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Abstract. Trajectory data have been used in a variety of studies, includ-
ing human behavior analysis, transportation management, and wildlife
tracking. While each study area introduces a different perspective, they
share the need to integrate positioning data with domain-specific infor-
mation. Semantic annotations are necessary to improve discovery, reuse,
and integration of trajectory data from different sources. Consequently,
it would be beneficial if the common structure encountered in trajec-
tory data could be annotated based on a shared vocabulary, abstracting
from domain-specific aspects. Ontology design patterns are an increas-
ingly popular approach to define such flexible and self-contained building
blocks of annotations. They appear more suitable for the annotation of
interdisciplinary, multi-thematic, and multi-perspective data than the
use of foundational and domain ontologies alone. In this paper, we in-
troduce such an ontology design pattern for semantic trajectories. It
was developed as a community effort across multiple disciplines and in
a data-driven fashion. We discuss the formalization of the pattern us-
ing the Web Ontology Language (OWL) and apply the pattern to two
different scenarios, personal travel and wildlife monitoring.

1 Introduction

The term trajectory is used in many different contexts. It can be defined as a
path through space on which a moving object travels over time. For example, the
path of a projectile can be described by a mathematical model which returns
the idealized position of the projectile at each point in time. In other cases,
such as studying animal movement, trajectories are defined by a sparse set of
temporally-indexed positions or ”fixes”, while the exact path between these fixes
is unknown and has to be estimated, e.g., by using Brownian Bridges [23]. In



some of these cases, the fixes have no specific meaning and are purely an artifact
of the used positioning technology, restrictions imposed by energy requirements,
area coverage, and so forth. In other cases, the fixes denote important activities
and decision points, and researchers may be interested in labeling and classifying
them. We will refer to the latter cases as semantic trajectories [1]. An example
of such semantic trajectories occurs in location-based social networks (LBSN),
where the fixes are user check-ins to places and the labels are the names and
types of these places [39,28]. The user’s location between check-ins is unknown.
The distinction between semantic trajectories and other fixes is not always crisp.
For instance, the OCEARCH’s Global Shark Tracker1 can only record pings of
tagged sharks if they surface for a certain amount of time. One could argue that
these fixes do not carry any semantics and just reflect technological limitations
of the used positioning technology. However, they reveal some important infor-
mation, namely the event of surfacing and, thus, can be meaningfully labeled.
Summing up, with the fast development of location-enabled mobile devices, it
has become technically and economically feasible to record a large number of
(semantic) trajectories generated by vehicles, animals, humans, and other mov-
ing objects (e.g., from the Internet of Things). While GPS has been widely used
to detect the outdoor locations of moving objects, WiFi[11,10], RFID[31], and
other sensor-tracking techniques have been employed to extend the geo-locating
capability to indoor environments [20,32].

There are multiple ways to publish trajectory data in order to make it ac-
cessible to others. During the last few years, Linked Data [4] has become one
of the methods of choice. It opens up data silos by providing globally unique
identifiers for physical objects and information entities, links between them, and
semantic annotations to foster discovery, retrieval, and integration. The seman-
tic annotations are realized using shared vocabularies. In a highly heterogeneous
and dynamic environment, such as the Web, arriving at commonly agreed and
stable domain ontologies is a difficult task and progress has been slow over the
last years. Foundational ontologies, such as DOLCE [16], have been usefully
applied as a common ground for geo-ontologies [7]. In a Linked Data context,
however, foundational ontologies tend to be too abstract and introduce a hardly
comprehensible set of ontological commitments difficult to handle for laypersons.
Ontology design patterns [14] have emerged as more flexible, reusable, manage-
able, and self-contained building blocks that help to model reoccurring tasks
and provide common ground for more complex ontologies. To reach a higher
degree of formalization and further improve interoperability, these patterns can
be combined and ultimately aligned with foundational ontologies that act as
glue between patterns. An increasing number of geo-ontology design patterns
has been developed as joint community effort by domain experts and ontology
engineers during so-called Geo-Vocabulary Camps (GeoVocamps) [9,8].

