rule process Ri on the axioms in Oi

once i.e., Ri is applied on the axioms one time and the updates made to the U [X]
and R[r] sets are collected in Ki (this could be 0). Notice that a Ki is associated
with each Ri in Algorithms 1–8. This value is broadcast to all the other rule
processes. Then it waits for similar update messages to be received from other
rule processes. Barrier synchronization [1] is used in waiting for Ki from all
Ri (indicated by the barrier-sum statement). If no rule process made an update,
they quit; otherwise, they continue with another iteration. The same termination
condition is used for processes handling U [X] and R[r] sets (Algorithm 12).
Algorithms 11 and 12 act as wrappers around the other processes Ri, UN, RN.

This termination condition is easy to check on a single machine. But in a
distributed system, termination is no longer obvious. For example, just when
the process working on rule R1 is done and quits, the next moment, a process
working on rule R5 might add a new B to U [X]. Although barrier synchroniza-
tion simplifies the termination detection, it also makes several nodes wait idly.
This idleness is reduced in our system using a work stealing mechanism, which
is detailed in Section 4.

4 Optimizations

We discuss some of the efficiency optimizations we have realized in our approach.

U[X] instead of S[X]. S[X] defined as A ∈ S[X] iff X v A is used in the
original formulation of the algorithm in [2]. We recast this as U [X] defined as
A ∈ U [X] iff A v X. Use of U [X] instead of S[X] makes the check A ∈ S[X],
which is required in several rules, a single read call, and thus significantly more
efficient.

For example, assume that there are five concepts in the ontology, K,L,M,N
and P . Suppose K uLuM v N ∈ O. During some iteration of the classification

10 Mutharaju R , Hitzler P, Mateti P, Lécué F

assume S(K) = {K,L,N,>}, S(L) = {L,P,M,>}, S(M) = {M,N,K,>},
S(N) = {N,>}, and S(P) = {P,K,L,M,>}. Now, according to rule R2 in [2],
we have to check for the presence of K,L and M in each of the five S(X), where
X = K,L,M,N, P . Since only S(P) has K,L,M , we have to add N to S(P).

On the other hand, we use instead U [K] = {K,M,P}, U [L] = {L,K,P},
U [M] = {M,L, P}, U [N] = {N,K,M,P}, U [P] = {P,L}. In this case, instead
of checking all U [X], we can compute the intersection of U [K], U [L], U [M], which
is {P}. So, P v N which is represented as U [N] ∪= {P}. In large ontologies,
the number of concepts could be in the millions, but the number of conjuncts in
axioms like A1 u · · · u An v B would be very low. So the performance is better
by using U [X] since set intersection needs to be performed only on a very small
number of sets.

Rule Dependencies. Say rule R3 just finished processing axiom α = A v
∃r.B. If none of R1, R2, R5 or R6 make any changes to U [A], R3 need not be
triggered again to consider α. If and when R3 gets triggered again, it resumes
from entries in U [A] with a later timestamp. Thus, we reduce the number of
axioms to work on in subsequent iterations.

Dynamic Load Balancing. Processing time for each of the rules, R1 to R8,
varies due to the number and type of axioms. This can lead to improper load
balancing where there are busy and idle nodes. We apply the well known work
stealing mechanism [11], where idle nodes take (steal) work from busy nodes,
thus reducing their load. Although this is a well known idea, to the best of our
knowledge, there is no freely available distributed work stealing library. Although
work stealing increases the communication cost, performance improvement out-
weighs it.

5 Evaluation

We believe that it is possible to distribute computation of the completion of
OWL EL ontologies in such a way that the distributed approach . . .

(Claim 1) scales to very large ontologies to finish the classification task and
(Claim 2) shows reasonable speedup in the number of nodes.

We verified these claims by implementing a prototype in Java, called DistEL,
downloadable from http://github.com/raghavam/DistEL. We used Redis4, a
key-value store, as our database. Redis was selected because it provides excel-
lent read/write speed along with built-in support for set operations, database
sharding, transactions and server-side scripting.

