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Abstract. Ontology alignment has been studied for over a decade, and
over that time many alignment systems have been developed by re-
searchers in order to find simple 1-to-1 equivalence alignments between
ontologies. However, finding complex alignments, i.e., alignments that
are not simple class or property equivalences, is a topic largely unex-
plored but with growing significance. Currently, establishing a complex
alignment requires domain experts to work together to manually generate
the alignment, which is extremely time-consuming and labor-intensive.
In this paper, we propose an automated method based on association
rule mining to detect not only simple alignments, but also more com-
plex alignments between ontologies. Our algorithm can also be used in
a semi-automated fashion to effectively assist users in finding potential
complex alignments which they can then validate or edit. In addition,
we evaluate the performance of our algorithm on the complex alignment
benchmark of the Ontology Alignment Evaluation Initiative (OAEI).

1 Introduction

Ontology alignment is an important step in enabling computers to query and
reason across the many linked datasets on the semantic web. This is a difficult
challenge because the ontologies underlying different linked datasets can vary in
terms of subject area coverage, level of abstraction, ontology modeling philos-
ophy, and even language. Due to the importance and difficulty of the ontology
alignment problem, it has been an active area of research for over a decade [21].

Ideally, alignment systems should be able to uncover any entity relationship
across two ontologies that can exist within a single ontology. Such relationships
have a wide range of complexity, from simple 1-to-1 equivalence, such as a Person
in one ontology being equivalent to a Human in another ontology, to arbitrary m-
to-n complex relationships, such as a Professor with a hasRank property value
of “Assistant” in one ontology being a subclass of the union of the Faculty
and TenureTrack classes in another. Unfortunately, the majority of the research
activities in the field of ontology alignment remains focused on the simplest
end of this scale – finding 1-to-1 equivalence alignments between ontologies.
Indeed, identifying arbitrarily complex alignment is known to be significantly
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harder than finding 1-to-1 equivalences. In the latter case, a naive approach can
compare every entity from the source ontology against every entity in the target
ontology, which is feasible for small- and medium-sized ontologies. However, a
complex alignment can potentially involve many entities from both ontologies,
so pair-wise comparison is insufficient, and the search space become very large
even for small ontologies. It is indeed very difficult for either a human expert or
an automated system to evaluate all possible combinations [2, 19].

In this paper, we propose a complex alignment algorithm based on asso-
ciation rule mining. Our algorithm automatically discovers potential complex
correspondences which can then be presented to human experts in order to ef-
fectively generate complex alignment between two ontologies with populated
common instance data. We evaluate the performance of our system on one of
the benchmarks from the complex alignment track of the OAEI 2018,3 the Ge-
oLink benchmark, which contains around 74k instances from real-world datasets.
Significant instance data, which is required for the association rule mining ap-
proach, is not available for the remaining benchmarks.4 The main contributions
of this paper are the following:
– The association rule-based algorithm automatically detects not only 1-to-1

equivalences, but also more complex alignment between two ontologies.
– A detailed analysis of the results provides a good understanding of the effi-

cacy of this approach and identifies further directions for advancement.
There is a side contribution when we analyze the results, which is that our
algorithm shows that shared instance data between two ontologies can be a
good resource to improve the performance of ontology alignment.

The rest of the paper is organized as follows. Section 2 discusses related
work in ontology alignment using association rule mining and instance data
and complex ontology alignment, including existing alignment algorithms and
relevant benchmarks. Section 3 gives background on the FP-growth association
rule mining algorithm. Section 4 illustrates the association rule-based alignment
algorithm in detail, along with the alignment patterns used to generate the
alignment between ontologies. The analysis of the performance of the system is
discussed in Section 5. Section 6 concludes with a discussion of potential future
work in this area.

2 Related Work

Association rule mining has already been used for finding 1:1 simple alignments.
AROMA [4] is a hybrid, extensional and asymmetric ontology alignment method
that makes use of association rules and a statistical measure. It relies on the idea
that “An entity A will be more specific than or equivalent to an entity B if the
vocabulary used to describe A and its instances tends to be included in that of B
and its instances.” In addition, association rule mining is also used in discovering
rules in ontological knowledge bases [10] and logical linked data compression [15].