In this paper, we propose an ontology design pattern for semantic trajec-
tories and demonstrate its applicability. While trajectory ontologies have been
developed before [37,34], they were confined to specific application areas and

1 http://sharks-ocearch.verite.com/
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were not optimized for querying Linked Data, e.g., via the GeoSPARQL query
language [2]. The proposed pattern is developed with two major goals. First, it
should be directly applicable to a variety of trajectory datasets and, thus, reduce
the initial hurdle for scientists to publish Linked Data [3]. Secondly, it should
be easily extensible, e.g., by aligning to or matching with existing trajectory
ontologies, foundational ontologies, or other domain specific vocabularies.

The remainder of this paper is structured as follows. First, we introduce some
background materials and related work supporting the understanding of the pro-
posed ontology design pattern. Section 3 introduces the conceptual foundation
for the pattern. Next, in section 4, we discuss the formalization of the pattern
using the Web Ontology Language (OWL). In section 5, we demonstrate how to
annotate two trajectory datasets using the proposed pattern, in order to evalu-
ate its applicability. We conclude by summarizing our results and pointing out
directions for future work.

2 Background and Related Work

In this section we introduce related research and background materials relevant
for the presented geo-ontology design pattern.

2.1 Semantic Trajectories

A trajectory consists of a series of spatiotemporal points generated by the mov-
ing object. These points are often represented as {xi, yi, ti} (with xi, yi denot-
ing a position in the 2D geographic plane, and ti representing a time point)
or {xi, yi, zi, ti} (with zi denoting the elevation information) if the trajectory
should be analyzed in a 3D space. While such spatiotemporal points support an
exploration of the mobility pattern of a moving object [13], many applications
require an understanding of additional information to interpret the trajectories.
For example, a traffic analysis based on car trajectories may not be able to de-
rive meaningful results without incorporating information about road networks.
Similarly, studies on bird migration patterns may require an understanding of
the features of the particular bird species (e.g., their body sizes, food sources,
and competitors) as well as information about the weather conditions during
their flight.

Semantic trajectories fill this gap by associating the spatiotemporal points
and segments with geographic and domain knowledge, as well as other related
information [5,1,33]. These semantically enriched trajectories facilitate the dis-
covery of new knowledge, which otherwise may not be easily found. For example,
human trajectories are best understood when the positional fixes can be labeled
with activities performed at these places and the places are associated with
semantic categories such as restaurant or grocery store.



2.2 Ontology Design Patterns

Ontology design patterns are derived from the common conceptual patterns that
emerge in different domains when solving different tasks. A good example (given
by Gangemi) is the participation pattern, which can be observed in enterprise
models, software management, fishery, and many other domains [14,17,29,15].
Ontology design patterns capture the common conceptualization among knowl-
edge engineers and domain experts, and can serve as building blocks or strate-
gies for the design of future (more complex) ontologies. These flexible and self-
contained building blocks appear to fit the needs to model knowledge for domain
applications where more complicated and abstract ontologies may be difficult
to apply. Lately, ontology design patterns have become popular in the geospa-
tial semantics community [12,9,8]. A series of so-called Geo-Vocabulary Camps
(GeoVoCamps2) have been held to promote the joint development, documenta-
tion, and testing of geo-patterns. These camps try to bring ontology engineers
and domain experts together for two to three days to discuss and implement pat-
tern ideas. Usually, patterns are conceptually developed during the camp and
implemented and tested later. A follow-up camp (potentially with different par-
ticipants and also embarking on new patterns) evaluates and refines the results.
This paper is the result of such a community process.

There are two major types of ontology design patterns: logical patterns
and content patterns, though other types have also been discussed in the
literature[9,14]. Logical patterns deal with issues arising from the formal se-
mantics of a knowledge representation languages, and therefore are independent
from application domains. Content patterns often focus on domain knowledge
and are used to model recurrent domain facts. The ontology design pattern pro-
posed in this work is a content pattern addressing the design of classes and
properties found commonly in semantic trajectories across application domains.