Since one of the use cases is streaming traffic data, DistEL also has support
for incremental classification. It is inherently supported, since, in each iteration
of the classification procedure, only the newly added axioms are considered and
appropriate rules are applied.

4 http://redis.io

http://github.com/raghavam/DistEL
http://redis.io

Distributed and Scalable OWL EL Reasoning 11

GO SNOMED SNOMEDx2 SNOMEDx3 SNOMEDx5 Traffic

Before 87,137 1,038,481 2,076,962 3,115,443 5,192,405 7,151,328
After 868,996 14,796,555 29,593,106 44,389,657 73,982,759 21,840,440

Table 2: Number of axioms, before and after classification, in ontologies.

Ontology ELK jCEL Snorocket Pellet HermiT FaCT++

GO 23.5 57.4 40.3 231.4 91.7 367.89
SNOMED 31.8 126.6 52.34 620.46 1273.7 1350.5
SNOMEDx2 77.3 OOMa OOMa OOMa OOMa OOMa

SNOMEDx3 OOMa OOMa OOMa OOMa OOMa OOMa

SNOMEDx5 OOMa OOMa OOMa OOMa OOMa OOMa

Traffic OOMb OOMc OOMc OOMb OOMb OOMc

Table 3: Classification times in seconds. OOMa: reasoner runs out of memory.
OOMb: reasoner runs out of memory during incremental classification. OOMc:
ontology too big for OWL API to load in memory.

We used Amazon’s Elastic Cloud Compute (EC2) to run our experiments.
Specifically, we used m3.xlarge instances which have 4 cores, 15GB RAM and
SSD hard disk. 5GB was given to the JVM on each node, for all the experiments.
These settings and the m3.xlarge instances were selected so as to evaluate our
system on a cluster of machines with commodity hardware.

Our test data (see Table 2) comprises of biomedical ontologies GO,5 SNOMED
CT6 and traffic data of the city of Dublin, Ireland.7 We also duplicated 2x, 3x
and 5x copies of SNOMED CT in order to test the scalability.

Traffic data reasoning is used in the diagnosis and prediction of road traffic
congestions [9,10]. These tasks depend on (i) classifying any new individual from
the ontology stream, and (ii) identifying their causal relationships and correlation
with other streams such as city events. There is no bound on the number of
axioms since it is a continuous stream of traffic data. In this scenario, existing
reasoners were not able to cope with the increasing velocity and volume of data.
Here, we considered traffic data of only one single day. Data is collected every
20 seconds and we have 1441 such bursts.

Results. Table 3 has the classification times for ELK 0.4.1, jCEL 0.19.1, Sno-
rocket 2.4.3, Pellet 2.3.0, HermiT 1.3.8 and FaCT++ 1.6.2. All the reasoners are
invoked through the OWL API and ontology loading time is excluded wherever
applicable.

All the reasoners ran out of memory on the SNOMEDx3, SNOMEDx5 and
Traffic. On traffic data, incremental classification has been used by the reason-

5 http://code.google.com/p/elk-reasoner/wiki/TestOntologies
6 http://www.ihtsdo.org
7 Raw data of the traffic ontology is from http://dublinked.ie/datastore/

datasets/dataset-215.php. This data is converted to EL++ ABox statements
as described in [10]. The TBox statements (base ontology), along with two
samples of ABox statements, are available from http://www.dropbox.com/sh/

9jnutinqjl88heu/AAAi-5ot8A5fStz69Bd0VyGCa.

http://code.google.com/p/elk-reasoner/wiki/TestOntologies
http://www.ihtsdo.org
http://dublinked.ie/datastore/datasets/dataset-215.php
http://dublinked.ie/datastore/datasets/dataset-215.php
http://www.dropbox.com/sh/9jnutinqjl88heu/AAAi-5ot8A5fStz69Bd0VyGCa
http://www.dropbox.com/sh/9jnutinqjl88heu/AAAi-5ot8A5fStz69Bd0VyGCa