3 http://oaei.ontologymatching.org/2018/complex/index.html
4 It might be available for OAEI 2019.
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There are also some instance-based ontology alignment systems that utilize
Abox information to generate 1:1 simple alignments between ontologies. GLUE
[6] uses joint probability distributions to describe the similarity of concepts in
two ontologies. For example, p(A,B) is the probability that an instance in the
domain belongs to both concept A and concept B. And then, if the instances of
concept A and concept B are in isolation, GLUE uses the instances of A to learn
a classifier for A, and then classifies instances of B according to that classifier,
and vice-versa. FCA MERGE also utilizes common instances between ontologies
[22]. FCA MERGE extracts instances from a given set of domain-specific text
documents by applying nature language processing techniques. Based on the
extracted instances, FCA MERGE applies mathematical techniques to derive a
lattice of concepts as a structural result of FCA MERGE. More instance-based
alignment systems have been discussed in the survey [26].

There are some related studies on creating algorithms to find complex align-
ment between ontologies. Early work on generating complex alignment is [19, 20].
Therein, three complex alignment patterns were described, which are Class by
Attribute Type (CAT), Class by Attribute Value (CAV), and Property Chain
(PC). Based on these patterns, the authors generated complex alignments on
the Conference and Benchmark datasets from the OAEI. [13] identified com-
plex alignments by defining knowledge rules and using a probabilistic frame-
work to integrate a knowledge-based strategy with standard terminology-based
and structure-based strategies. More recent related work is currently being un-
dertaken by Thieblin et al. [24]. They propose a complex alignment approach
that relies on the notion of Competency Question for Alignment (CQA). The
approach translates a CQA into a SPARQL query and extracts a set of instance
data from the source ontology. Then the matching is performed by finding the
lexically similar surroundings between the set of instance data and the instances
in the target ontology. This approach resulted in the CANARD system [23].
However, the current version of the system is limited to finding complex corre-
spondences that only involve classes. More complex correspondences containing
properties are still not taken into account [23]. Another alignment system that
works on the detection of the complex alignment is the complex version of Agree-
mentMakerLight (AMLC) [9]. This system focuses on the complex Conference
benchmark to find alignments that follow the CAT and CAV patterns.

In OAEI 2018, the first version of the complex alignment track [25] opened
new perspectives in the field of ontology matching. It comprised four different
benchmarks containing complex relations. However, the results from the first
year were rather poor. Only 2 out of 15 systems, AMLC and CANARD, were
able to generate any correct complex correspondences on the complex Conference
and Taxon benchmarks, and the correct number of mappings found was quite
limited. The very limited performance of the two systems of course shows avenues
for improvement in the future. More details of evaluations and results can be
accessed on the OAEI 2018 website.5

5 http://oaei.ontologymatching.org/2018/complex/index.html
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Our algorithm differs from the above methods in several aspects. First, [9],
[13], and [19] focus on computing lexical or terminological similarity to decide
on complex alignments, while our system takes advantage of instance data to
generate association rules between ontologies. While the CANARD system also
relies on the instance data, we use it in completely different ways. In addition, the
current version of CANARD is limited to finding complex correspondences that
involve only classes, while our algorithm does not have this limitation. Second,
our evaluation of results is more detailed, in order to provide insight into how
to improve the performance of complex alignment algorithms. Specifically, we
break the evaluation process down into two subtasks: entity identification and
relationship identification. We utilize a variation of traditional evaluation metrics
called relaxed precision, recall, and f-measure [7] to present the final results of
the full complex alignment.

3 Background

In order to help the reader understand how we apply association rule mining
and the FP-growth algorithm on the ontology alignment task, we introduce here
some concepts that we frequently mention in the rest of the paper.

Association Rule Mining. Our alignment system mainly depends on a
data mining algorithm called association rule mining, which is a rule-based ma-
chine learning method for discovering interesting relations between variables in
large databases [17]. Over the years, association rule mining has played an im-
portant role in many data mining tasks, such as market basket analysis, web
usage mining, and bioinformatics. Many algorithms for generating association
rules have been proposed, like Apriori [1] and FP-growth algorithm [11]. In this
paper, we use FP-growth to generate association rules between ontologies, since
the FP-growth algorithm has been proven superior to other algorithms [11] and
will improve the algorithm in terms of run-time.