2.3 Semantic Trajectory Ontologies

As an ontology design pattern reflects a common conceptualization of domain ex-
perts with respect to a modeling problem, it is worthwhile to review the existing
semantic trajectory ontologies in order to ensure consistency. A conceptual view
on trajectories has been proposed by Spaccapietra et al. [34] who decompose a
trajectory into a series of moves and stops. This stop-move conceptualization
has been applied in several other trajectory studies, and the stops and moves
are often coupled with corresponding geographic information to help interpret
them [1,18,30]. Transportation networks are an important type of geographic in-
formation which is often utilized to make sense of the trajectories [35,27]. Other
geo-data, such as those on Points Of Interest (POI), weather, land use, vege-
tation, and habitats, have also been employed to improve the understanding of
trajectories [34,6,19,38]. While geographic information is the key contributor and
commonality, domain knowledge is included in trajectories and their ontologies
to help understand domain facts [37].

2 http://vocamp.org/wiki/Main_Page
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3 Conceptual Foundation and Motivation for the Pattern

Creating an ontology design pattern requires a generic use case (GUC), general
enough to capture the recurring issues in cross-domain projects [14]. Compe-
tency questions are often utilized to discover and refine the GUC in a particular
domain. A competency question is a typical query that a domain expert might
want to submit to a knowledge base to complete a particular task [17]. A good
ontology design pattern should define all and only the conceptualizations that
are necessary to answer the competency questions shared by domain experts.

We conceptualize and motivate the trajectory design pattern using compe-
tency questions. For readability, we will use particular examples, e.g., related
to animal movement, without restricting the pattern to those application areas.
With the spatiotemporal information of the points contained in the trajectories,
we can answer queries such as these:

Question 1 “Show the birds which stop at x and y”

Question 2 “Show the birds which move at a ground speed of 0.4 m/s”

While spatiotemporal points may only provide a basic level of movement under-
standing, geographic information, such as on points of interests, allows queries
like:

Question 3 “Show the trajectories which cross national parks”

Domain knowledge is another important information source, enabling queries
like:

Question 4 “Show the trajectories of the birds which are less than one year
old”.

In addition, information about the data creator (such as the location-tracking
device) is necessary to answer related queries such as:

Question 5 “Show the trajectories captured by Gamin GPS” or ”show the tra-
jectories generated by iPhone users”.

In order to answer these questions, an ontology design pattern needs to dis-
tinguish a number of relations. We introduce these abstract relations in Table
1, before formalizing them in Section 4. First, in order to query trajectories
by spatiotemporal positions (Question 1), we need to segment the trajectory
through fixes, which, in turn, require spatial and temporal reference systems
(hasSegment, startsFrom, endsAt, hasLocation, atTime). Second, in order to an-
swer questions about movement properties (Question 2), we need attributes for
fixes and segments (hasAttribute). Third, in order to describe the geography of
a trajectory (Question 3), it needs to be related to relevant geographic features.
In the simplest case, this can be done by relating fixes to geographic features.
Fourth, in order to identify and categorize a moving object (such as a bird,
Question 4), we need to relate it to segments of the trajectory (isTraversedBy).



Name Type Explanation

hasSegment SemanticTrajectory × Segment A segment of a trajectory
startsFrom Segment × Fix The from fix of a segment
endsAt Segment × Fix The to fix of a segment
isTraversedBy Segment ×MovingObject A moving object traversing a seg-

ment
hasLocation Fix × Position The spatial position of a fix
atTime Fix × TemporalThing The temporal position of a fix
hasAttribute Segment t Fix ×Attribute An attribute of a segment or a fix
hasCreator Fix × Source The creator of a fix

Table 1: Basic relations needed to answer the competency questions.

Fifth, in order to query for properties of the trajectory data creator (Question
5), we need a relation between fixes and their source (hasCreator).