12 Mutharaju R , Hitzler P, Mateti P, Lécué F

Ontology 8 nodes 16 nodes 24 nodes 32 nodes 64 nodes

GO 134.49 114.66 109.46 156.04 137.31
SNOMED 544.38 435.79 407.38 386.00 444.19

SNOMEDx2 954.17 750.81 717.41 673.08 799.07
SNOMEDx3 1362.88 1007.16 960.46 928.41 1051.80
SNOMEDx5 2182.16 1537.63 1489.34 1445.30 1799.13

Traffic 60004.54 41729.54 39719.84 38696.48 34200.17

Table 4: Classification time (in seconds) of DistEL

ers that support it (ELK, Pellet, HermiT). This experiment with single machine
reasoners demonstrates that a scalable solution is required to handle large on-
tologies.

Table 4 shows the classification times of our system as we added nodes.
The cluster size need not be in multiples of 8. DistEL is able to classify all
the ontologies including the largest one having close to 74 million axioms. This
validates Claim 1 of our hypothesis.

Table 6 shows the speedup achieved by DistEL on SNOMED CT with in-
creasing number of nodes. As can be seen, there is a steady increase in the
speedup with increase in the number of nodes. This validates Claim 2 of our
hypothesis.

Excluding GO (a small ontology), for all the other large ontologies, classi-
fication time decreases as we increase the number of nodes. On 64 nodes, we
notice an increase in the runtime for all but the largest of the ontologies. This
indicates that beyond a point, the advantages of the distributed approach are
overshadowed by the distribution and communication overhead. However, this
is not the case for largest ontology, traffic data. We believe this is also due to
the axiom composition in traffic data. 75% of traffic data axioms are in the form
of A v ∃r.B (R3). The output of R3 serves as input to R5, R6, R7 and R8 i.e.,
63% of nodes are always busy, i.e. there are more busy nodes than idle nodes.
This is not the case as such for the other ontologies.

Table 5 shows the memory (RAM) taken by Redis in MB on each of the 8
nodes for traffic data. In this case, only one node is used to collect the results
(U [X] sets). R[r] sets are spread across other nodes. As can be seen, each node
takes very little memory. But on single machine reasoners, this quickly adds up
for large ontologies and current reasoners hit their limit in terms of memory (see
Table 3) and computational power.

Discussion We believe DistEL is the first distributed reasoner for EL ontologies
and so we cannot do a like-for-like comparison. At the risk of being skewed,
the following are our observations in comparison to ELK, which is the fastest
reasoner among the ones we tested on (see Table 3).

Table 8 shows the speedup of ELK on SNOMED on an 8 core machine.
For DistEL, 8 nodes was the starting point. Considering that ELK is a shared
memory system with all the threads on one machine, the speedup achieved by
DistEL (Table 6) is very reasonable in comparison. On this basis, we can say
that our design and optimization decisions (Sections 3, 4) are justified.

Distributed and Scalable OWL EL Reasoning 13

Node MB

R1 186.72
R2 0.81
R3 257.47
R4 0.79
R5 1970
R6 380.61
R7 0.79
R8 1470.00

Result 654.53
Total 4921.72

Table 5: Mem-
ory taken by
redis on each
node for traffic
data

Nodes Runtime Speedup

8 544.38 1.00
16 435.79 1.24
24 407.38 1.33
32 386.00 1.41
64 444.19 1.22

Table 6: Speedup
achieved by DistEL on
SNOMED CT

Operation RAM redis

Read 0.0861 3.719
Write 0.1833 4.688

Table 7: Speed (in
seconds) for simple
read, write operations
of 1,000,000 items using
RAM and redis

Threads Runtime Speedup

1 31.80 1.00
2 19.37 1.64
3 16.29 1.95
4 14.91 2.13
5 13.99 2.27
6 14.16 2.24
7 13.17 2.41
8 13.36 2.38

Table 8: Speedup achieved
by ELK, with all the threads
on one 8-core machine, on
SNOMED CT

DistEL on 8 nodes for SNOMED takes 544 seconds whereas ELK takes 32
seconds. Classification is not “embarrassingly parallel”, so linear speedup cannot
be achieved. Since axioms are distributed across many nodes, communication
is necessary. Another contributing factor is the mismatch in the speed of in-
memory and Redis operations (Table 7). This is a simple experiment where
1 million integers are read and written to a Java HashMap. Similar operations
were performed on a Redis hash data structure.8 Although this is a rather simple
experiment, the difference in read/write speeds in the case of RAM and Redis
is quite obvious.