Transaction Database. Let I = {i1, i2, . . . , in} be a set of distinct at-
tributes called items. Let D = {t1, t2, . . . , tm} be a set of transactions where
each transaction in D has a unique transaction ID and contains a subset of the
items in I. Table 1 shows a list of transactions corresponding to a list of triples.
The data in an ontology can be displayed as a set of triples, each consisting of
subject, predicate, and object. Here, subjects represent the identifiers and the
set of corresponding properties with the objects represent transactions, which
are separated by the symbol “|”. I.e., a transaction is a set T = (s, Z) such that
s is a subject, and each member of Z is a pair (p, o) of a property and an object
such that (s, p, o) is a triple.

FP-growth. The FP stands for frequent pattern. The FP-growth algorithm
is run on the transaction database in order to determine which combinations of
items co-occur frequently. The algorithm first counts the number of occurrences
of all individual items in the database. Next, it builds an FP-tree structure by
inserting these instances. Items in each instance are sorted by descending order
of their frequency in the dataset, so that the tree can be processed quickly. Items
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Table 1. Triples and Corresponding Transactions

s1 p1 o1
s1 p2 o2
s1 p4 o4
s2 p1 o1
s2 p2 o2
s2 p3 o3
s2 p4 o4
s3 p1 o1
s3 p2 o2

TID Itemsets

s1 p1|o1, p2|o2, p4|o4
s2 p1|o1, p2|o2, p3|o3, p4|o4
s3 p1|o1, p2|o2

Table 2. Examples of Association Rules

Antecedent Consequent

p4|o4, p1|o1 p2|o2
p2|o2 p1|o1
p4|o4 p1|o1

in each instance that do not meet the predefined thresholds, such as minimum
support and minimum confidence (see below for these terms), are discarded.
Once all large itemsets have been found, the association rule creation begins.

Association Rule. Every association rule is composed of two sides. The
left-hand-side is called the antecedent, and the right-hand-side is the consequent.
These rules indicate that whenever the antecedent is present, the consequent is
likely to be as well. Table 2 shows some examples of association rules generated
from the transaction database in Table 1.

Support. Support indicates how frequently an itemset appears in the dataset.
The FP-growth algorithm finds the frequent itemsets from the dataset based on
the minimum support threshold. In our alignment system, the minimum support
value is examined and set to 0.001 to guarantee the best performance.

Confidence. Confidence is an indication of how often an association rule has
been found to be true, i.e. how often the presence of the antecedent is associated
with the presence of the consequent. The minimum confidence can be tuned to
find relatively accurate rules. In this paper, we use the minimum confidence of
0.3 as default value. And we tune the value to 1 when we mine the association
rules that may contain complex relations, because our algorithm would focus on
precision-oriented results.

Lift. Lift is the ratio of the observed support to that expected if the an-
tecedent and consequent were independent. If the lift is greater than 1, it means
that the two items are dependent on one another, which indicates that the as-
sociation rule useful. In our approach, lift is used to choose between otherwise
equal options when detecting simple mappings. When the confidence values of
two association rules are the same, the one with higher lift value is selected as
the basis for the mapping.

4 Association Rule-Based Alignment Algorithm

In this section, we introduce the proposed ontology alignment algorithm based
on association rule mining in detail. Figure 1 illustrates the overview of our
proposed algorithm.



6 Lu Zhou, Michelle Cheatham, and Pascal Hitzler

Fig. 1. Overview of The Proposed Alignment Algorithm

4.1 Data Preparation

We first extract all triples 〈Subject, Predicate, Object〉 from the source and
target ontologies. Each item in a triple is expressed as a web URI. After collecting
all of the triples, we prepare the data as follows: we only keep the triples that
contain at least one entity under the source or the target ontology namespace
and also the triples that contain rdf:type information, since our algorithm relies
on this information. After this, there are still some triples containing less useful
information for association rule mining, which follow this format: x rdf:type
owl:NamedIndividual. This triple is not very informative except stating the subject
x is an individual. But, it frequently occurs in the dataset and may lead to
noises when applying the FP-growth algorithm, since the frequency of occurrence
impacts the results of FP-growth. So, we filter out such noise from the dataset
as well.

After this filtering process, we generate the transaction database for the FP-
growth algorithm based on all of the remaining triples. The subjects serve as the
transaction IDs, and the predicates with the objects separated by the symbol “|”
are the items for each transaction. Then we replace the object in the triples with
its rdf:type,6 because we focus on generating schema-level (rather than instance-
level) mapping rules between two ontologies, and the type information of the
object is more meaningful than the original URI. If an object in a triple has
rdf:type of a class in the ontology, we replace the URI of the object with its
class. If the object is a data value, the URI of the object is replaced with the
datatype. If the object already is a class in the ontology, it remains unchanged.
Tables 3 and 4 show some examples of the conversion.