Figure 1 illustrates the creation of a semantic trajectory by integrating rel-
evant knowledge with a person’s daily trajectory. From top to bottom, the tra-
jectory is enriched with a variety of data and acquires the capability to answer
more advanced queries. This example demonstrates a general use case which is
designed to support as many kinds of queries as possible. In a particular ap-
plication, it may not be necessary to include some information (e.g., about the
data creator). The pattern is designed such that information can be added at
different levels and resolutions, e.g., by sub-typing. This idea will be discussed
in more detail in the following section.

4 OWL Formalization

In this section, we present our geo-ontology design pattern, based on the previ-
ously described conceptual foundations. A schematic view of the pattern is shown
in Figure 2. In the following paragraphs, we respectively discuss the classes and
properties within the pattern and formally encode them using Web Ontology
Language (OWL). We make use of Description Logics (DL) [22] notation, as
we believe this improves the readability and understandability of the axioms
presented. To encode our pattern, we make use of the logic fragment DLPE as
defined in [8], which allows for tractable reasoning. Note that tractable reasoning
is important for producing an efficient implementation of the pattern.

Fix. A fix is defined as a spatiotemporal point {xi,yi,ti} indicating the posi-
tion of a moving object at an instant of time. It can be captured by a location
measurement device (such as a GPS), but can also involve other types of points,
such as check-ins on location-based social networks (LBSN) or centroids of re-
gions passed by a moving object, but not automatically recorded by a device.
Fixes are the atoms of the presented ontology design pattern: they not only
capture the spatiotemporal information of a trajectory, but also link the seg-
ments and provide information on attributes and metadata. By Axiom 1, a fix



Fig. 1: An example semantic trajectory of an individual’s daily activities.

is enforced to have a timestamp and a position and to belong to a trajectory.

Fix v ∃atTime.OWL-Time:Temporal Thing u ∃hasLocation.Position

u ∃hasFix−.SemanticTrajectory (1)

The number of fixes in a trajectory depends on the requirements of the par-
ticular application. Resolution can be as coarse as containing only the important
trajectory points (e.g., check-ins on LBSN), but can also be as fine as includ-
ing points recorded according to a sampling rate of the location-tracking device.
This scale-neutral design makes the pattern flexible, allowing users to model
trajectories at different scales. Real-world examples of fixes include a stop of a
migration flock in a wet land area, an intersection a vehicle has passed, or a
restaurant visited.

Segment. A segment is defined by a starting fix {xi,yi,ti} and an ending fix
{xj ,yj ,tj}. ti < tj , {xi,yi} is not necessarily different from {xj ,yj}, as the moving
object may stay at a the same position for a time period. An encoded formaliza-
tion of a segment is given by Axioms 2–5. Axiom 2 enforces that every segment
is connected to some fixes through the properties startsFrom and endsAt. Ax-
ioms 3 and 4 enforce that every segment is connected to at most two fixes, as



Fig. 2: Schematical description of the pattern

with these two axioms we declare both startsFrom and endsAt to be functional.
Every segment is related to a trajectory as enforced by Axiom 5.

Segment v ∃startsFrom.Fix u ∃endsAt.Fix (2)

> v≤ 1startsFrom.> (3)

> v≤ 1endsAt.> (4)

Segment v ∃hasSegment−.SemanticTrajectory (5)

As a segment is determined by its corresponding startsFrom and endsAt fixes,
it inherits scalability from the fixes. A segment can, thus, be a route connecting
two cities in a coarse-scale application, but also a line linking two spatiotemporal
points on the same road in an application at a finer scale.

OWL-Time:Temporal Thing. We reuse OWL-Time to express the temporal
information associated with a fix. As shown in Figure 2, the relation of atTime
links a fix with an instance of the class OWL-Time:Temporal Thing. OWL-
Time is part of the W3C Semantic Web Activity and has been used in many
applications before, e.g., [36]. It can express rich temporal information using
relations and classes such as owl:before and owl:timeZone. Embedding OWL-
Time in the semantic-trajectory ontology design pattern not only captures the
temporal relations among fixes, but also makes the pattern more reusable for
those familiar with OWL-Time.