These experiments suggest that a distributed approach should be used only
on very large ontologies where the size/complexity of ontologies simply over-
whelms current reasoners. Thus a distributed approach has potential benefits
which are quite complementary to single machine reasoners.

6 Related Work

There is very little work implemented, evaluated and published on distributed
approaches to OWL 2 EL reasoning. Three approaches to distributed reasoning
were tried in [15]. Among them, two approaches – MapReduce [16] and a dis-
tributed queue version of the corresponding sequential algorithm from [4] turned
out to be inefficient. In the MapReduce approach, axioms are reassigned to the
machines in the cluster in each iteration. Communication between mappers and
reducers cannot be finely controlled and the sort phase is not required here. In
the distributed queue approach, distribution of axioms in the cluster happens

8 The code used for this experiment is available at https://gist.github.com/

raghavam/2be48a98cae31c418678.

https://gist.github.com/raghavam/2be48a98cae31c418678
https://gist.github.com/raghavam/2be48a98cae31c418678

14 Mutharaju R , Hitzler P, Mateti P, Lécué F

randomly and hence batch processing of reads/writes from/to the database can-
not be done unlike in the approach presented here. The work discussed here is an
extension of the most promising one among the three approaches. Initial results
of this approach were presented in [14]. Our current work expands on this in
several ways, such as, support for nominals, incremental reasoning, static and
dynamic load balancing, its application and evaluation over traffic data.

A distributed resolution technique for EL+ classification is presented in [18]
without evaluation. Though not distributed, parallelization of OWL 2 EL classi-
fication has been studied in [8,17]. Classifying EL ontologies on a single machine
using a database has been tried in [6].

7 Conclusion

We described DistEL, an open source distributed reasoner and presented a traffic
data application where ontologies are generated from streaming data. We show
that existing reasoners were not able to classify traffic data and other large
ontologies. Our system on the other hand handles these large ontologies and
shows good speedup with increase in the number of machines in the cluster.

Ontologies continue to grow and to hope to keep their representations in
the main memory of single machines, no matter how powerful and expensive, is
hardly realistic. Large farms of commodity inexpensive machines will push the
field of ontology reasoning.

Next, we plan to further explore approaches to efficiently manage communi-
cation overhead, including other ontology partitioning strategies as well as alter-
nate classification approaches and rule sets such as the one from ELK. We also
plan to do performance modeling and fine-grained analysis on larger datasets,
with higher number of nodes in the cluster. Alternatives to the usage of Redis
including developing custom storage and data structure solutions can also be
looked into.

Acknowledgement The first two authors acknowledge support by the Na-
tional Science Foundation under award 1017225 “III: Small: TROn – Tractable
Reasoning with Ontologies.”

References

1. Andrews, G.R.: Concurrent programming: Principles and Practice. Ben-
jamin/Cummings Publishing Company (1991)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5,
2005. pp. 364–369. AAAI (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: In Proceed-
ings of the OWLED DC Workshop on OWL: Experiences and Directions (2008)

4. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is Tractable Reasoning in Extensions
of the Description Logic EL Useful in Practice? In: Proceedings of the 2005 Inter-
national Workshop on Methods for Modalities (M4M-05) (2005)

Distributed and Scalable OWL EL Reasoning 15

5. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Record 39(4),
12–27 (2011)