4.2 Association Rule and Alignment Generation

We run the FP-growth algorithm on the transaction database and generate a
set of association rules. Since we are trying to find the mappings between two
ontologies, we focus on mining the rules whose antecedent only contains entities

6 Our evaluation data has only single type. If there are multiple types of the object, it
can also combine the subject and predicate as additional information to determine
the correct type, or keep both types as two triples.



Towards Association Rule-Based Complex Ontology Alignment 7

Table 3. Original Transaction Database

TID Itemsets

x1 gbo:hasAward|y1, gmo:fundedBy|y2
x2 gbo:hasFullName|y3, gmo:hasPersonName|y4
x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

Table 4. Typed Transaction Database

TID Itemsets

x1 gbo:hasAward|gbo:Award, gmo:fundedBy|gmo:FundingAward

x2 gbo:hasFullName|xsd:string, gmo:hasPersonName|gmo:PersonName

x3 rdf:type|gbo:Cruise, rdf:type|gmo:Cruise

from the source ontology and whose consequent only contains entities from the
target ontology. The association rules tell us which source entities are related to
which target entities, but they do not give us information on how those entities
are related. In order to determine this, we analyze the output of the association
rule mining step in light of the common alignment patterns introduced in [19,
27]. In the following, we introduce how we leverage these alignment patterns
to filter the association rules and generate the corresponding alignment. The
following examples that we use in this paper are from the GeoLink benchmark
[27]. gbo: is the prefix of the namespace of the GeoLink Base Ontology (GBO),
and gmo: is the prefix of the namespace of the GeoLink Modular Ontology
(GMO). The alignment between the two ontologies contains both simple and
complex correspondences. To deal with the redundancy of generated association
rules, we always keep the simpler rule as the result. For example, there are two
association rules generated by our system. Cruise in the GBO is equivalent to
the domain of fundedBy with it range of FundingAward in the GMO. And Cruise
in the GBO is also equivalent to Cruise in the GMO, which is the domain of
fundedBy. Therefore, the two mapping rules are semantically equivalent. And we
only keep the second rule which is the simpler one as our result.

Simple Alignment. Simple alignment is a set of simple correspondences that
refer to basic 1-to-1 simple mappings between two ontologies, in which the enti-
ties involved may be either classes or properties.

1:1 Class Alignment. The first pattern is simple 1-to-1 class relationships. Classes
C1 and C2 are from ontology O1 and ontology O2, respectively. So, we target
the association rules with the following format:

Association Rule format: rdf:type|C1 → rdf:type|C2

Example: rdf:type|gbo:Award→ rdf:type|gmo:FundingAward
Generated Alignment: gbo:Award(x)→ gmo:FundingAward(x)

The left and right hand side of the arrow represent the antecedent and
consequent in the association rules, respectively. In the example, the associa-
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tion rule implies that if an individual x has rdf:type of gbo:Award, then x also
has rdf:type of gmo:FundingAward. This means that gbo:Award is a subclass of
gmo:FundingAward. If there is another association rule containing the reverse in-
formation, which means that gmo:FundingAward is also a subclass of gbo:Award
then we can generate an alignment based on the two association rules stating
that gbo:Award is equivalent to gmo:FundingAward. This method of choosing be-
tween subsumption and equivalence relationships is used for all of the following
types of correspondences as well.

1:1 Property Alignment. This pattern captures simple 1-to-1 property mappings.
The property can be either an object property or a data property.

(1) Object Property Alignment. Since we have the information of the type of
the object in the association rule, we can use the type information to filter the
mapping candidates. When we align two object properties, the range types of
the properties are usually either equivalent to each other or compatible (because
they are in a subclass or superclass relationship). In this paper, our algorithm is
precision-oriented. Therefore, we require the object properties in the two ontolo-
gies to have equivalent (rather than compatible) ranges in order to be considered
equivalent. Range equivalence is determined through the results of the simple
class alignment introduced above. Object Property op1 with its range type t1
and object property op2 with its range type t2 are from ontology O1 and ontol-
ogy O2, respectively. In order to find this alignment, we select the association
rules with the following format:

Association Rule format: op1|t1 → op2|t2
Example: gbo:hasAward|gbo:Award→ gmo:fundedBy|gmo:FundingAward
Generated Alignment: gbo:hasAward(x, y)→ gmo:fundedBy(x, y)

We know from the results of the simple class alignment that gbo:Award is
equivalent to gmo:FundingAward. This association rule says that gbo:hasAward is
subsumed by gmo:fundedBy. If there is another association rule containing the re-
verse relationship, we can generate the mapping that gbo:hasAward is equivalent
to gmo:fundedBy.