Position and Point-of-Interest (POI). As a fix is a spatiotemporal point,
it contains a position. A position is defined as a coordinate tuple {xi,yi} in a 2D



plane, or {xi,yi,zi} in 3D space. It acts as an interface to integrate geographic
information into the ontology design pattern. The concept of interface is well
known from object-oriented programming language, as an enabler for a class to
acquire additional functions. Existing POI ontologies can be integrated with the
trajectory pattern to include geographic data. In Figure 2, we show an example
of integrating the POI ontology developed in GeoVoCampSB20123 (the classes
and relations from the POI ontology are shown by dotted lines). A POI can
be any geographic feature that the user is interested in (e.g., a gas station or a
tourist attraction), and can be represented by various vector geometries (e.g.,
polygons, polylines, and points).

Ordering Fixes within a Trajectory. We automatize the creation of proper-
ties hasNext, hasSuccessor, hasPrevious, and hasPredecessor making use of DL
Axioms 6–10. These properties link fixes in the appropriate order within a given
trajectory. The property hasNext is automatically instantiated between the two
fixes related to the same segment by Axiom 6.4 Note that the functionality of
roles startsFrom and endsAt prevents the creation of incorrect instances of the
hasNext property. With Axiom 7 we define hasNext to be a subrole of hasSucces-
sor, which is enforced to be transitive due to Axiom 8. Properties hasPrevious
and hasPredecesor are defined to be inverses of hasNext and hasSuccessor with
Axioms 9 and 10.

startsFrom− ◦ endsAt v hasNext (6)

hasNext v hasSuccessor (7)

hasSuccessor ◦ hasSuccessor v hasSuccessor (8)

hasNext− v hasPrevious (9)

hasSuccessor− v hasPredecesor (10)

As previously stated, we can enforce an ordering among the fixes within a
trajectory, something that may be useful to query data within an application.
Also, we can easily verify that the time restrictions for a set of fixes are consistent
with respect to the timestamps, now that these are related by the hasNext and
hasSuccessor properties.

StartingFix, EndingFix, and Stop. The concepts of StartingFix, EndingFix,
and Stop are important for the queries on trajectory data [37,34]. These concepts
are not explicitly defined in the ontology design pattern; instead they are derived
from the fixes and segments. The StartingFix has the earliest timestamp and
links to only one segment through the property of startsFrom−. Similarly the
EndingFix is the one which has the latest timestamp and which links to only one

3 http://geog.ucsb.edu/~jano/POIpattern.png
4 Axiom 6 is a role chain. Due to this axiom, hasNext(a, b) is entailed if startsFrom−(a,
c) and endsAt(c, b) are the case for any individual c.

http://geog.ucsb.edu/~jano/POIpattern.png


segment through to−. A stop is a segment whose length (the Euclidean distance
between the startsFrom fix and the endsAt fix) is shorter than a threshold defined
by the user, and the time difference between the startsFrom fix and the endsAt
fix indicates the duration of the stop.

We can automatically detect all fixes that are the start and end of a trajec-
tory, but this comes at the price of loosing tractability. In any case, we include
the necessary axioms to automatize this classification of fixes and leave it to
the user to choose whether to utilize these axioms to the pattern. Fixes where
a trajectory starts or ends are appropriately placed in classes StartingFix and
EndingFix with Axioms 11 and 12. We also extend the starting and ending clas-
sification to segments and automatically classify these into StartingSegment and
EndingSegment with Axioms 13 and 14.

Fix u ¬∃endsAt−.Segment v StartingFix (11)

Fix u ¬∃startsFrom−.Segment v EndingFix (12)

Segment u ∃startsFrom.StartingFix v StartingSegment (13)

Segment u ∃endsAt.EndingFix v EndingSegment (14)

Attribute and hasAttribute. The class Attribute and the corresponding re-
lation hasAttribute have been defined as the generic class and relation to connect
fixes and segments to their attribute values, such as the speed at a particular fix
or the bearing of a segment. Users of the pattern can either remain on this level
or define their own subclasses and subroles, e.g., hasSpeed.Speed, based on the
requirements of the particular applications. This strategy is a well-established
practice, and has been used in many applications and patterns [36]. Both are key
for the development of a successful and reusable pattern, i.e., sub-typing them
gives the pattern the required flexibility without introducing domain knowledge.
Attribute and hasAttribute can also be used to store the pre-calculated spatial
distance or time duration of a segment so that such values do not need to be
dynamically calculated for each query.