6. Delaitre, V., Kazakov, Y.: Classifying ELH Ontologies In SQL Databases. In: Pro-
ceedings of the 5th International Workshop on OWL: Experiences and Directions
(OWLED 2009), Chantilly, VA, United States, October 23-24, 2009. CEUR Work-
shop Proceedings, vol. 529. CEUR-WS.org (2009)

7. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2010)

8. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent Classification of EL Ontolo-
gies. In: 10th International Semantic Web Conference, Bonn, Germany, October
23-27. Lecture Notes in Computer Science, vol. 7031, pp. 305–320. Springer (2011)

9. Lécué, F., Schumann, A., Sbodio, M.L.: Applying Semantic Web Technologies for
Diagnosing Road Traffic Congestions. In: International Semantic Web Conference
(2). Lecture Notes in Computer Science, vol. 7650, pp. 114–130. Springer (2012)

10. Lécué, F., Tucker, R., Bicer, V., Tommasi, P., Tallevi-Diotallevi, S., Sbodio, M.L.:
Predicting Severity of Road Traffic Congestion using Semantic Web Technologies.
In: Proceedings of the 11th Extended Semantic Web Conference (ESWC2014),
Anissaras, Crete, Greece, May 25–May 29, 2014. Springer (2014)

11. Lifflander, J., Krishnamoorthy, S., Kalé, L.V.: Work Stealing and Persistence-based
Load Balancers for Iterative Overdecomposed Applications. In: Proceedings of the
21st International Symposium on High-Performance Parallel and Distributed Com-
puting, HPDC’12, Delft, Netherlands. pp. 137–148. ACM (2012)

12. Ma, Y., Syamsiyah, A.: A hybrid approach to learn description logic ontology from
texts. In: Posters & Demonstrations Track of the 13th International Semantic Web
Conference, ISWC 2014, Riva del Garda, Italy, October 21, 2014. CEUR Workshop
Proceedings, vol. 1272, pp. 421–424 (2014)

13. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL
2 Web Ontology Language Profiles. W3C Recommendation (2012), available at
http://www.w3.org/TR/owl2-profiles/

14. Mutharaju, R., Hitzler, P., Mateti, P.: DistEL: A Distributed EL+ Ontology Classi-
fier. In: Liebig, T., Fokoue, A. (eds.) Proceedings of the 9th International Workshop
on Scalable Semantic Web Knowledge Base Systems, Sydney, Australia. CEUR
Workshop Proceedings, vol. 1046, pp. 17–32. CEUR-WS.org (2013)

15. Mutharaju, R., Hitzler, P., Mateti, P.: Distributed OWL EL Reasoning: The Story
So Far. In: Proceedings of the 10th International Workshop on Scalable Semantic
Web Knowledge Base Systems, Riva Del Garda, Italy. CEUR Workshop Proceed-
ings, vol. 1261, pp. 61–76. CEUR-WS.org (2014)

16. Mutharaju, R., Maier, F., Hitzler, P.: A MapReduce algorithm for EL+. In:
Haarslev, V., Toman, D., Weddell, G. (eds.) Proceedings of the 23rd International
Workshop on Description Logics (DL2010), Waterloo, Canada. CEUR Workshop
Proceedings, vol. 573, pp. 464–485. CEUR-WS.org (2010)

17. Ren, Y., Pan, J.Z., Lee, K.: Parallel ABox reasoning of EL ontologies. In: Proceed-
ings of the 2011 Joint International Conference on the Semantic Web. pp. 17–32.
JIST’11, Springer, Heidelberg (2012)

18. Schlicht, A., Stuckenschmidt, H.: MapResolve. In: Web Reasoning and Rule Sys-
tems – 5th International Conference, RR 2011, Galway, Ireland, August 29-30,
2011. Lecture Notes in Computer Science, vol. 6902, pp. 294–299. Springer (2011)

http://www.w3.org/TR/owl2-profiles/

	Distributed and Scalable OWL EL Reasoning
	Introduction
	Preliminaries
	Algorithms of DistEL
	Optimizations
	Evaluation
	Related Work
	Conclusion