(2) Data Property Alignment. Similar to aligning object properties, when
aligning two data properties, the range values of the two properties should be of
a compatible datatype. In this paper, we only investigate equivalent datatypes.
Data Property dp1 with its range value t1 and property dp2 with its range value
t2 are from ontology O1 and ontology O2, respectively.

Association Rule format: dp1|t1 → dp2|t2
Example:

gbo:hasIdentifierValue|xsd:string→ gmo:hasIdentifierValue|xsd:string
Generated Alignment:

gbo:hasIdentifierValue(x, y)→ gmo:hasIdentifierValue(x, y)

(3) Data/Object to Object/Data Property Alignment. It is possible that
two ontologists may model the same property differently – e.g., there is an ex-
ample in the OAEI GeoLink complex alignment benchmark [27]. The entity
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hasIdentifierScheme is modeled as an object property in the GBO with a range
of class IdentifierScheme. But, this entity is modeled as a data property in the
GMO with a range of the string datatype. In this case, we calculate the Lev-
enshtein string similarity between the labels of the two properties and keep the
pairs within a predefined threshold (0.9 is examined to get the best performance).
The association rule should have the following format:

Association Rule format: op1/dp1|t1 → dp2/op2|t2
Example:

gbo:hasIdentifierScheme|gbo:IdentifierScheme→
gmo:hasIdentifierScheme|xsd:string

Generated Alignment:
gbo:hasIdentifierScheme(x, y)→ gmo:hasIdentifierScheme(x, y)

Complex Alignment. Complex alignment is a set of Complex correspondences
that refer to more complex patterns, such as 1-to-n equivalence, 1-to-n subsump-
tion, m-to-n equivalence, m-to-n subsumption, and m-to-n arbitrary relationship.

1:n Class Alignment. This type of pattern was first introduced in [19]. It contains
two different patterns: the Class by Attribute Type pattern (CAT) and the Class
by Attribute Value pattern (CAV). In addition, [27] introduced another pattern
called Class Typecasting.

(4) Class by Attribute Type. This pattern states that a class in the source
ontology is in some relationship to a complex construction in the target ontology.
This complex construction may comprise an object property and its range type.
Class C1 is from ontology O1, and object property op1 and its range type t1 are
from ontology O2.

Association Rule format: rdf:type|C1 → op1|t1
Example: rdf:type|gbo:PortCall→ gmo:atPort|gmo:Place
Generated Alignment: gbo:PortCall(x)→ gmo:atPort(x, y) ∧ gmo:Place(y)

In this example, this association rule implies that if the subject x is an
individual of class gbo:PortCall, then x is subsumed by the domain of gmo:atPort
with the range type of gmo:Place. The equivalence relationship can be generated
by combining another association rule holding the reverse information.

(5) Class by Attribute Value. This pattern is similar to the previous one. It
just replaces the object property with a data property. Class C1 is from ontology
O1, and data property dp1 and its datatype of the range value t1 are from
ontology O2.

Association Rule format: rdf:type|C1 → dp1|t1
Example: rdf:type|gbo:Identifier→ gmo:hasIdentifierScheme|xsd:string
Generated Alignment: gbo:Identifier(x)→ gmo:hasIdentifierScheme(x, y)

(6) Class Typecasting. This pattern indicates that an individual x of type
C1 in one ontology O1 is cast into a subclass of C2 in the other ontology O2.

Association Rule format: rdf:type|C1 → rdfs:subClassOf|C2

Example: gbo:PlaceType→ rdfs:subClassOf|gmo:Place
Generated Alignment: gbo:PlaceType→ rdfs:subClassOf(x, gmo:Place)
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1:n Property Alignment This pattern represents a Property Typecasting rela-
tionship that is defined in [27].

(7) 1:n Property Typecasting. This pattern is similar in spirit to the Class
Typecasting patterns mentioned above. However, in this case, a property from
one ontology is cast into a class assignment statement in the other ontology.