Source. The Source class captures the knowledge about the device or the sub-
ject which has collected the trajectory data. Potential device information may
include the device’s manufacturer, produced year, accuracy in terms of location
and time, product model, and so forth. Such information has important meaning
since even for the same moving object in the same trajectory, different devices
or subjects may generate different degrees of uncertain data. Similar to the Po-
sition class, this class also serves as an interface that allows the ontology design
pattern to acquire additional information to support more complex queries. To
give a concrete example, Figure 2 shows the integration of the W3C SSN-XG
semantic sensor network ontology developed in [12].5

5 The fact that the W3C SSN-XG ontology was developed around an ontology design
pattern as its skeleton is further evidence for the effectiveness of patterns.



isTraversedBy. This relation links a Segment with the corresponding moving
object. The MotionP:MovingObject class is borrowed from the Motion Pattern
developed in a previous GeoVoCamp. It can be used as a hook for the integration
of domain knowledge about the moving object, such as the name of a person, the
species of a bird, the manufacturer of a car, and many other types of information
that are necessary to answer the user’s queries. Users can also utilize other
ontologies, such as FOAF (which is used to model information about people and
the relations with their friends) or the bird ontology ONKI6, to capture related
knowledge.

Semantic Trajectory. This class serves as the access point for the ontology
design pattern. A semantic trajectory conveys fixes, segments, and related knowl-
edge into a meaningful path connecting the origin and destination. We encode
some features over individuals in class SemanticTrajectory with Axioms 15–17.
Axiom 15 enforces that every trajectory is linked to at least one segment through
the hasSegment property. Axioms 15 and 17 automatize the hasFix relationship
from every trajectory to every related segment within this trajectory.

SemanticTrajectory v ∃hasSegment.Segment (15)

hasSegment ◦ startsFrom v hasFix (16)

hasSegment ◦ endsAt v hasFix (17)

Domain and Ranges and Class Disjointness. We declare all classes defined
for the pattern to be disjoint (not shown here for lack of space and to improve
readability). This is not only considered to be a good practice while modeling
with OWL, as it allows for further inference, but also a necessary condition for
the pattern to be expressed in DLPE.

We also recommend the definition of domains and ranges for existing classes,
as these axioms are useful in order to complete missing information in some
scenarios. We include Axioms 18–21 as an example, to show how to enforce
some of these restrictions.

∃hasSegment.Segment v SemanticTrajectory (18)

∃hasSegment−.SemanticTrajectory v Segment (19)

∃hasFix.Segment v SemanticTrajectory (20)

∃hasFix−.SemanticTrajectory v Fix (21)

Note that we do not include strict domain and range declarations such as
∃hasSegment.> v SemanticTrajectory. Defining strict domain and ranges over
the properties in an ontology have proven to reduce interoperability instead of

6 http://onki.fi/en/browser/overview/avio



fostering it. Defining domains and ranges over existing classes is less intrusive,
and we believe it will be more useful in practice. It is easy to see how these
axioms enforcing domain and range could be extended to the rest of classes and
relationships presented in Figure 2.

Since pair class disjointness is enforced across all classes presented in the
ontology, the pattern satisfies all conditions and can be expressed within the DL
fragment DLPE as described in [8]. As previously commented, this is only the
case if we have that Axioms 11–14 are not part of the pattern. These axioms were
depicted in this section as we believe they may become useful in some particular
situation. Nonetheless, we do not recommend to include them a priori since the
addition of these axioms makes the reasoning process exponential with respect
to the ontology size.