Association Rule format: p1|t1 → rdf:type|C2

Example: gbo:hasPlaceType|gbo:PlaceType→ rdf:type|gmo:Place
Generated Alignment:

gbo:hasPlaceType(x, y) ∧ gbo:PlaceType(y)→ gmo:Place(x)

m:n Complex Alignment. This group contains the most complex correspon-
dences.

(8) m:n Property Chain. This pattern applies, for example, when a property,
together with type restrictions on one or both of its fillers, in one ontology, has
been used to “flatten” the structure of the other ontology by short-cutting a
property chain in that ontology. The pattern also ensures that the types of the
property fillers involved in the property chain are typed appropriately in the
other ontology. The class C1 and property r1 with its range restriction t1 are
from ontology O1, and classes Bi and properties pi with its range restriction di
are from ontology O2.

Association Rule format:
rdf:type|C1, r1|t1 → rdf:type|B1, p1|d1, . . . , rdf:type|Bi, pi|di

Example:
gbo:Award, gbo:hasSponsor|gbo:Organization

→ rdf:type|gmo:FundingAward,
gmo:providesAgentRole|gmo:SponsorRole,
gmo:performedBy|gmo:Organization

Generated Alignment:
gbo:Award(x) ∧ gbo:hasSponsor(x, z) ∧ gbo:Organization(z)

→ rdf:type|gmo:FundingAward(x)∧
gmo:providesAgentRole(x, y) ∧ gmo:SponsorRole(y)∧
gmo:performedBy(y, z) ∧ gmo:Organization(z)

In this example, the association rule implies that in the GBO, the prop-
erty gbo:hasSponsor with the domain type of gbo:Award and the range type of
gbo:Organization has been used to “flatten” the complex structure in the GMO
by short-cutting a property chain. Note that in this pattern, C1 and any of the
Bi may be omitted (in which case they are essentially >).

5 Evaluation

In this section, we show the experimental results of our proposed alignment
algorithm on the OAEI GeoLink benchmark and analyze the results in detail.
The GeoLink benchmark [27] is composed of two ontologies in the geosciences
domain. These two ontologies are both populated with 100% shared instance
data collected from the real-world GeoLink knowledge base [3], in order to help
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the evaluation of alignment algorithms depending on instance data.7 The subset
used for this study contains around 74k triples, which is suitable for applying
association rule mining.

We originally planned to compare the performance of our system against
pattern based system in [19], CANARD, and AMLC. However, the GeoLink
benchmark is a property-oriented dataset which involves many object or data
properties in the complex correspondences. As we discussed in Section 2, CA-
NARD is currently limited to finding complex mappings that only involve classes.
Even though pattern based system in [19] can generate property-based complex
correspondences, like property chains, there are several rules that the system
follows that largely limit its results, and it ends without finding any complex
alignment on the GeoLink ontology pair. AMLC currently only works for the
complex Conference benchmark [2, 9]. Therefore, there are no complex align-
ment systems against which we could compare the performance of our system.
So in this paper we are limited to reporting the performance of our system
against the reference alignment when it comes to the identification of complex
alignment. Performance on the identification of simple alignment is compared
against that of systems that participated in the OAEI 2018.

Because the systems we compare against are only capable of identifying sim-
ple correspondences, we present the results on the simple and complex portions
of the overall alignment separately.8 For simple correspondences, we use the tra-
ditional precision, recall and F-measure metrics, in order to compare against
other simple alignment systems. However, in order to provide more insight into
the underlying nature of the performance on complex correspondences, we take
a slightly different approach. Semantic precision and recall, which compare cor-
respondences based on their semantic meaning rather than their syntactic repre-
sentation [8]. This is done by applying a reasoner to determine when one mapping
is logically equivalent to another. Even though the semantic approaches solve
an important problem for evaluating alignments with complex correspondences,
they still have several limitations. One is that the reasoning takes a significant
amount of time, particularly for large ontologies. Furthermore, such reasoning is
not possible if the merged ontology is not in OWL DL. The GeoLink benchmark
is one example of this case, since there are many correspondences involving an
object property on one side and a data property on another side, which is not
permissible in OWL DL. Instead, we utilize relaxed precision and recall [7]. More
specifically, a correspondence consists of two aspects: the entities involved, and
the relationship between them (e.g. equivalence, subsumption, disjunction). In
order to assess performance on both of these aspects, we evaluate them sepa-
rately. This roughly corresponds to the first and second subtasks described for
some of the test sets within the complex track of the OAEI.9 However, the types

7 https://doi.org/10.6084/m9.figshare.5907172
8 We are aware that this may not be the most general way to evaluate complex align-

ments, but the community does not yet have any guidelines or tangible results which
could be used. And solving the evaluation problem is out of scope of this paper.