In summary, the geo-ontology design pattern uses fixes and segments to cap-
ture the trajectory data, and defines a number of interfaces to integrate related
geographic information, domain knowledge, and device data.

5 Applications to Trajectory Data

A successful ontology design pattern should have the usability that allows it
to be applied to a wide range of datasets, solving problems of discovery and
integration. It should not be too specific, nor introduce particular application
perspectives. In this section, we use our semantic trajectory pattern to annotate
datasets of two kinds: trajectories generated by human travelers and by animals.
We also show how existing ontologies (such as a POI ontology) can be combined
with the design pattern to capture related knowledge.

5.1 Modeling Human Trajectories

Human trajectories have been investigated by psychologists, anthropologists, ge-
ographers, and traffic planners to understand human behavior. In recent years,
trajectory data from individuals have also been used to improve personal in-
formation management by providing information which is related to the user’s
current activities [24]. In the following paragraphs, we apply our ontology design
pattern to an individual’s trajectory data recorded by a handheld GPS receiver.
During the trip, the user switched the transportation mode from walking to
driving a car, so that the moving object changed between different segments of
the trajectory. Graphic notations are employed to visualize the integration of
our ontology design pattern with existing ontologies.

Figure 3 shows part of Mike’s trajectory annotation, using the proposed de-
sign pattern, for his trip to the GeoVoCamp Dayton 2012, integrating location
data, GPS positions, personal data, vehicle information, and so forth. We ex-
tracted two representative segments and four fixes from the entire dataset to
illustrate the application. The two segments are traversedBy the person and his
car respectively, and the information about the moving objects is included. This



Fig. 3: Graphic notation for part of a person’s trajectory annotation (blue rect-
angles represent entities and orange circles represent classes).

integration enables queries such as ”show the segments traversed by Mike with-
out his car”. While each segment has two fixes, we only display the relations
of one fix in the figure, as the others have similar relations. A fix is linked to
a timestamp represented by xsd:dateTime and a position7. To demonstrate the
trajectory pattern’s capability of integration with exiting ontologies, we combine
it with the POI pattern developed in a previous GeoVoCamp through the POI
interface. A fix is also linked with a timestamp, and a source (the Gamin GPS
in this case). Information about the GPS device (such as the maker and mode)
is also integrated into the example. We formally encode this ontology using the
N3 syntax. Fragments of the code are shown in Table 2.

5.2 Application to Wildlife Monitoring

Here, we apply the design pattern to wildlife monitoring, using the trajectory
data for a bird as example. The dataset is from the MoveBank, an online database

7 For privacy considerations, we replace the real coordinates with xi and yi



Table 2: Part of the code for the individual trajectory using N3

:mikesTrajectory a :SemanticTrajectory;
:hasSegment :segment1, :segment2, ...;
:hasFix :fix1, :fix2, :fix3, :fix4, ...;

:mike a foaf:Person;

:mikesCar a MotionP:MovingObject;

:mikesGPS a :Source;

:mikesHome a POI:Place;
POI:hasSpatialFootprint :pos1;

:segment1 a :Segment;
:startsFrom :fix1;
:endsAt :fix2;
:isTraversedBy :fordFocus;

:fix1 a :Fix;
:hasCreator :mikesGPS;
:inXSDDataTime :2012-09-15T11:26:22Z;
:hasLocation :pos1;

:pos1 a :Position;
:geo:astWKT Point(x0,y0);

providing animal track data openly to researchers8. The moving object is a
toucan (a type of ramphastos sulfuratus), and the trajectory data contains the
information about its positions, timestamps, temperatures of the environment,
speeds, accuracy, directions, as well as some tracking device information, such
as battery voltage [25,26]. Figure 4 shows the semantic annotation for part of
the toucan’s trajectory.

For reason of space limitation and readability, only one segment and two
fixes are shown in the figure; the full data can be stored in any RDF triple store.
The segment is traversedBy the toucan, and the application-specific information
of this bird, such as its taxonomic name and local identifier, is also included in
this example. Each fix has its corresponding time and position information. Un-
like the human example, each fix of the bird’s trajectory has several additional
attributes, such as the temperature, its speed, and heading direction, which de-
scribe the status of the toucan and the environment at that fix. These attributes
are expressed by sub-typing the Attribute class and the hasAttribute relation in
the ontology design pattern. Such attributes enable queries such as ”show the

8 https://www.movebank.org/



Fig. 4: Graphical notation for part of the annotation of the toucan’s trajectory
(blue rectangles for entities and orange circles for classes).

fixes where the toucan is moving at a speed higher than 6 m/s”. The fixes are
generated by the e-obs, a tracking device whose sensorType and batteryVotage
are also captured by this trajectory ontology.

6 Conclusions

In this paper we presented a geo-ontology design pattern for semantic trajecto-
ries and demonstrated its applicability. The pattern resulted from a joint effort
of domain experts and knowledge engineers. It can be used to semantically an-
notate trajectory data from a range of different domains such as navigation and
wildlife monitoring. The major advantages of using the proposed pattern (also
in comparison to existing work) are:

– Expressiveness. The design pattern can express a trajectory’s spatiotempo-
ral properties, geographic knowledge, domain knowledge, as well as relations
among them. The pattern’s formalization goes far beyond the typical surface
semantics that reduces ontologies to mere subsumption hierarchies. Instead,
it uses the expressive power of OWL to support a wide range of inferences.
This makes the pattern suitable for semantic annotation (of Linked Data),
reasoning, and support for retrieval of scientific data (e.g., in semantics-
enabled cyber-infrastructures).



– Simplicity. Only a minimal number of classes and relations are defined,
which makes the design pattern easy to understand, reuse, and extend. The
pattern can be used as a skeleton for more complex ontologies by sub-typing.
This is in line with the approaches taken previously by other researchers, e.g.
in the Simple Event Model (SEM) [21]. We do not restrict the domains and
ranges of the used relations on a global level, in order to avoid unintended
inferences. Misunderstandings of the formal semantics underlying such re-
strictions have been identified as a common source of errors (especially made
by those new to ontology engineering).

– Flexibility. The provided interfaces (generic classes such as Source) allow
the user to integrate related knowledge according to the specific needs of the
application (users can also leave interfaces open and use the pattern directly
without sub-typing). The pattern can model not only trajectories that have
already been recorded, but also hypothesized or planned trajectories (e.g.,
in the context of navigation).

– Scalability. Depending on the required granularity of a particular applica-
tion, the ontology design pattern can model trajectories at different scales.
For instance, the physical movement path can be resolved to any degree
based on the sample interval for fixes.

In a broader context, the pattern also contributes to a data-driven geo-
ontology engineering paradigm. The success of a pattern and the methodology
as such can only be evaluated over the years based on its usage in the wild.
Nonetheless, the ability to develop such patterns (see also [9,8]) in a commu-
nity process, agree on their ontological commitments, implement them in OWL,
document them using real data from different domains, and publish the results,
provides insights into the significant potential of the use of patterns, and their
appeal to domain scientists, e.g., in a setting such as NSF’s EarthCube [3].

While the presented work also demonstrates how to combine different pat-
terns, so far they have mostly been developed independently and without an
overarching structure. In fact, and in contrast to other domains, there is no
common platform for geo-ontology design patterns, documentations, best prac-
tice, examples, and so forth that would significantly lower the initial hurdle for
domain scientists interested in semantically annotating their data. This will be
one of the main goals for the next years of geospatial semantics research. To ad-
dress this challenge, we recently propose Descartes-Core as a community-wide
collection of vocabularies, (geo-)ontology design patterns, best practice guides,
examples, software, and services, with the aim to foster semantic interoperability
between different sources without restricting semantic heterogeneity.

Finally, we plan to develop an optional alignment layer between the trajectory
pattern and the DOLCE foundational ontology in a similar way as done for
the W3C SSN-XG ontology before [12]. We expect that this will further foster
interoperability and reuse of the pattern.
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