9 http://oaei.ontologymatching.org/2018/complex/index.html#hydrography
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Table 5. The Performance Comparison of Matchers on the Simple Alignment

Matcher # of 1:1 Class Equiv. # of 1:1 Class Subsum. # of 1:1 Property Equiv. Precision Recall F-measure

Reference Alignment 10 2 7 - - -

Our Results 10 0 5 0.94 0.79 0.86

CANARD [18] 9 0 3 0.67 0.63 0.64

DOME [12] 9 0 4 0.41 0.68 0.51

LogMap [14] 9 0 1 0.77 0.53 0.63

LogMapKG [14] 9 0 1 0.77 0.53 0.63

LogMapLt [14] 9 0 5 0.63 0.73 0.68

POMAP++ [16] 9 0 0 0.89 0.47 0.62

XMap [5] 9 0 0 0.39 0.47 0.43

of relationships we consider are limited to equivalence and subsumption rather
than the arbitrary OWL constructs considered there.

5.1 Simple Alignment Evaluation

In the GeoLink benchmark, there are 19 simple mappings, including 10 class
equivalences, 2 class subsumptions, and 7 property equivalences. Table 5 shows
the simple mapping comparison between our algorithm and the matchers that
participated in the OAEI 2018. We list the numbers of correctly identified map-
pings for each matcher and calculate the precision, recall, and f-measure. The
confidence value for picking association rules is set to 0.3, since we find it gen-
erates the best performance for simple alignments.

Based on the results, our algorithm outperforms other systems on finding
the simple mappings in this benchmark. We can argue that leveraging the in-
stance data is a contributing factor, since our algorithm takes advantages of the
instance data, while the other alignment systems do not use it. In addition, most
traditional alignment systems focus on accurate detection only of 1:1 class equiv-
alences, which limits their performance on this benchmark. The only 1:1 class
equivalence that other alignment systems do not find, but our algorithm does,
is gbo:Award(x) ↔ gmo:FundingAward(x). This may also own to the populated
instance data. The reason that our algorithm does not achieve 100% precision
is that we mistakenly identify that gbo:PortCall is equivalent to gmo:Fix. The
correct relationship should be subsumption. This relation can be easily refined
by a semi-automated approach in the future.

5.2 Complex Alignment Evaluation

We set the confidence threshold to 1 when running the association rule mining
algorithm in order to generate the results described in this section. This is a
precision-oriented approach. However, these values can be tuned to fulfill various
purposes of alignment systems.

As mentioned previously, in order to assess the quality of a mapping, there
are two dimensions that we can look into. First, we can evaluate if the map-
ping contains the correct entities that should be involved based on the reference
alignment. Another dimension is the relationship between the entities, like equiv-
alence and subsumption. Based on this, we break the evaluation procedure down
into two subtasks.
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Table 6. Similarity for Relationship Identification

Found Relation Correct Relation Similarity Comment

= = 1 correct relation

⊂ ⊂ 1 correct relation

⊃ ⊃ 1 correct relation

⊂ = 0.8 return less information, but correct

= ⊃ 0.8 return less information, but correct

⊃ = 0.6 return more information, but incorrect

= ⊂ 0.6 return more information, but incorrect

⊂ ⊃ 0.3 incorrect relation

⊃ ⊂ 0.3 incorrect relation

(1) Entity Identification: For each entity in the source ontology, the align-
ment systems will be asked to list all of the entities that are related in some way
in the target ontology. For example, referring to the example we used above,

Award(x) ∧ hasSponsor(x, z)↔ FundingAward(x) ∧ providesAgentRole(x, y)

∧ SponsorRole(y) ∧ performedBy(y, z),

the expected output from an alignment system is that hasSponsor in the GBO is
related to FundingAward, providesAgentRole, SponsorRole and performedBy

in the GMO and Award in the GBO. Based on the two lists of entities from
the reference alignment and the matcher, precision, recall, and f-measure can be
calculated.

(2) Relationship Identification: In terms of the example above, an align-
ment system needs to eventually determine that the relationship between the
two sides is equivalence. Based on our algorithm, if there is only one association
rule holding the information, we consider the relationship to be subsumption. If
there are two association rules containing the information for both directions,
an equivalence relationship is generated. At this stage, we do not further assess
other complex relationships. Table 6 shows the different similarities for differ-
ent situations. We slightly penalize differently for the situations in finding less
information, but all the information returned is correct, and finding more infor-
mation, but part of the information is incorrect. We do not penalize the incorrect
relationship by giving a ZERO value because that would completely neglect the
entity identification outputs without considering whether it is a reasonable result
or a completely incorrect one. In order to generate the final results, we multiply
the results from the entity identification by the penalty of the relations.10 The
formulas for computing the final results are as follows:

Relaxed precision = Precision entity × Relation similarity

Relaxed recall = Recall entity × Relation similarity

Relaxed f-measure = F-measure entity × Relation similarity

10 To be accurate, it could also have been better aggregated with other aggregation
functions rather than multiplication [7]. But we would not focus on this question in
this paper.
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Table 7. Comparative Performance of Generating Complex Alignment

Matcher 1:n Property subsum. m:n Complex equiv. m:n Complex subsum.

Reference Alignment 5 26 17

Our Algorithm 3 15 7

Relaxed Precision 0.60 0.90 0.53

Relaxed Recall 0.36 0.36 0.16

Relaxed F-measure 0.45 0.51 0.24

Table 7 shows the results of our algorithm. In total there are 48 complex
mappings in the reference alignment. For 1:n property subsumption, our algo-
rithm finds 3 mappings that fall into this category. For example, we find that the
domain of gbo:hasSampleType is equivalent to gmo:PhysicalSample. However, the
correct relationship should be subsumption. So, the final result should be penal-
ized based on Table 6. For m:n complex equivalence, since our default confidence
value for complex alignment is 1, the alignment that we found may miss some
entities that should exist in the alignment. For example, referring to the exam-
ple we use in the entity identification, the expected output from the alignment
system is that the property hasSponsor in the GBO is related to FundingAward,
providesAgentRole, SponsorRole, performedBy in the GMO and Award in the GBO.
However, our algorithm misses one entity which is performedBy in the GMO. Er-
rors such as this may of course be easily corrected by human interaction. For
m:n complex subsumption, our algorithm does not generate the correct relation-
ships for all the mappings we found. However, overall, our association rule-based
algorithm can effectively come up with rather high quality simple and complex
alignment automatically.11

6 Conclusion

Complex ontology alignment has been discussed for a long time, but relatively
little work has been done to advance the state of the art in this field. In this
paper, we proposed a complex ontology alignment algorithm based on association
rule mining. Our algorithm takes advantage of instance data to mine frequent
patterns, which show us which entities in one ontology are related to which
entities in the other. Then we apply common simple and complex patterns to
arrange these related entities into the formal alignment. We evaluated our system
on the complex alignment benchmark from the OAEI and analyzed the results
in detail to provide a better understanding of the challenges related to complex
ontology alignment research.

There are still some limitations of our algorithm. First, our system relies
on instance data for mining the association rules, which is not available for
all ontology pairs. However, this could possibly be resolved with automated

11 All the data and alignment that we use and generate can be accessed via the link
http://tiny.cc/rojy4y. We utilize the Apache Spark frequent pattern mining library
to generate association rules.
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instance data generation to populate common instances into the ontologies or
instance matching techniques. Second, we incorporate some common patterns
that have been widely accepted in the ontology alignment community in this
paper. This could be another limitation, since the set of mapping patterns in our
system is likely not comprehensive. However, our algorithm is extensible, more
patterns can be easily added in the future as the need arises. Third, it is possible
that there are situations that the association rule would fail in term of finding
simple property alignment. For example, if there are two properties livesIn and
bornIn in source and target ontologies respectively, and the association rules
would say if livesIn|Place, then bornIn|Place if they occur frequently. livesIn and
bornIn would be considered as equivalent. In this case, there are many different
methods that could be applied to improve the performance, like using lexical-
based comparison or utilizing external knowledge base to annotate these entities.
Fourth, we are collaborating with other benchmark and system developers to
enable the comparison and prepare our alignment system to participate in the
complex alignment track of the OAEI.
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